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Invited Speaker: Johan Bos

Semantic Parsing with CCG in Real-World Applications

Formal approaches in semantics have long been restricted to small or medium-
sized fragments of natural language grammars. We argue that categorial gram-
mars are very suitable for reaching wide-coverage grammars for semantic inter-
pretation because they are lexicalised and have a transparant mapping between
syntactic categories and semantic types. We substantiate this claim by taking
Clark & Curran’s statistical CCG parser (trained on Hockenmaier’s CCGbank
for English) and show how to build a principled syntax-semantic interface situ-
ated in Discourse Representation Theory. Despite the theoretical beauty of cate-
gorial grammars, not all is hunky-dory, and we will illustrate both the attractive
and the less attractive aspects that arise in developing practical grammar for-
malisms. We will illustrate the resulting system for robust text interpretation
in applications such as question answering and textual inference.



Invited Speaker: Makoto Kanazawa

Datalog as a Uniform Framework for Parsing and Genera-

tion

Various grammar formalisms with ”context-free” derivations, including multiple
context-free grammars, tree-adjoining grammars, and context-free tree gram-
mars, can be straightforwardly represented by Datalog programs (i.e., logic pro-
grams without function symbols), if strings and trees are viewed as first-order
structures or “databases”. This is a generalization of the well-known definite
clause grammar representation of context-free grammars and underlies CYK-
style tabular parsing methods for these grammar formalisms. Moreover, when
these grammars are coupled with Montague-style semantics, where meanings
are represented by typed lambda terms, the problem of “tactical generation”
or “surface realization” also reduces to Datalog query evaluation, provided that
the lambda terms associated with the grammar rules are “almost linear”. (The
correctness of this reduction can be rigorously proved using a certain relaxation
of second-order abstract categorial grammars, as shown by Kanazawa 2007.)

The Datalog representation allows a unified view of algorithmic and complexity-
theoretic issues surrounding parsing and generation, in abstraction from par-
ticular grammar formalisms. In this talk, I will look in some detail at the
complexity-theoretic consequences of the Datalog representation on parsing and
generation.



Word Order Constraints for Lexical Disambiguation of Interaction

Grammars

Guillaume Bonfante, Bruno Guillaume and Mathieu Morey
LORIA - Nancy-Université - INRIA Nancy Grand-Est

{guillaume.bonfante, bruno.guillaume, mathieu.morey}@loria.fr

Abstract

We propose a new method to perform lexical disambiguation of Interaction Grammars. It
deals with the order constraints on words. Actually, the soundness of the method is due to an
invariant property of the parsing of an Interaction Grammar. We show how this invariant can
be computed statically from the grammar.

1 Introduction

Interaction Grammars are a lexicalized grammatical formalism. They share with Categorial Gram-
mars the idea that words are composed of syntactic constituents with a notion of polarity. Some
constituents are unsaturated: they ”wait” for some resources and provide some other ones. Inter-
action Grammars also have, as Categorial Grammars, a mechanism to cope with the linear order
on words.

We show in this paper that ordering constraints can be used to partially disambiguate the words
of a sentence. But, first of all, let us state some of our wills. First, the issue considered here is to be
thought in the context of syntactic analysis. We do not want to use statistical methods for lexical
disambiguation since an error at that point cannot be recovered at the parsing step. Consequently,
given a sentence, we accept to have more than one lexical tagging for it, as long as we can ensure
to have the good ones (when they exist!).

Now, since we have to consider all possible lexical taggings to find the right ones, there is an
immediate problem of complexity. Knowing that a word has typically about 10 corresponding
lexical descriptions, for a short sentence of 10 words, we get 1010 possible taggings. It is not
reasonable to treat them individually.

To avoid it, it is convenient to use an automaton to represent the set of all paths. This automaton
has linear size with regard to the initial lexical ambiguity. The idea of using automata is not new.
In particular, methods based on Hidden Markov Models (HMM) use such a technique for part-of-
speech tagging [3, 4]. Using automata, one may conceive dynamic programming procedures, and
consequently benefits from an exponential temporal speed up, together with the space one.

2 Interaction Grammars

We give here a very short and simplified description of IG and then, an example to illustrate them
at work; we refer the reader to [2] for a complete and detailed presentation.
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The final structure, used as output of the parsing process, is an ordered tree called parse tree
(PT).

A2-A3

=S

B1-B3

=NP
C2-C3

=V
D2-D3

=NP

Jean
E2

=Cl
F2-F3

=V ε

la demande

Figure 1: The PT of “Jean la de-
mande.” [John asks for it.]

An example of a PT is given in Figure 1, on the right. A PT
for a sentence contains the words of the sentence or the empty
word ε in its leaves (the left-right order of the tree leaves fol-
lows the left-right order of words in the input sentence). The
internal nodes of a PT represent the constituents of the sen-
tence. The morpho-syntactic properties of these constituents
are described with feature structures (only the category is
shown in the figure).

As IG use the Model-Theoretic Syntax (MTS) framework,
a PT is defined as the model of a set of constraints. Con-
straints are defined at the word level: words are associated
to a set of constraints formally described as a polarized tree
description (PTD). A PTD is a set of nodes provided with
relations between these nodes. In Figure 2, the three PTDs
given on the left are used to build the model above. The rela-
tions used in the PTDs are: dominance (lines) and immediate
sisterhood (arrows). Nodes represent syntactic constituents and relations express structural depen-
dencies between these constituents; moreover, nodes carry a polarity (polarities are {+,−,=,∼})
which expresses a saturation constraint.

B1

+NP

Jean

A2

~S

C2

~V
D2

+NP

E2

=Cl
F2

~V ε

la

A3

=S

B3

-NP
C3

=V
D3

-NP

F3

=V

demande

Figure 2: PTDs for the sentence “Jean la de-
mande.” [John asks for it.]

Now, we define a PT to be a model of a set
of PTDs if there is a surjective function I from
nodes of the PTDs to nodes of the PT such that:

• relations in the PTDs are realized in the
PT: if M is a daughter (resp. immediate
sister) of N in some PTD then I(M) is a
daughter (resp. immediate sister) of I(N) ;

• each node N in the PT is saturated: the
composition of the polarities of the nodes
in I−1(N) with the associative and com-
mutative rule given in Table 3 is =;

• the feature structure of a node N in the PT
is the unification of the feature structures
of the nodes in I−1(N).

One of the strong points of IG is the flex-
ibility given by the MTS approach: PTDs
can be partially superposed to produce the fi-
nal tree (superposition is limited in usual CG or in TAG for instance). In our exam-
ple, the four grey nodes in the PTD which contains “la” are superposed to the four grey
nodes in the PTD which contains “demande” to produce the four grey nodes in the model.
In the full IG formalism, relations between nodes can be underspecified, for instance a PTD can
impose a node to be an ancestor of another one without constraining the length of the path in the
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model. In full IG, polarities are linked to features, not to nodes. A node can contain several polar-
ities. The methods we present here can be straightforwardly extended to full IG (with unessential
technical details).

∼ − + =
∼ ∼ − + =
− − =
+ + =
= =

Figure 3: Polarity composition

An IG is made of:

• A finite set W of words;

• A finite set G of PTDs (without the word attached to
them);

• A function ` :W −→ P(G) which associates words with
set of PTDs.

Now, to parse a sentence S = w1 . . . wn, we have to:

• first, for each wi, choose one of the PTDs di ∈ `(wi) (we call lexical tagging a choice
{d1, . . . , dn} of one PTD for each word of the sentence);

• find a parse tree which is a model of the set of PTDs of the lexical tagging.

3 The Left-Right Principle

Computing a model of a sentence from a lexical tagging requires to saturate all the polarity con-
straints of its PTDs. To build a model, each node which is not saturated (with a polarity +, − or
∼) has to be merged with its “companions”, namely nodes from other PTDs that will saturate it.

Now let us take a look at the grammar, independently of any sentence, and try to find the
“potential companions” of a given unsaturated node. Actually, as our grammar models word order
constraints, it can be the case that using a node M to saturate a node N requires the PTD corre-
sponding to M to be on the left (resp. on the right) of N . Therefore, for each unsaturated node N
of the grammar G, we can enumerate all of its potential companions using two possibly overlapping
lists: its left potential companions (written LPC(N)) and its right potential companions (written
RPC(N)). By extension, we say that d ∈ LPC(N) (resp. d ∈ RPC(N)) for some PTD d whenever
∃M ∈ d : M ∈ LPC(N) (resp. ∃M ∈ d : M ∈ RPC(N)).

Observe that constructing the LPC and the RPC sets can be done independently from any
sentence, it is a property of the grammar which can be computed from the grammar itself.

Let us consider a sentence w1w2 · · ·wn and one of its lexical taggings d1d2 · · · dn. Suppose that
there is one node N ∈ di for some i for which there is neither some dj ∈ LPC(N) with j < i nor
some dk ∈ RPC(N) with k > i. Then, without performing deep parsing, we can state that such a
lexical tagging has no model. So, it is a necessary condition of the success of parsing that there is
no such node. We call this the Left-Right Principle.

4 Implementation of the Left-Right Principle with automata

We have seen above that the Left-Right principle applies to lexical taggings. As a matter of fact, in
this section we keep the promise we made in the introduction of this paper: we show that it can be
computed by means of automata, saving space and time. Actually, we propose two implementations
of the Left-Right principle, an exact one and an approximate one. The latter is really fast and can
be used as a first step before applying the first one.
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4.1 Exact Left-Right disambiguation (ELR)

Given a sentence w1 · · ·wn, a PTD d ∈ `(wi) and a node N of d, we can build the companionship
automaton A(wi, d,N) for the sentence. It represents the saturation state of the polarity constraint
corresponding to N after each choice of a PTD for a word.

Each state ofA(wi, d,N) is labelled with a couple (j, x), with j the position of the last considered
word and x the saturation state (Open or Close). A state is labelled with Close when all of its
incoming paths fulfill the polarity constraint of N . Otherwise the state is labelled with Open.

More formally, A(wi, d,N) is defined as follows. States are a subset of N × {Open, Close}.
Transitions (j − 1, x) d′−→ (j, y) are labelled by d′ ∈ `(wj). The value of y is determined in the
following way :

• if (j = i) ∧ (d = d′) then y = x,

• if (j = i) ∧ (d 6= d′) then y = Close,

• if (j < i) ∧ (d′ ∈ LPC(N)) then y = Close,

• if (j > i) ∧ (d′ ∈ RPC(N)) then y = Close,

• otherwise y = Open.

The initial state is (0, Open) and the unique accepting final state is (n, Close).
For every word wi of the sentence, we construct the companionship automaton A(wi, d,N) of

every polarized node N in every PTD d ∈ `(wi). The intersection of these automata represents all
the possible lexical taggings of the sentence which respect the Left-Right Principle. That is, we
output: ⋂

1≤i≤n, d∈`(wi), N∈d

A(wi, d,N)

Let us say that for the sentence “Jean la demande.”, the possible PTDs are those described in
Figure 4: `(”Jean”) ={Jean NP}, `(”la”) ={la Det, la Clit, la CN}, `(”demande”) ={demande V,
demande CN}. Then Figure 5 represents the automaton A(”demande”, demande V,D3).

Jean_NP la_Det la_Clit la_CN demande_V demande_CN

B1

+NP

Jean

I1

+NP

G1

=Det
H1

-CN

la

A2

~S

C2

~V
D2

+NP

E2

=Cl
F2

~V ε

la

G2

+CN

la

A3

=S

B3

-NP
C3

=V
D3

-NP

F3

=V

demande

G3

+CN

demande

Figure 4: Possible PTDs for the sentence “Jean la demande.”
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0,Open 1,OpenJean_NP

2,Open
la_Det

la_CN

2,Close

la_Clit

3,Opendemande_V

3,Close

demande_CN

demande_V

demande_CN

Figure 5: A(”demande”, demande V,D3) for the sentence “Jean la demande.”

4.2 Quick and dirty approximation (QLR)

The issue with the previous algorithm is that it involves a large number of automata (actually
O(n)) where n is the size of the input sentence. Each of these automata has size O(n). The
theoretical complexity of the intersection is then O(nn). Sometimes, we face the exponential. So,
let us provide an algorithm which approximates the Principle.

Again, we consider a sentence w1 · · ·wn. Suppose that for some d ∈ `(wi) and some N ∈ d,
there is no d′ ∈ LPC(N) with d′ ∈ `(wj), j < i nor some d′′ ∈ RPC(N) with d′′ ∈ `(wk), k > i.
Then lexical taggings containing d at position i have no model, hence, d can be removed.

This can be computed by a double-for loop: for each node N of a PTD d ∈ `(wi) in the sentence,
verify that there is a companion node M ∈ d′, d′ ∈ `(wj) for it. If it is not the case, simply remove
the lexical choice d for the word wi. Observe that the cost of this algorithm is O(n2).

Note that one must iterate this algorithm until a fix-point is reached. Indeed, removing a PTD
which serves as a potential companion breaks the verification. Nevertheless, since for each step
before the fix-point is reached, we remove at least one PTD, we iterate the double-for at most O(n)
times. The complexity of the whole algorithm is then O(n3).

Let us see on an example the difference between the two algorithms ELR and QLR. Take a
very simple grammar, with a single word w associated to two PTDs d1, d2 such that RPC(d1) =
LPC(d1) = {d2}, LPC(d2) = RPC(d2) = {d1}1. For the sentence ww, the algorithm QLR keeps
the four lexical taggings d1d1, d1d2, d2d1 and d2d2, whereas ELR only keeps d1d2 and d2d1.

5 Experimental results

We present here some results obtained2 with our methods. Our test corpus is composed of 189
sentences (with a mean length of 10 words) extracted from the French newspaper “Le Monde”. Our
linguistic resources are a French IG [5] and a lexicon built from freely available French resources.
In the table below, we give the filtering time for all sentences and filtering ratio for grammatical3

sentences.
The filtering methods we consider are: POL (as a baseline) which uses a global filter based

on polarity counting (described in [1]); QLR is the method described in 4.2 and ELR is described
1For instance, take the PTDs made of one node polarized +N for d1 and −N for d2.
2These results are obtained with a PC (PentiumR© D930, 3.0Ghz, 4Go).
3Here grammatical means that they are accepted by the grammar.
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in 4.1. Note that we have not reported experiments about the ELR method alone because the
filtering time is too high for some sentences.

Values in the table are percentiles. For instance the value 1.20s (in the box) means that with
the ELR+POL filtering, 75% of the 189 sentences are filtered in 1.20s at most. The ratio 3.06 ·105

(also in a box) means that 85% of the 133 sentences have a filtering ratio of 3.06 · 105 at least.
POL QLR QLR + POL ELR + POL

Filtering time 50% 0.38s 0.03s 0.07s 0.11s
for all sentences 75% 2.84s 0.07s 0.38s 1.20s
(189 sentences) 85% 9.83s 0.11s 0.98s 5.92s

Filtering ratio for 50% 2.86 · 105 8.06 · 103 5.76 · 107 1.70 · 108

grammatical sentences 75% 3.07 · 104 9.68 · 102 1.01 · 106 3.24 · 106

(133 sentences) 85% 1.99 · 104 2.66 · 102 3.06 · 105 7.52 · 105

It is clear from the first 2 experiments that the QLR is much more efficient (85% of the sentences
can be filtered in less than 0.11s) but the ratio is lower than the baseline. The combination of the
two methods (QLR+POL) greatly improves the baseline both in filtering time and ratio. The last
experiment is more time consuming (bigger automata are built) but it is still usable in practice and
shows the higher impact that can be reached with our methods (number of taggings divided by at
least 7.52 · 105 for 85% of the sentences).
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Abstract

In this paper we present a method to in-
duce a wide-coverage morpheme-cluster
based CCG lexicon from Turkish depen-
dency treebank. We use the sub-word level
dependencies in the Turkish dependency
treebank, and show that this lexicon per-
forms better than its lexemic counterpart
in explaining morphosyntactic behaviour
in Turkish. It also aims to solve the data
sparseness by allowing better statistics for
morphologically decomposed words when
compared to fully inflected counterparts.

1 Introduction

Turkish is a free word order language with rich ag-
glutinating morphology. Not only case, tense and
number, but also modality, polarity, voice and even
relativisation are achieved through morphology.
Agglutinating languages may have very complex
word forms. There are 231,818 morphemes in-
cluding punctuation for 53,796 tokens in the Turk-
ish treebank (Oflazer et al., 2003; Atalay et al.,
2003). This corresponds to 4.31 morphemes per
word including the stem itself. This means that
for a fixed amount of data it is likely that some of
the inflected (or derived) forms of the words will
never be seen. When building language models,
languages with complex morphology require ei-
ther enormous amounts of data or generalisation
of some sort. We show in this paper how we gener-
alise the CCG lexicon in Çakıcı (2005) using mor-
phological clusters as lexical entities in Turkish.

2 Data

We use the Turkish dependency treebank to extract
the CCG lexicon. The treebank consists of 5670
sentences1. It is annotated with surface depen-

1Note that this is the number after the correction of to-
kenisation errors

wb IGb
tokens 53796 64992
token excl. punc. 43426 54662
Avg. sent. length excl. punc. 7.74 9.72
Avg. sent. length incl. punc. 9.57 11.56
Avg. tags/token 4.31 3.57

Table 1: Numbers from the Turkish treebank

dencies together with the morphological structure
of each word. Morphological structure of a word
consists of sub-word level entitites called “inflec-
tional groups” (IGs) that are divided by deriva-
tional boundaries. Relativisation and subordina-
tion are also represented as instances of morpho-
logical derivation thus they constitute a different
IG than the verb stem they are attached to.

Table 1 gives IG-based and word-based statis-
tics for the treebank. The average sentence length
with and without punctuation are given. Punctua-
tion constitutes about 10K of the tokens. The av-
erage number of IGs per word is 1.26.

3 Morphemic Lexicon

In the rest of the paper, the terms “IG-based lexi-
con” and “morphemic lexicon” will be used inter-
changeably. The Turkish relativiser is considered
to be a deverbaliser that makes adjectives out of
verbs. An example is shown below.

(1) Ödev-i bitir-en çocuk uyu-du.
hw-Acc finish-Rel child sleep-Past.

The child who finished the homework slept.

We argue that the relativiser morpheme here
should have scope over the whole VP following
Bozşahin (2002). For instance in (1) the bracket-
ing should be as shown in (2a) rather than (2b).
Our work is motivated by solving such problems.

(2) a. [[[[Ödev-i bitir]-en] çocuk] uyu-du]

hw-Acc finish-Rel child sleep-Past



b. [[[[Ödev-i] bitir-en] çocuk] uyu-du]

hw-Acc finish-Rel child sleep-Past

4 Lexicon Induction

The lexicon induction algorithm takes IG-based
dependency structures as input and creates CCG
categories for every token. The first step is trans-
lating the dependency graphs into IG-based de-
pendency graphs. After this step, these graphs go
through pre-processing stages to correct annota-
tion errors and separate morphemes that usually
have phrasal scope. Finally, CCG categories are
assigned to IGs. Details of these stages are ex-
plained in the following sections.

4.1 The morphemic dependency structure

The difference between a word-based dependency
graph and the IG-based dependency graph arises
when there are multiple IGs in a word. When cre-
ating the morpheme based dependency graphs if
there is more than one IG in a word, we make
each of them depend on the IG immediately to the
right and make the outward dependency emanate
from the last IG to the IG that it depends on in
its head word. The dependencies between the in-
ternal IGs of a word are labelled INFGR. An ex-
ample is shown in (3). This method is similar to
the CoNNL 2006 shared task conversion (Buch-
holz and Marsi, 2006). However, instead of re-
placing IGs with the underscore character, we give
them names constructed from the tags they con-
tain. Çakıcı and Baldridge (2006) show that using
both the stems and the rest of the word form as fea-
tures give state-of-the-art results, this is an attempt
to simulate this partitioning in order to represent
the morphological information.

(3)
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T: Olur, dedi çaresizlikle
E: Alright , he said, hopelessly.

The data is preprocessed in order to correct
some systematic mistakes about conditionals and
zero-morphemes involved in copula constructions.
Case morphemes are also represented as separate
lexical entities in the dependency structure when-
ever they have phrasal scope.

if IGs>1
stemcat = find_stem_cat();
realcat = find_orig_cat();
ig[next] = realcat\result(stemcat);

Figure 1: Morphemic lexicon induction for words
with more than one IG

4.2 Algorithm

After translation of dependency graphs and pre-
processing the graphs IGs are assigned CCG cat-
egories. The lexicon induction algorithm is based
on the one that is described in Çakıcı (2005). The
difference is when a word has multiple IGs. This
is shown in Figure 1. The dependencies are tra-
versed from the head to the dependents in a re-
cursive manner while constructing the CCG cate-
gories.

If head is the stem of the word, we assign the
category of the stem depending on the part-of-
speech tags and give the (last) IGX\Cat where
X is the result category of the stem after taking
its arguments, if necessary, andCat is the cate-
gory it would have been assigned given its label.
Note that in Çakıcı (2005) word-based lexical cat-
egories assigned to a word are determined by the
word’s relation to its surface-syntactic head in the
treebank i.e. its dependency label. However, in
morphemic lexicon induction, the stems are as-
signed categories dependending on their parts-of-
speech, and the rest depending on their labels.
Williams (1981) argues that the final IG acts as the
head of the whole word or phrase if it has phrasal
scope (Right Hand Rule). In a supporting view,
particularly for the Turkish treebank, where IGs
are mostly representations of segments separated
by derivational morphemes derivational morphol-
ogy changes lexical types of the items they are at-
tached to.
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But, I did not say anything to you.

Figure 2: The dependencies and the final CCG cat-
egories assigned to a sentence in the treebank



A simple example is given in Figure 2. This
example does not contain any multiple IG words.
The recursive algorithm applies to the 2 top level
elements here, one by one. First it finds the
S.MODIFIER and assigns it with categoryS/S,
since the sentence it modifies is to the right. Af-
ter that, it finds the other element at the top level,
which is the main verbsöylemedim. After count-
ing its complements, the algorithm assigns ditran-
sitive category to the verb. The complements re-
ceive their categories in a depth-first manner. This
meanshiçbir being şey’s determiner is assigned
NP/NPright after şeyis assigned NP. Objects are
assignedNP and subjects are assignedNP[nom].
This example has argument scrambling to the right
of the verb, as well. We take SOV as the canonical
word order and assign categories according to this.

Coordination and extraction cases are handled
differently. Examples of different linguistic struc-
tures are given in Section 5.

5 Results

We will focus on the outcome of the morphemic
CCG lexicon approach for some specific construc-
tions in the Turkish treebank. Taking morphemes
as the smallest representational units has some ad-
vantages discussed previously. Some of the solu-
tions of the problems discussed earlier are given in
this section.

5.1 Relativisation

Object extraction and adjunct extraction examples
are given together with the dependencies in the
treebank that are used to create the categories in
Figures 3 and 4.

The fact that relative morphemes behave in a
similar manner to relative pronouns in English
provides the basis for the approach taken here for
recovering long-range dependencies in extractions
of this type.
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The young man drank the water Muammer
brought sip by sip.

Figure 3: Categories for object extraction

The object vs. adjunct relativisation ambiguity
problem is also solved with the help of the sec-
ondary links added to the treebank (Çakıcı, 2005).
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The road we walked had ended and lead to another
street.

Figure 4: Categories for adjunct extraction

5.2 Long-distance dependencies

Long-distance dependencies as well as surface
ones are recovered with the help of CCG cate-
gories. Long-distance dependencies caused by co-
ordination and extraction are also not trivial.

The categories assigned to the words with the
lexicon induction process are fed into the CCG
parser described in Clark and Curran (2007) that
is modified for Turkish to demonstrate the useful-
ness on a very small scale here. 69.98% of the
sentences were assigned at least one parse. Errors
for the rest of the sentences are mostly caused by
wrong CCG catgories and are usually caused by
annotation errors in the treebank (Çakıcı, 2008).
The cleaning process continues.

The dependencies that the CCG derivation in
Figure 5 yields are shown in Figure 6. In addition
to the surface dependencies in the original depen-
dency structure, long distance dependencies such
as the ones that result from coordination are pre-
dicted, too. For instance, dependencies between
kurtulmayacakandtutsağım, and betweenolmay-
acak and tutsağımare not predicted with most
dependency parsers, although they are crucial
dependencies for semantic interpretation. Most
of the gold-standard dependencies are predicted
correctly. There are additional ones -the long-
distance dependencies that do not exist in the orig-
inal dependency structure. These dependencies
are recovered through coordination and extraction.
These are:<kurtul,tutsăg>, <mayacak,tutsăg>

and<olma,tutsăg>. The first two are captured by
coordination of relativisation and the last one is
by relativisation. The dependency between zaman
and -ım is the only one predicted wrong. The head
of the temporal adverb (zaman) is linked to the fur-
thest verb instead of the one next to it. This eval-
uation is done with a system configuration where
the parser returns the first random parse it finds.
With a trained model, these kinds of errors will be
less frequent.
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Figure 5: Derivation with morphemic categories
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Figure 6: The dependencies recovered from the morphemic lexicon categories with the C&C parser.

f word cat
2 oku S\NP[nom]
4 oku (S\NP[nom])\NP
20 oku S
23 oku S\NP

Table 2: CCG categories (cat) and frequencies (f)
of entities of verboku (read)in morphemic lexi-
con.

6 Evaluation

There are 27895 unique word-category pairs for
19385 distinct tokens in the word-based lexicon
that has 54K tokens (Çakıcı, 2008). The mor-
phemic lexicon (69K tokens) has 13016 distinct
word-category pairs for 6315 distinct word stems
and IG stem names. The average word-category
pair frequency goes up from 1.97 to 5.32. The verb
oku (read)appears 49 times in the dependency
treebank. However, only 5 of these inflected forms
occur more than once. The unique word-category
pairs involving this verb in some inflected or de-
rived form is 45. Table 2 shows the category dis-
tribution with the morphemic approach for com-
parison purposes.

There are 311 morphemic category types as
compared to 450 lexemic category types (Çakıcı,
2005). Although the number of category types is
less in the morphemic lexicon, we believe that we
have a more complete set of morphemic category

words% cat%|word pairs%

mean 70.1 94 58.5
std. dev. 1.34 1.70 0.92

Table 3: Coverage results on the 10-fold evalua-
tion of the morphemic lexicon

types than lexemic category types. Figure 7 shows
the distribution of morphemic categories with the
data.
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Figure 7: The growth of morphemic category
types

Table 3 gives the numbers of a 10-fold evalu-
ation process to test the coverage of the lexicon.



We take out the 1/10 of sentences for test and
use the rest as a control set. We test the cover-
age by checking if the unique lexical entities and
unique word-category pairs exist in the control set
for each test set.

We also used an alternative evaluation method.
The morphemic CCG categories were used as fea-
tures to a dependency parser described in McDon-
ald et al. (2005). The results are discussed in detail
in Çakıcı (2008). To summarise, the boost in accu-
racy of the MST parser with the use of CCG cat-
egories was encouragingly high. Unlabelled and
labelled dependency accuracies were 95.08% and
88.96% respectively. When this is compared with
the results for Turkish dependency parsing with-
out the CCG categories which are 81.08 unlabelled
and 72.0 labelled reported in Çakıcı (2008)2 it is
seen that the use of gold-standard CCG categories
boosts the performance of a dependency parser
even when they are used as features. We know
that a supertagger is crucial in getting realistic re-
sults but we include this information as a means of
evaluation of the gold-standard CCG categories in
the morphemic lexicon induced.

6.1 Evaluation by sampling

We perform a small evaluation by randomly
choosing 25 sentences in the morphemic lexicon.
2 out of 202 words were not assigned a category
by the lexicon induction algorithm. All of the sen-
tences that were not parsed had at least one cat-
egory error. On the other hand 3 sentenceswith
errors (1 with a minor category feature error) were
parsed with the C&C parser. The category ac-
curacy of the morphemic lexicon sample set is
more than 6 points higher than the accuracy of the
sample set from the lexemic lexicon described in
Çakıcı (2005; Çakıcı (2008). There were not any
unseen categories in the morphemic evaluation set.

A comparison of lexemic and morphemic lex-
icon evaluations is given in Table 4. The mor-
phemic lexicon is seen to outperform the lexemic
lexicon in both category accuracy and parsing re-
sults.

7 Conclusion

We aimed to create an automatic lexicon induction
method for Turkish that solves not only the prob-
lems associated with a lexicon account disregard-

2These are also state-of-the art results for Turkish to our
knowledge and the same data is used in both experiments.

lex # sent. # tok cor acc% scor cov uns
morp 25 202 188 93.1 17 20 0
lex 25 166 144 86.7 16 14 5

Table 4: Sample evaluation for the morphemic and
the lexemic lexicons
cor = tokens with correct category
acc= % category accuracy
scor = sentences that are completely correct
cov= parsed sentences,uns= unseen categories

ing the morphosyntactic dependencies in Turkish
but also the problem of data sparsity caused by
rich inflectional morphology of Turkish. The out-
come may be used in parsing applications and for
training supertaggers which the present work and
Clark and Curran (2006) show, provide almost all
the information that is required for full parsing.
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Abstract

I present a parsing method for non-associative Lambek grammars. These grammars differ from
basic Ajdukiewicz–Bar-Hillel grammars for the presence of introduction rules for the implications. This
difference has two important consequences. On one side, it makes Lambek calculi full fledged logical
systems, and enhances the grammar system with hypothetical reasoning and type-change rules. On the
other, it raises a series of issues for computational applications, such as how to deal automatically with
hypotheses, how to handle ambiguity, and finally how to perform parsing, as distinguished from theorem
proving. We make clear the distinction between parsing and theorem proving in NL, and propose elegant
and efficient solutions to both problems.

1 Parsing with Ajdukiewicz–Bar-Hillel grammars

The categorial grammar model we start with is based on what we call Ajdukiewicz–Bar-Hillel calculus with
products. A sequent is a pair whose first element, the antecedent, is a list of categories, while the second, the
succedent, consists of a single category. We write sequents as Γ → A. The calculus consists of the following
rules.

A → A
Ax

Γ → A ∆ → B
Γ, ∆ → A⊗B

⊗I

Γ → A/B ∆ → B

Γ, ∆ → A
/E

Γ → B ∆ → B\A
Γ, ∆ → A

\E

Figure 1: The Ajdukiewicz–Bar-Hillel calculus.

A categorial grammar is a triple (Lex, s,D) such that Lex is a set of word-category pairs, which we write
w :: A, s is a designated start symbol and D a deductive system, like the one given in Figure 1. A categorial
grammar G generates a string w1 . . . wn, if there is a deduction of Γ → s and w1 . . . wn ⇒∗ Γ by means of
lexical assignments.

Parsing with AB⊗ grammars can be done efficiently by implementing, for instance, the following deductive
parser. 1 A deductive parser is a triple (I,A,R) of items, axioms and inference rules. The parser operates
on two kinds of items which we represent as (i,∆ .Γ → A, j) and (i,Γ /∆ → A, j). Here i and j are integers
and ∆ . Γ → A and Γ / ∆ → A are sequents in which exactly one occurrence of an auxiliary symbols (either
. or /) appear. These symbols play a role similar to the dot in the Earley items. An item of the form
(i,∆ . Γ → A, j) asserts that ∆Γ → A ∈ AB⊗ and that wi+1 . . . wj ⇒∗ ∆. Dually, an item of the form
(i,Γ / ∆ → A, j) asserts that Γ∆ → A ∈ AB⊗ and that wi+1 . . . wj ⇒∗ ∆.2 For simplicity, we write items of
the form (i, / ∆ → A, j) and (i,∆ . → A, j) as (i,∆ → A, j).

Definition 1 Let an AB⊗ grammar G and a string w1 . . . wn be given. The AB⊗Mix deductive parser is the
triple (I,A,R) presented in Figure 2.

1Other options, based on simpler adaptations of CF-grammar parsing algorithms are also possible. The system presented
below has however some computational advantages over them. These advantages are discussed in detail in Capelletti and
Tamburini [2009].

2For simplicity, we omit the description of the predictive component of the parser.
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I =
{ (i,Γ . ∆ → A, j) | Γ∆ → A ∈ AB⊗, 0 6 i 6 j 6 n }

∪
{ (i,Γ / ∆ → A, j) | Γ∆ → A ∈ AB⊗, 0 6 i 6 j 6 n }

A = { (i− 1, A → A, i) | wi :: A ∈ Lex }

R =



(i,∆ . A Γ → C, j)
(i,∆ A . Γ → C, j) ε ⇒+ A

(i,Γ A / ∆ → C, j)
(i,Γ / A ∆ → C, j) ε ⇒+ A

 ε-Scanning

(i,∆ → C/B, j)
(i,∆ . B → C, j)

(i,∆ → B\C, j)
(i, B / ∆ → C, j)

}
Shifting

(i,∆ . A⊗B Γ → C, j)
(j, .A B → A⊗B, j)

(i,Γ A⊗B / ∆ → C, j)
(i, AB/ → A⊗B, i)

}
⊗-Prediction

(i,∆ . A Γ → C, k) (k, Λ → A, j)
(i,∆ A . Γ → C, j)

(i,Λ → A, k) (k, ∆ A / Γ → C, j)
(i,∆ / A Γ → C, j)

 Completion

Figure 2: The system AB⊗Mix.

The correctness, complexity and linguistic application of this parsing system are studied in Capelletti [2007];
Capelletti and Tamburini [2009]. We remark here that it can handle straightforwardly product categories
and null assignments, what is not possible in CYK style categorial parsing. As for the complexity, it is cubic
on the length of the input string. However, it has better average performances than CYK and Early style
categorial parsers.

2 Non-associative Lambek calculus

The AB calculus of the previous section can be extended in several ways. Here we examine the system
presented in Lambek [1961], the so called non-associative Lambek calculus.

The most remarkable difference with AB⊗ is the presence in NL of the slash introduction rules, see 1.3

(Γ, B) → A

Γ → A/B
/I

(B, ∆) → A

∆ → B\A
\I (1)

Given these rules, a number of new patterns of type transformation becomes available. For instance,
given an assignment w :: A, it is always possible to infer that w has also a type B/(A\B) for any formula
B. Consider for instance the following deductions of the sequent s/(n\s), (s/(n\s))\s → s, only the first of
which can be obtained in the AB⊗ calculus.

3We remark that, in NL, Γ and ∆ are metavariable ranging over bracketed strings of formulas, instead of strings as in AB⊗.
In the rules /I and \I, Γ and ∆ are assumed to be non-empty. We refer to Moortgat [1997] for the detailed axiomatization of
NL on which the examples below are based.

2



(2) Verb wide scope reading:

s/(n\s) → s/(n\s) (s/(n\s))\s → (s/(n\s))\s
s/(n\s), (s/(n\s))\s → s

\E

(3) Subject wide scope reading:

s/(n\s) → s/(n\s)

n → n n\s → n\s
n, n\s → s

\E

n → s/(n\s)
/I

(s/(n\s))\s → (s/(n\s))\s
n, (s/(n\s))\s → s

\E

(s/(n\s))\s → n\s
\I

s/(n\s), (s/(n\s))\s → s
/E

As a further simple example, consider also the sequent n, (s/(n\s))\s → s which is derivable in NL (but not
in AB⊗), in virtue of type raising. Type changing rules in Lambek calculi have been studied in detail in
Hendriks [1993].

However, if from w :: A, it is always possible to infer w :: B/(A\B) for any B, we may run into problems
in an automated deduction, as the pattern can iterate endlessly. Below we will see that there is however a
canonical form that can be imposed to NL derivations that avoid such loops.

2.1 Parsing and theorem proving

Looking at the previous example, it is not clear how hypothetical reasoning could be controlled in the parsing
process. As a logical system, NL can make use of the theorem proving methodologies developed for other
logical systems, such as those based on forward chaining in sequent calculus or on the inverse method.
However, NL theorems are structured sequents, while parsing should, by definition, infer the structure. The
two problems could be roughly distinguished as follows.

• Theorem proving: find a proof of a sequent Γ → C where Γ is a bracketed list of types.

• Parsing: given a grammar Lex, a string w1, . . . , wn and a formula C, find a proof of Γ → C, where Γ
is a bracketed list of types living on A1, . . . , An and wi :: Ai ∈ Lex4.

These two tasks have a very different status depending on whether they refer to AB⊗ grammars or to NL
grammars. Theorem proving is trivial for AB⊗ systems, while it is an interesting problem for NL for which a
polynomial solution has been found by Aarts and Trautwein [1995] and by de Groote [1999b]. On the other
hand, while parsing for Ajdukiewicz–Bar-Hillel grammars is a well developed and active research field, see
for instance Vijay-Shanker and Weir [1990]; Hockenmaier and Steedman [2001]; Clark et al. [2001]; Clark
and Curran [2007], not so much has been done for parsing with NL or in general with Lambek grammars.
Some attempts in the latter direction can be found in Finkel and Tellier [1996]; Hepple [1992]; König [1994],
though for the associative Lambek calculus without product. Other works, like Morrill [1996]; de Groote
[1999a]; Moot [2002] address theorem proving with the proof-net formalism.

2.2 Normal derivations

The approach we follow here is based on the conversion of a NL grammar into an equivalent AB⊗ grammar.
While we are primarily concerned with parsing, our method also provides us with a normal form automatic
theorem proved for NL. By normal form we mean that our procedure is a solution to the problem of
spurious ambiguity for NL, that is the problem arising when different derivations receive the same semantic
interpretation.

Our method is a refinement and a computational interpretation of the procedure used in Buszkowski
[1986]; Kandulski [1988] to prove the context-freeness of NL grammars. Our procedure effectively converts
a non-associative Lambek grammar into an equivalent Ajdukiewicz–Bar-Hillel grammar with product.

Let us write |A| for the length of a formula A and B ≡ A if A and B are syntactically identical. We will
use the following notation for developing a normal form axiomatization for NL.

• We write A
r→ B for a sequent A → B such that |B| < |A| or B ≡ A and we call it a reducing sequent.

4For simplicity, we are assuming here that the lexicon does not contain null assignments.
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• We write A
e→ B for a sequent A → B such that |B| > |A| or B ≡ A and we call it an expanding

sequent.

• We define r = e and e = r.

• Finally we use p as a variable ranging over {e, r}.

Below we define the normal form sequent calculus which we call NL?.

Definition 2 The set Ax of the axioms of the normal form calculus NL? is given by the following
inference rules.

Axioms: A
p→ A, with A atomic

Product Rule:
A

p→ A′ B
p→ B′

A⊗B
p→ A′ ⊗B′

Application:

A
r→ A′ B

r→ A′\C
A⊗B

r→ C

A
r→ C/B′ B

r→ B′

A⊗B
r→ C

Monotonicity:
A′ p→ A B

p→ B′

B′\A′ p→ B\A
A′ p→ A B

p→ B′

A′/B′ p→ A/B

Lifting:

B
r→ A′/C A′ e→ A

C
e→ B\A

B
r→ C\A′ A′ e→ A

C
e→ A/B

Coapplication:
B

r→ B′ B′ ⊗ C
e→ A

C
e→ B\A

B
r→ B′ C ⊗B′ e→ A

C
e→ A/B

The system NL? consists of all sequents A → C which are the conclusion of the following rule.

A
r→ B ∈ Ax B

e→ C ∈ Ax
A → C (4)

Every NL sequent of the form A → C (and in fact, by replacing commas with product, every NL sequent)
can be proven by Rule 4. Furthermore, the system defined by Rule 4 is a solution to the spurious ambiguity
problem for NL, in the sense that derivations in this system are in one-one correspondence with cut-free
proof-nets for NL. The proof of these statements is given in Capelletti [2009].

2.3 Automated theorem proving

Observe that the rules of the Ax system allow an easy computational interpretation in terms of type contrac-
tion rules. The ‘polarity’ p appearing on top of the arrow symbol is interpreted as a function from a formula
to a set of formulas. If p is r the function is a contraction of the antecedent to the succedent, if it is e it is
a contraction of the succedent to the antecedent. In Figure 3, we give a recursive procedure implementing
such type contraction (we omit the symmetric case).

e(A) = {A}, if A is an atom

e(A⊗B) = { A′ ⊗B′ | A′ ∈ e(A) & B′ ∈ e(B) }

e(A/B) = let A be e(A) and B be r(B) in
{ A′/B′ | A′ ∈ A & B′ ∈ A } ∪

{ C | C ⊗B′ ∈ A & B′ ∈ B } ∪

{ C | A′ ∈ A & C\A′ ∈ B }

r(A) = {A}, if A is an atom

r(A⊗B) = let A be r(A) and B be r(B) in
{ A′ ⊗B′ | A′ ∈ A & B′ ∈ B } ∪

{ C | C/B′ ∈ A & B′ ∈ B } ∪

{ C | A′ ∈ A & A′\C ∈ B }

r(A/B) = { A′/B′ | A′ ∈ r(A) & B′ ∈ e(B) }

Figure 3: The functions expand, e, and reduce, r.
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The functions e and r return sets of formulas which are shorter than the input formula. Hence the
procedures are bound to terminate. The following examples may help to clarify how the procedure works.

(5) r((s/(n\s))\s):

r(s) = {s}
e(s) = {s}

r(s) = {s} e(n) = {n}
r(n\s) = {n\s}

e(s/(n\s)) = {s/(n\s), n}
r((s/(n\s))\s) = {(s/(n\s))\s, n\s}

(6) e((s/(n\s))\s):

e(s) = {s}
r(s) = {s}

e(s) = {s} r(n) = {n}
e(n\s) = {n\s}

r(s/(n\s)) = {s/(n\s)}
e((s/(n\s))\s) = {(s/(n\s))\s, n\s}

With the procedure defined in Figure 3, provability in NL amounts to the following:

`NL A → C iff ∃B.[B ∈ r(A) & B ∈ e(C)] (7)

2.4 Parsing

The procedure in 7 defines a normal form theorem prover for NL. However, we are interested in parsing and
the following definition will clarify the connection between the calculus and procedure that we have just
defined and the parsing problem for NL grammars.

Given an NL grammar G with lexicon Lex we generate an equivalent AB⊗ grammar G′ with lexicon
Lex′ by the following operation

Lex′ = { w :: A′ | w :: A ∈ Lex & A′ ∈ r(A) } (8)

2.5 Conclusion

The lexical expansion operation in 8 converts an NL grammar into a strongly equivalent AB⊗ grammar.
After conversion, the parsing method presented in Figure 2 can be applied.

The expansion should be executed once and for all. Parsing on the resulting grammar is cubic, as
standard context-free grammar parsing. Furthermore, if the original NL lexicon was semantically annotated,
the resulting AB⊗ lexicon is too, as the rules applied for the conversion have a straightforward Curry-Howard
interpretation.

We conclude by observing that the spurious ambiguity problem affects neither the lexical conversion
procedure nor the parsing algorithms. Thus we have defined a redundancy-free parsing method for NL
grammars.
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Abstract

We investigate the use of polymorphic categorial grammars as a model for parsing natural language.
We will show that, despite the undecidability of the general model, a subclass of polymorphic categorial
grammars, which we call linear, is mildly context-sensitive and we propose a polynomial parsing algorithm
for them. An interesting aspect of the resulting system is the absence of spurious ambiguity.

1 Introduction

The simplest model of a categorial grammar is based on the so called Ajdukiewicz–Bar-Hillel calculus of
Ajdukiewicz [1935] and Bar-Hillel [1953], with only elimination rules for the slashes. Contemporary categorial
grammars in the style of Ajdukiewicz–Bar-Hillel grammars are called combinatory categorial grammars, see
Steedman [2000]. Such systems adopt other forms of composition rules which enable them to generate non–
context-free languages, see Weir and Joshi [1988]; Vijay-Shanker and Weir [1994]. The other main tradition
of categorial grammar, the type-logical grammars of Morrill [1994]; Moortgat [1997], stemming from the
work of Lambek [1958], adopt special kinds of structural rules, that enable the system to generate non–
context-free languages. Both approaches increase the generative power of the basic system by adding special
kinds of rules.

Here we adopt a different strategy, which consists in keeping the elementary rule component of AB
grammars and in introducing polymorphic categories, that is syntactic categories containing atomic variables
ranging over categories. The inference process will be driven by unification, rather than by simple identity
of formulas. We will see two kinds of polymorphic categorial grammars, one that is Turing complete and
another, resulting from a restriction on the first, which is mildly context-sensitive. This second system,
which is obviously the most interesting one for linguistics, has some important advantages with respect to
the aforementioned categorial settings. In respect to TLG, the polymorphic system we define is polynomial,
as we will prove by providing a parsing algorithm. In respect to CCG, our system is not affected by the
so called spurious ambiguity problem, that is the problem of generating multiple, semantically equivalent,
derivations.

The deductive system given in Figure 1, which we call AB⊗, is a simple modification of the calculus of
Kandulski [1988] to which it can easily be proved equivalent.

Identity Axioms: A → A

Product Axioms: A, B → A⊗B

Shifting Rules:
Γ → C/A

Γ, A → C
(S1)

Γ → A\C
A,Γ → C

(S2)

Cut Rules:
Γ, A → C ∆ → A

Γ,∆ → C
(C1)

Γ → A A,∆ → C

Γ,∆ → C
(C2)

Figure 1: Ajdukiewicz–Bar-Hillel calculus with product, AB⊗.

This basic CG models can be extended to generate non context-free languages in at least two ways. The
first uses structural rules, introduction rules and other types of composition schemes. These approaches
are characteristic of TLG, see Morrill [1994]; Moortgat [1997]; Moot [2002], and CCG, see Steedman [2000];



Baldridge [2002], and have been widely explored in the past. The second is based on the introduction of
polymorphism. Here, we study this second approach.

The formalism of polymorphic categorial grammar that we are going to present is inspired by the poly-
morphic theory of types, see Girard et al. [1989]; Barendregt [1992]. Types may contain type variables
together with constants, and these variables may be (implicitly or explicitly) quantified over. The idea of
polymorphism is very simple and natural. Rather than defining a class of id functions idInt :: Int → Int,
idChar :: Char → Char and so forth, the function id is defined for any type α, as id :: ∀α.α → α or
id :: α → α where α is implicitly universally quantified.

The same idea is very natural also in linguistics, where, for example, coordination particles such as ‘and’
and ‘or’ are typically polymorphic, as they coordinate expressions of almost any syntactic category. Thus
one can find in the categorial grammar literature several examples of polymorphic assignments for these
expressions Lambek [1958]; Steedman [1985]; Emms [1993]; Clark and Curran [2007].

Another example of Ajdukiewicz–Bar-Hillel style categorial grammars adopting a form of polymorphism
are the unification categorial grammars Uszkoreit [1986]; Zeevat [1988]; Heylen [1999], where polymorphism
is used at the level of feature structures.

1.1 Unification Ajdukiewicz–Bar-Hillel grammars

Syntactic categories of UAB⊗ are defined as follows.

Atoms: A ::= a, b, c, n, s, i . . .
Variables: V ::= α, β, γ . . .
Categories: F ::= A | V | F ⊗ F | F\F | F/F

Unification of two categories A and B is defined in the obvious way and and the resulting substitution is
denoted A ≈ B.1 The unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗ is defined in Figure 2.2

Identity Axioms: A → A

Product Axioms: A, B → A⊗B

Shifting Rules:
Γ → C/A

Γ, A → C
(S1)

Γ → A\C
A,Γ → C

(S2)

Cut Rules:
Γ, A → C ∆ → B

Γ,∆ → C(A ≈ B)
(C ′

1)
Γ → B A,∆ → C

Γ,∆ → C(A ≈ B)
(C ′

2)

Figure 2: Unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗

We give here some examples of non context-free languages generated by UAB⊗ grammars.

Example 1 We define the UAB⊗ grammar for the language anbncn, n > 1. Let grammar G1

consist of the following assignments:

a :: s/(b⊗ c) b :: b
a :: (s/α)\(s/(b⊗ (α⊗ c))) c :: c

We derive the string ‘aabbcc’. We write A for the formula (s/α)\(s/(b⊗(α⊗c))). For readability,
boxes are drawn around the words that anchor the axioms to the lexicon.

a

s/(b⊗ c) → s/(b⊗ c)

a

A → A
s/α, A → s/(b⊗ (α⊗ c))

s/(b⊗ c), A → s/(b⊗ ((b⊗ c)⊗ c))

s/(b⊗ c), A, (b⊗ ((b⊗ c)⊗ c)) → s

b

b → b

b

b → b
c

c → c
b, c → b⊗ c

c
c → c

b, c, c → (b⊗ c)⊗ c

b, b, c, c → b⊗ ((b⊗ c)⊗ c)

s/(b⊗ c), A, b, b, c, c → s

Example 2 We define a UAB⊗ grammar for ‘ww’, w ∈ {a, b}+.

1We use postfix notation for application of a substitution to a formula.
2Obviously, the rules involving unification are only defined if unification is defined.



Let grammar G2 consist of the following assignments:

a :: a b :: b
a :: s/a b :: s/b
a :: (s/α)\(s/(α⊗ a)) b :: (s/α)\(s/(α⊗ b))

It is easy to see that grammar G2 generates exactly the language ‘ww’ with w ∈ {a, b}+. As in
the case of G1, type variables are used as accumulators for long-distance dependencies.

A typical example of non context-freeness of natural language are the so called cross serial dependencies,
which can be found, for instance, in Dutch subordinate clauses.

Example 3 We define a UAB⊗ grammar for Dutch cross-serial dependencies. An example is
the following subordinate clause, from Steedman [2000]:

Ik
I

Cecilia
Cecilia

Henk
Henk

de
the

nijlpaarden
hippopotamuses

zag
saw

helpen
help

voeren.
feed.

I saw Cecilia help Henk feed the hippopotamuses.

These constructs exhibit dependencies of the form ‘ww’, where the ith words in the two halves are
matched. An example lexicon generating the sentence in this example is the following3:

Ik, Cecilia, Henk, de nijlpaarden :: n
zag :: ((n⊗ (n⊗ α))\c)/(α\i)
helpen :: ((n⊗ α)\i)/(α\i)
voeren :: n\i

N

n⊗ (n⊗ (n⊗ n))

zag

Z → Z
Z, α\i → (n⊗ (n⊗ α))\c

helpen

H → H
H, α\i → (n⊗ α)\i

voeren

n\i → n\i
H, n\i → (n⊗ n)\i

Z, (H, n\i) → (n⊗ (n⊗ (n⊗ n)))\c
(n⊗ (n⊗ (n⊗ n))), (Z, (H, n\i)) → c

n⊗ (n⊗ (n⊗ n)), (Z, (H, n\i)) → c

These examples show that the languages generated by UAB⊗ grammars properly include the context-free
languages (since AB⊗ grammars are properly included in UAB⊗ grammars). It is also easy to show that if
we allow null assignments, that is assignments of the form ε :: A, where ε is the empty string, the UAB⊗

formalism becomes undecidable4.

1.2 Constraining UAB⊗ grammars

One constraint that we can impose on UAB⊗ grammars to avoid undecidability is linearity. Roughly, we
impose the restriction that any lexical type may contain at most one variable, occurring once in an argument
position and once in value position. Thus, for instance, α/α, (s/α)\(s/(α⊗a)) are licit types, while (α\α)/α,
(s/(α ⊗ β))\(s/((α ⊗ β) ⊗ a)) and (s/(α ⊗ α))\(s/((α ⊗ α) ⊗ a)) are not. More precisely we define linear
categories as the types F2 generated by the following context-free grammar.

] ::= ⊗ | / | \ ]′ ::= / | \
F0 ::= A | F0]F0 F1 ::= F1]F0 | F0]F1 | α
F2 ::= F1]

′F1 | F0 | F2]
′F0 | F0]

′F2

(1)

The interesting case in this definition are the F2 formulas of the form A/B or B\A, with A and B in F1, the
others being meant essentially to put these in context. Consider the case of A/B, then α occurs exactly once
in A and in B, since a F1 category contains the variable α by construction. By analogy with lambda terms,

3In the deduction, we write Z for the type of ‘zag’, H for that of ‘helpen’ and N for the string ‘Ik, Cecilia, Henk, de
nijlpaarden’.

4One can easily adapt the construction of Johnson [1988] for proving the undecidability unification cased phrase-structure
grammar formalisms, see Capelletti and Tamburini [2009b].



we can think of the occurrence of α in B as a binder (possibly a pattern-binder), and of the occurrence in A
as the bound variable.

An UAB⊗ grammar is linear if all its lexical assignments are linear. Furthermore, in linear UAB⊗

grammar, we work by simple variable instantiation, rather than by a full-fledged unification algorithm.
More precisely let us denote AB a formula A with a distinguished occurrence of a subformula B. AC is the
formula obtained from AB by replacing the occurrence of the subformula B with the formula C. The linear
UAB⊗ calculus consists of all the rules of the UAB⊗ calculus in Figure 2 replacing the Cut rules with the
following instantiation rules.

∆ → AB Γ, Aα → C

Γ,∆ → C[α := B]
Γ → AB Aα,∆ → C

Γ,∆ → C[α := B]
(2)

Observe that given a linear UAB⊗ grammar adopting the rules in 2, only linear types can occur in any
of its deductions.

Observe also that the UAB⊗ grammars for anbncn and ww languages as well as that for the Dutch cross
serial patterns, are all linear. On the other hand, no linear UAB⊗ grammar can be given for the so called
MIX or Bach language that is the language of the strings containing an equal number of a’s, b’s and c’s5.

As we have the proper inclusion of context-free languages and the realization of limited cross-serial
dependencies, in order to have a mildly context-sensitive grammar formalism we shall prove that linear
UAB⊗ grammars can be parsed in polynomial time. We do this in the next section by providing a parsing
algorithm for linear UAB⊗ grammars.

2 Polynomial parsing with linear UAB⊗ grammars

Linear UAB⊗ grammars can be parsed in polynomial time by means of a simple extension of parsing
algorithm for AB⊗ grammars given in Capelletti [2009], see Appendix A. Attention has to be paid to
the way we implement the completion rules based on the cut rules in 2. Clearly the direct instantiation and
substitution of the variable in the conclusion sequent will give an exponential growth of the number of items
generated (in a similar way is it would happen by implementing naively the CCG composition rules, see
Vijay-Shanker and Weir [1990]). Therefore we make use of an extra table to keep track of partial variable
instantiations and postpone substitution as far as possible. This table, which we call instantiation table, is
used for storing the ‘partial’ instantiations of variables. Let n be the length of the input string and Lex the
input lexicon. Cells of the instantiation table are denoted t(i,k,j), where 0 6 i < j 6 n and 0 6 k 6 |Lex|. We
extend the construction of formulas with two kinds of variables, αk and α(i,k,j) where i, k and j are as before.
The difference between the two kinds of variables is that αk is an uninstantiated variable while α(i,k,j) is a
variable αk which has been instantiated when an item (i,Λ → C, j) was generated, by the new instantiation
rule given below. The algorithm assumes that different lexical entries contain different variables, that is
for no k the variable αk occurs in two distinct lexical assignments. The algorithm uses the following two
new rules (of which we give only one oriented variant) together with those given for parsing with AB⊗ in
Appendix A.

Given items (i,∆ . Aαl Γ → C, k) and (k, Λ → AB , j),
generate the item (i,∆ Aαl . Γ → C[αl := α(i,l,j)], j)
update the table t(i,l,j) = t(i,l,j) ∪ {B}

Given item (i,∆ . α(k,l,m) Γ → C, j) and A ∈ t(k,l,m)

generate item (j, .A → α(k,l,m), j)

(3)

In Capelletti and Tamburini [2009b], we presented the detailed implementation of the parsing algorithm
and proved its correctness. The complexity of the implementation given there is O(|Lex||Σ|n5), where |Lex|
and |Σ| are the sizes of the lexicon and of the set of subformulas of the lexicon, respectively.

5To see this, we observe that the context-free language of the strings containing an equal number of a’s and b’s is not linear,
in the sense of Hopcroft and Ullman [1979], see Linz [1990]. Hence for the MIX language, a UAB⊗ grammar needs to bind two
distinct variables for each symbol, what violates linearity.



3 Conclusion

We have investigated some linguistic and computational properties of unification based categorial grammars.
We have seen that, like other unification based grammar formalisms, unrestricted UAB⊗ grammars are
Turing complete. However, we have also seen that the constraint of linearity locates the system among the
mildly context-sensitive formalisms. A pleasant aspect of the resulting system, particularly with respect to
others CG-based mildly context-sensitive categorial formalisms is the absence of spurious ambiguity. This is
a pleasant property that results from the simple non-associative composition schemes adopted in the parsing
system (see Appendix A and Capelletti and Tamburini [2009a]), and not from special constraints imposed
to the derivations, as in Eisner [1996].

We conclude by observing that the linearity constraint can also be relaxed. For instance, while preserving
the condition that only one variable occurs in a formula, we can admit more than two occurrences of this
variable. In this way, we can include the standard types for coordination, (α\α)/α.

This condition enlarges the class of generated languages, producing for instance wi or ai
1a

i
2 . . . ai

n. To what
extent and with what consequences from the computational point of view, is an open subject of investigation.

A Parser

Let an AB⊗ grammar G and a string w1 . . . wn be given. The AB⊗Mix deductive parser is the triple (I,A,R)
presented in Figure 3. See Capelletti and Tamburini [2009b] for the O(|Lex||Σ|n5) implementation of this
parsing algorithm.

I =
{ (i,Γ . ∆ → A, j) | Γ∆ → A ∈ AB⊗, 0 6 i 6 j 6 n }

∪
{ (i,Γ / ∆ → A, j) | Γ∆ → A ∈ AB⊗, 0 6 i 6 j 6 n }

A = { (i− 1, A → A, i) | wi :: A ∈ Lex }

R =



(i,∆ . A Γ → C, j)
(i,∆ A . Γ → C, j) ε:+A

(i,Γ A / ∆ → C, j)
(i,Γ / A ∆ → C, j) ε:+A

 ε-Scanning

(i,∆ → C/B, j)
(i,∆ . B → C, j)

(i,∆ → B\C, j)
(i, B / ∆ → C, j)

}
Shifting

(i,∆ . A⊗B Γ → C, j)
(j, .A B → A⊗B, j)

(i,Γ A⊗B / ∆ → C, j)
(i, AB/ → A⊗B, i)

}
⊗-Prediction

(i,∆ . A Γ → C, k) (k, Λ → A, j)
(i,∆ A . Γ → C, j)

(i,Λ → A, k) (k, ∆ A / Γ → C, j)
(i,∆ / A Γ → C, j)

 Completion

Figure 3: The system AB⊗Mix.
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%�#�! "�� ����(��)���	�� ����� 	
 �*� �� ���
��������� ��
�����
��� 	� ��	�� �
�������� g 	
 
�(������ &��� 	�
 
*#���	���� s #� � ���� ��� ���	����� #� g
��
 	� 	
 ��� ��
� �& ��� �*�	�	��� ���# a 	� $	�! %�#� 
�(����	�� ��� (���	�	(��
donnée &��� 	�
 (�����	���	+�� �#)���
�!

��� � (��)���	�� �"

�#� � ����(��)���	�� �" �$�����, ∗��� ����� ������ ��� ������
$	�*�� %

"�� ��	� ��������� �& ��� 	
 ���� ���� ����� �� ����� �	
����	�*�*
 ����
(��)���	�� ��(������	�
 
��	���� ������� �	!�! �	��	� ��� ���	��� ����	�
 �& ���
�������� ��� �& ��� 
*#���	����� ��� �� (��
� ��� ��������� ����*���
 	� �
(����	��� (������	�� �	��!

"� ���(� ��� ��� &�� (����	��� *
�� 	!�! &�� ���#����	�� �& �	�����������
�������
� ��� 
��*�� ��
���� ��� (��#��� �& ������� 
	+� ��(��
	��! -	
� ���
���

	��� �������	�� �������
� ��� ��� ���	���	+��� 	!�! ��� ��.��� #� � ����
��,
� &*���	�� λ �

	��	�� �� ���� ���� � .�	�� 
�� �& 	�
 ��(������� ��(�
! "��
(�	���� 
�*��� �& ���	��� 
	+� ��(��
	�� 	
 ���� ��� �*�#�� �& ��(�
 (�� �����
	
 ���
� �� ��� (���*�� �& ��� �*�#��
 �& (�

	#�� ���*���� 
*#��(�
! �������
���
	����#�� 
�*��� 	
 � ���
� ���� ����� (��*�	�� �� ���� ����*���
 �	�� �����



	�/���	���� ���(������ ��&! 0*

	��� ������� ���#	�� ���!�! $	������ �� ����

	��
���	��� 
	+� ��� #� �*� �� ��

	�� ��(� 
���	�� #������ ����	�
! "���� ���
���	�*
 ����
 �	�	�� �� � (����	��� 
��*�	�� �� ��	
 (��#���, ���*��� ��(��

	��

	� ��(�
� 
*(������	��� ���	��� 
��*��*�	��! 1���� �� 
��� � ��� �� ���*�� ���
���	��� 
	+� *
	�� ������� ��
�� �������
�� ������� �
�
��
 
��
���� �����!


 �����
�	��� �
�����	
� ���������� ��
��
��

'� �	�� ���
	��� ��� ����������� �	� ������ ���� ���� ��	�� ��� �������� ����
���� ��(������� 
��*��*��
 �&�� 	�
������ � *�	�� �& 
*(��(�
�� ����
�!

� ���� ��(� ��
 ��� &��� [lm\ . . . \l1\v/rn/ . . . /r1]P , ����� v 	
 ��� �����	��
*�*
� ��(������� �� ��� ��������� lm, . . . , l1 ��� rn, . . . , r1 ��� ��� �����	�*�*
�
��(������	�
 �& ��&� ��� �	��� 
*#���	����
 	� ��� �����
� ������ ��� P 	
 �

�2*���� �& 
�������� �����
��� ���� 
��������� ������	�	�� �	
����	�*�*
 ��(���
����	�
! "�(�
 �	�� ��(�� (�����	��
 ������	�� (��)���	�� �"! 3!�!� ��� �" 	�
$	�! %��� 	
 ������	��� #� ��� ��(� �

	������
,

��� �→ det 
�� �→ [modif ∗ \det\pred] ��� �→ modif
��
	�� �→ circ �(���� �→ [circ ∗ \pred\S/dobj] ���� �→ [det\dobj]

����� ��� ��(�
 modif ��� circ ��� �������� ��� S 	
 ��� 
������� ��(�! 4�����	��

��� 
�2*����
 �& (����	+�� ������	�
 �& &�*� 
	��
, ↙ d ������	��, ���� �& ���
�	
���� �	��� �������� ����*�� ��(������� d�� ↘ d �
��� �� ��� ��&��� ↖ d
�(�
	�	��, ���� �& � �	
���� ��&� 
*#���	���� ����*�� ��(������� d�� ↗ d �
���
�� ��� �	����! � (�	� �& ���� ������	�
 ↙ d ��� ↖ d �↗ d ��� ↘ d� ��.�� �
�	
����	�*�*
 ��(������� d. � �����	�� ������� ��� #� �������� �� � ��
� ����
*
	�� ������ ��(�
 #(↙d), #(↘d). 3!�!� ��� ���	��� #���� *�	2*��� ������	��

��� �" 	� $	�! %�#� �↙clit−dobj,↙clit−iobj ��� �������� �� ��� �*�	�	��� ��,

���� �→ pred �� �→ [#(↙clit−dobj)]↙clit−dobj �*	 �→ [#(↙clit−iobj)]↙clit−iobj

� �→ [#(↙clit−iobj)\#(↙clit−dobj)\pred\S/aux] ����5� �→ [aux]↖clit−dobj↖clit−iobj

 *�� ��(������� ��(�
 ��� &�����	+�� �	�� ��� &�����	�� ����*�*
 �

Ll. CP1 [C\β]P2 � [β]P1P2

Il. CP1 [C∗\β]P2 � [C∗\β]P1P2

Ωl. [C∗\β]P � [β]P

Dl. αP1(↙C)P (↖C)P2 � αP1PP2 , 	& (↙C)P (↖C) 
��	
.�
 ��� (�	�	�� �*��
�� �.�
� ���	��#���, P ��
 �� ���*������
 �& ↙C,↖C.

Ll 	
 ��� ���

	��� ��	�	���	�� �*��! 3�	�	���	�� ��� ���*���� 
*#��(� C 	= #(α)
	� ���
��*��
 ��� �(��)���	��� ��(������� C ��� �����������
 ��� (�����	��
!
C = #(α) ������
 �� ��(�������! Il ���	��
 k > 0 	�
�����
 �& C. Ωl 
����
 &��
��� ��
� k = 0. Dl ���	��
 �	
����	�*�*
 ��(������	�
! 6� (�	�
 ��� ��	�	����

�*�� ������	�
 
��	
&�	�� ��� �*�� �� �� ������ ��� �	
����	�*�*
 ��(������� C.

$�� � � D ��� � 
��	�� x, ��� G(D, x) ������ ��� �����	��, D 	
 ���
��*����
	� � (���& Γ � S &�� 
��� Γ ∈ λ(x). "��� ��� �������� ��������� #� G 	
 ���

�� L(G)=df {w || ∃D G(D, w)}.
� �� ���� ������������� ����� !�� ��"����������� ��� �#$$����% 

�



"�� ���� ��� ���� ��(��

	��! 3�	������� ���� �������� ��� �$�����*���
!
"��� ��� ��
� �������� �����$ ����*���
!

������� 	 ��� ��	�
Gabc : a �→ A↙A, [A\A]↙A, b �→ [B/C]↖A, [A\S/C]↖A, c �→ C, [B\C]

��������� ��� �������� {anbncn | n > 0} ��� !�� ������
�" Gabc(D(3), a3b3c3)
����� #�� ��� ��
�����
� ����
���� $	%& �� !�� ' ��� ��� ������ a3b3c3 ��� ��
��� 
���# �� !�� ( 

$	�! �! ��(������� 
��*��*�� &�� a3b3c3

[A]↙A[A\A]↙A

(Ll)
[A]↙A↙A [A\A]↙A

(Ll)
[A]↙A↙A↙A

[A\S/C]↖A

[B/C]↖A

[B/C]↖AC
(Lr)

B↖A [B\C]
(Ll)

C↖A

(Lr)
B↖A↖A [B\C]

(Ll)
C↖A↖A

(Ll)
[A\S]↖A↖A↖A

(Ll)
[S]↙A↙A↙A↖A↖A↖A

(Dl × 3)
S

$	�! 7! ��(������� 
��*��*�� ���������

 (���&
 ���	����� 	� 	
 	����(���#�� �	�� �	���� � ����*���
 ��8�� ��������� #� �*��	�
���(����� "��� �	���� �$ ����	�� 
�
���
 ��� 
��� ����� �������
!L(gCDG)
�����	�
 ����"�� ����*���
� �!�! L(m) = {an

1an
2 ...an

m || n ≥ 1} &�� ��� m > 0. 6�
(���	�*���� 	� �����	�
 ��� ����*��� MIX = {w ∈ {a, b, c}+ || |w|a = |w|b =
|w|c}, &�� ��	�� 3! 1��� ���)���*��
 ���� 	� 	
 ��� �	���� � ! 9� ��� �����
����� �� ���)���*�� �7� ���� ��	
 &��	�� ���
 ��� �����	� ��� ��(� ����*���
Lcopy = {xx || x ∈ {a, b}∗}� ��	�� 	
 "�� �! ���� ���� �� �:�	��� (������	��
�	�� (��
	�� �����	��� �7� �� ��	�� ��
	��
 *(�� � (��(���� �& 	���(������� �&
#�
	� ��(�
 ��� (����	+�� ������	�
 ��(��

�� 	� ����
 �& 
����
����� �& ��(�
 ���
)*�������
+�����, ��	���	� &�� (�����	��
!

$�� � 
�2*���� �& ��(�
 γ, 	�
 ��
�� 
����
���� ‖γ‖l ��� �� �����
� 
����
����
‖γ‖v ��� ��.��� �
 &�����
,
	! ‖ε‖l = ‖ε‖v = ε; ‖αγ‖l = ‖α‖l‖γ‖l ��� ‖αγ‖v = ‖α‖v‖γ‖v &�� � ��(� α.

! ‖CP ‖l = C �� ‖CP ‖v = P &�� ����� ��(� CP .

"� 
(��
 �#�*� ;�����#���
��	��< �& (�����	��
� �� 	����(��� ↙d ��� ↗d �

��#� ���
+��� ��� ↖ d ��� ↘ d �
 ����� ���
+���! � (�����	�� 	
 �����
�� 	& 	� 	

���� #���
���� 	� ��� *
*�� 
��
�!

-�� c #� ��� (��)���	�� ���� �& ��� ��(������� ����*�*
� ���
	
�	�� �& ��� �*��

L, I ��� Ω ��� �c ������ ��� (����#	�	�� �����	�� 	� ��	
 
*#�����*�*
! "��� ���

����
����� ����
�����
� (��(���� �& ���� �7� �� 	
 &���*����� �
 &�����
!

���
��� 	 !�� � ��	� G *��� ����
�� λ ��� � ������ x, x ∈ L(G) �- ����� ��
Γ ∈ λ(x) ��
� ���� ‖Γ‖l �c S ��� ‖Γ‖v �� �����
�� 

� �� �����&� '������ ���� "�() �*'���� ��� %����������� ��'�����%��� +,- 
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� ������	�� �� ���� �	�� ����	��� ����  ����

	� ����������� ������

"�� .�
� �����
	�� �����
 �� *
� ��������	�� ���	�� �& � 
*#��(� 	� � ��(�,
(C1| . . . |Ck) ����	�� 	��*	�	���� ;��� �& ��(�
 Ci<! 3!�!� �

	��	�� �� are ���
��(� [pred\S/(n−copul|c−copul|q−copul)] ��� ��� ��(���� ����� ����	�
,
λ : are �→ [pred\S/n− copul]), λ : are �→ [pred\S/c− copul]), λ : are �→
[pred\S/q−copul]) #� ��� �����, λ : are �→ [pred\S/(n−copul|c−copul|q−copul)]).
=��� ��� ��� ����*�*
 �*��
 �����	�� 
*�� ��(�
,

LAl
gov. CP1 [(C|α)\β]P2 � [β]P1P2

LAl
sub. (C|α)P1 [C\β]P2 � [β]P1P2

LAl
gs. (C|α1)P1 [(C|α2)\β]P2 � [β]P1P2


� �������� 
���� ������

"�� ���� �����
	�� �����
 �� ��	�	���� ��&� ��	���� 
*#���	����
 ���
� (�
	�	��
�	�� ��
(��� �� ����� 
*#���	����
 	
 ��� .���! 6� 	
 
*((����� #� ��� �*��
 ������
	�� ��� 
�� �& 
*�� ��� ��
���	��� 
*#���	����
 �
 � #��! "�� .�
� �*�� ��	�	����

��� 
*#���	����
 #�����	�� �� ��� #��! "�� 
����� �*�� ��	�	����
 .����(�
	�	��

*#���	����
 	������	�� �� (��
���� ��� (�
	�	�� �& ��� #�� 
*#���	����
!

�	� ������� ��� ������'� 
��� 	�
	�� ��� �*�
	�� ��&��
	��� #�� �*��
 �>?��,

LBl
i. CP1 [{C, α}\β]P2 � [{α}\β]P1P2 , C /∈ β.

LBl
o. CP1 [{α}\C\β]P2 � [{α}\β]P1P2 , C /∈ α.

"�� ���� ��� �*��
 
*((��� ��	�	���	�� �& 
*#���	����
 ���
� (�
	�	�� �	�� ���

(��� �� ��� �������� 	
 ��
� ��� .���!

�
� ��
������� ��� ������'� 
��� 	�
	�� ��� �*�
	�� *���	����� #�� �*��
,

LBu
i . ��� CP1 [β]P2

{C,α} � [β]P1P2
{α} , �#� [β]P2

{C,α}C
P1 � [β]P2P1

{α} �C /∈ β�!

LBu
o . CP1 [C\β]P2

{α} � [β]P1P2
{α} , C /∈ α.

������� 
 .�� �� 
������� ��� #����*��� #������� �# � ����
�� #�� ������/⎧⎪⎪⎨
⎪⎪⎩

deshalb �→ [circ] gab �→ [circ∗\S/{pred, dobj, iobj}]
Frau �→ [det−df\iobj] das �→ [det−a]

Mann �→ [det−n\pred] der �→ [(det−n|det−df)]
Buch �→ [det−a\dobj]

��� 
���# �� !�� 0 ���*� 
����
����� �# ���� ���������� #�� ��� ������
� ��
���#
��# ��� @��� ��� $��* ��
 1*�� ��� #�� ��� 	% ��� 
���# �� !�� 1 ���*�

����
����� �# ��� ���� ���������� #�� ��� ������
� ��
���# ��# ��
 1*�� ���
@��� ��� $��* *��� � ��-����� *��� ����� ��� � ��-����� 	% 

[circ]

[circ∗\S/{pred, dobj, iobj}]
[(det−n|det−df)][det−n\pred]

(LAl
sub)

[pred]

[(det−n|det−df)][det−df\iobj]
(LAl

sub)
[iobj]

[det−a][det−a\dobj]
(Ll)

[dobjj]
(LBr

i × 3)
[circ∗\S]

(Il)
S

$	�! �! ���������

 (���& &�� ��� � �& ������� ��� ��� 2��� ��� !��� ��� 3�
�

�



[circ]

[circ∗\S/{pred, dobj, iobj}]
[det−a][det−a\dobj]

(Ll)
[dobjj]

[(det−n|det−df)][det−n\pred]
(LAl

sub)
[pred]

[(det−n|det−df)][det−df\iobj]
(LAl

sub)
[iobj]

(LBr
i × 3)

[circ∗\S]
(Il)

S

$	�! �! ���������

 (���& &�� ��� � �& ������� ��� ��� 3�
� ��� 2��� ��� !���

-�� *
 ������ #� L(fgCDG) ��� 
�� �& ��� ����*���
 ��������� #� ��� ��������
������� ��
� ��	�! 6� 	
 ��
� �� (���� ����,
%! L(fgCDG) = L(gCDG),
�! "������ % ����
 &�� ��� �������� ���� �
 ����� ���
7! 4��
	�� �& fgCDG ��
 ��� 
��� ���(���	�� �
 &�� gCDG.
������� 9�� 
��*�� �	
�	��*	
� ������ 	� (�	��	(�� �	A������ #*� 	� (����	��
�	�	�� �������� �����	2*�
, �������
�������� #�� ������ ������� #�
�����������
��� 
����������� 
��
���� ����������! 3���� �����	2*�
 ��&! �	�
 �������
 �B��
*
�� �������(��

	��
! C������
� ���� ��� �����(��	�� #� ������� &�����	+��
�	�� ����*�� ���

	.���	��
� 	����	����� ���! ��&! 
*���

&*� ���#	���	�� �& ���
��� �((�	�� �� "��
� �!�! �%��! "�� ��� �����	2*�
 ��2*	�� ���(	���	�� 	��� �
������ �������! "�� ��	�� �����	2*�
� �((�	�� �� ���� 	� ��	
 (�(��� ����

�� ���(	���	��! '��� 	� �((�	�
 �� �� ��	�	��� ����*�*
� 	� �	��
 �� �2*	������
����*�*
 �& ��� 
��� ���(���	�� �((�	�� �� ���� ���(��� �������
 �	���*�
�����	�� ����! $�����	+��	�� �& /��	#�� ���� 	
 ��� *���� 
�*��!

 ���������

� . �� �� ����"���� /��$ $���"��$$��� �� ��%����0�� ��"1��" '������ �� �� �����
�� ���	
���

 '�"�� �234�2�
 5��%�����
 ������
 
33, 


 � (�6��#�� ��� � (�6���6# )�������0�� %���"����� ��'�����%# "��$$��� 
�� � ������ �� �� 
 ������
 	�����������������������
 ���� �733
 '�"�� 
834
,, 
�'���"�� 5����"
 
337 

8 ��%���� (�6��#�� ��� ���*����� (�6���6# ����"����� ��'�����%# "��$$��� ��
� �����"�� ��� 5 9���%�
 �������
 ����� �� ������� ����� �� ���������� ��������

'�"�� :	42�
 ����'������
 
33� 

� � (�6���6# � ;���������� ���%������ "��$$�� ��%����%���� �� ( ������� ��� ��#
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Abstract. Pregroup grammars are a mathematical formalism in the spirit of catego-
rial grammars. They are close to logical formalism like Lambek calculus but have a
polynomial parsing algorithm. The paper presents a parser based on pregroup gram-
mar that uses a tabular approach based on majority partial composition.
Keywords: parser, pregroups, Lambek categorial grammars, parsing software, XML
data.

1 Introduction

Pregroup grammars (PG) [1] have been introduced as a simplification of Lambek calculus [2].
They have been used to model fragments of syntax of several natural languages. They belong
to categorial and lexicalized grammatical frameworks : categorial grammars have nice links
to semantical interpretation while lexicalism has many advantages for constructing grammars
and for parsing.

Another interest of PG is their order on basic types, that helps grammar design with
natural and compact types (less types) ; this point can also be generalized to combine calculi,
both formally and in software [3]. In contrast to some other categorial variants, PG parsing
is polynomial (O(n3)).

Based on the PG formalism, and some extensions of it, we have programmed a pregroup
toolbox, including a specific parser based on partial composition (in contrast to [4, 5]), and
a grammar definition tool. Data are stored in XML format (with DTD), to allow better
interconnections with other tools. A web version is also provided for parsing with a grammar,
either from raw text, from (partially) parenthesized text or from analyzed text (as in XML
treebanks). This article explains the tool characteristics in connection with the underlying
formalism, and gives an overview of the toolbox.

2 Pregroups

2.1 Pregroup Grammars

A pregroup is a structure (P,≤, ·, l, r, 1) such that (P,≤, ·, 1) is a partially ordered monoid
and l, r are two unary operations on P that satisfy for every element x ∈ P, xlx ≤ 1 ≤ xxl

and xxr ≤ 1 ≤ xrx. We write p(0) = p, and p(n) for (p(n−1))r if n > 0 and p(n) for (p(n+1))l

if n < 0 ; these are called simple types. From now on, let P denote a free pregroup based on
a poset of basic types written (Pr,≤Pr).

A Pregoup Grammar G is G ⊂ Σ ×P (Σ words, G finite). Its language L(G) ⊆ Σ+ is the
set of sequence of words such that the concatenation of types entails (≤) the distinguished
type s.



Parsing can be based on rewrite rules such as: Xp(n)q(n+1)Y
(GCON)
−→ XY

if p ≤Pr q and n is even or if q ≤Pr p and n is odd

Parsing using partial and majority composition Rules below proceed by pairs of words (their
types are separated by a comma) ; thus parsing also provides a binary tree on words.

– [C] (partial composition ) : for k ∈ N, X ′ = p
(n1)
1 · · · p

(nk)
k

, Y ′ = q
(nk+1)
k

· · · q
(n1+1)
1

Γ, Xp
(n1)
1 · · · p

(nk)
k

, q
(nk+1)
k

· · · q
(n1+1)
1 Y, ∆

C
−→ Γ, XY, ∆

if pi ≤Pr qi and ni is even or if qi ≤Pr pi and ni is odd , for 1 ≤ i ≤ k.

– [
@

−→] (majority composition) : if (moreover) the result’s width (of |XY |) is not greater
than the maximum argument width (of XX ′ and Y ′Y )

2.2 Pregroup extended with iteration types

For iteration types p∗, the parser is also based on partial composition rules:

– [C] (partial composition ) : for X ′Y ′ ≤ Z ′, with Z ′ empty (as 1) or a∗(2k+1):

Γ, XX ′, Y ′Y, ∆
C
−→ Γ, XZ ′Y, ∆

– [
@

−→] (majority composition) : if (moreover) at most a half of the argument is in the
result (|X ′| ≥ |X | or |Y ′| ≥ |Y |).

Example 1. Let us see the following sentence taken from ”Un amour de Swann” by M. Proust:
Maintenant, tous les soirs, quand il l’avait ramenée chez elle, il fallait qu’il entrât. 3 In Fig. 1
we show a proof of correctness of assignment of types to its fragment. The primitive types
used in this proof are: π3 and π3 = third person (subject) with π3 ≤ π3, p2 = past participle,
ω = object, s = sentence, s5 = subjunctive clause, with s5 ≤ s, σ = complete subjunctive
clause, τ = adverbial phrase. This grammar assigns s to the following sentence:

τ

quand

sl π3

il

πr

3sω
ll

l’

slπ3 π3
rs

avait

pl

2 p2

ramenée

ωlλl λ

chez-elle

π3

il

π3
rτ r

fallait

sσl σ

qu’

sl

5 π3

il

π3
r

entrât

s5

Figure 1

3 Parsing using majority partial composition

A Cocke-Younger-Kasami (CYK) algorithm for pregroup grammar can be developed. The
granularity of this algorithm is words (or entries if the lexicon assigns also types to a sequence
of words like “pomme de terre” (potato in French)). This method presented in [6] has been
implemented into a tabular parser together with other components:

- - -

?

���

Input

form

Lexicon

loading

Type

assignment

Net

simplification

Result

reporting

Internal

reductions

Majority

composition

Net

calculus

3 [FR: Now, every evening when he took back her to her home, he ought to enter]



Input form.

Test of the Pregroup Parser

View this page in  

Change the current grammar  

French Test Grammar (on Proust sentences)

Write your sentence here and press Ok.

  

Choose one of the following sentences and press Ok.

   

Options

Show pregroup nets
Show text nets
Maximum number of viewed pregroup nets
Show only one pregroup net for each assignment of types
Show also original types on pregroup nets
Show Matrix
Show only useful types
All basic types correspond to a correct sentence
Scale of pregroup nets (percent)
XML input
Follow input tree (need XML input)
Simplify nets
Show net statistics
Robustness parsing level
Verbose output
Partial composition without optionnal types
Do not add types deduced by internal reduction

Reset the form 

Back to Title Page

This form selects one of the grammar, asks for the input
string (alternatively, one may choose one or all samples that
are associated to the selected lexicon). Several options are
also offered. For instance, the parser can show only a limited
number of analyses (ten by default). The user can enter a
different limit. An option selects if the input is a string or an
XML tree. In this case, the parser can also follow the XML
structure when computing majority partial composition.

Lexicon loading.

<?xml version="1.0" encoding="UTF-8"?>
<grammar>

<pregroup>
<order inf="n" sup="n-bar"/>

...
</pregroup>
<sentence type="s"/>

<lexicon>
<w><mot>whom</mot>

<type><simple atom="q’"/>
<simple atom="o" exponent="-2"/>
<simple atom="q" exponent="-1"/>

</type>
</w>

...
</lexicon>

</grammar>

Grammars are described in XML files. A grammar
defines a partial order on basic types, a set of basic
types that are considered to form the correct sen-
tences and a lexicon that associated to an entry (a list
of tokens) a set of types. It is also possible to describe
special entries with a regular expression that is useful
for instance for the class of numerical number or the
class of proper noun (that starts with an upper case
letter). To improve the efficiency of this step that
may be very long if the lexicon is big (Lefff 2.5.5[7]
has 534753 entries – The PPQ XML corresponding
lexicon is a file whose size is 31,367,146 bytes), a
compressed text format or a SQLite database can be
used.

With an indexed table, even a big lexicon is accessed very quickly (less than a second
rather than several tens of seconds). In fact, the parser does not load all the lexicon. It selects
the entries that correspond to the input string.

Type assignment to words/entries. This step assigns to each list of tokens of the input string
a set a pregroup types. The input string is split into tokens using spaces and several regular
expressions For instance l’homme (the man in French) is segmented into two tokens: l’ and
homme. If the string is split in n tokens, there are n× (n + 1)/2 possible entries. Each one is
searched in the lexicon and defines the initial value of the parsing matrix that computes the
types associated with each segment of tokens of the input string.

Internal reduction of types. Because the main step of the parser is based on majority partial
composition, a completion using internal reduction must be performed on the types computed
during the previous step (see [6]). Usually this step is not useful because the types in the
grammar cannot be reduced or the grammar already includes all the derived types.

Majority partial composition of sequence of entry.

Result of the Pregroup Parser
whom have you seen

Correct Sentence

There is one pregroup net

Pregroup Net 1

Word count 4 Axiom length (word unit * 2) 14
Entry count 4 Axiom length (entry unit * 2) 14
Axiom end point count 9 Interface height sum 7
Weakening level 0 Erased word count 0

The Matrix Content

cell  1(4
q'

cell  1(3
q' oll p_2l

cell  2(4
q ol

cell  1(2 cell  2(3
q p_2l

cell  3(4

cell  1(1
q' oll ql

cell  2(2
q p_2l π_2l

cell  3(3
π_2

cell  4(4
p_2 ol

whom have you seen

This step computes the parsing matrix with the re-
sult of majority partial composition (rather than us-
ing production rules of the Chomsky normal form
of a context-free grammar for CYK algorithm). Of
course, because we also want to describe the result-
ing analyses as pregroup nets, the matrix is in fact a
complex directed acyclic graph. This matrix may be
displayed by the parser at the end of the report. The
matrix of “whom have you seen” as input string for
Test grammar is displayed on the left.



Net calculus. This step computes representation of the analyses of the parser. They are called
pregroup nets. In a net, each entry is associated to a pregroup type and the link represents
the different axioms that associate two by two the simple types. This representation is close
to a dependency tree except that the structure is a graph rather than a tree. Moreover, with
the introduction of iterative simple types[8], a simple type can be connected to more than
one other simple type, as the following example shows.

Net simplifications. This step simplifies nets by suppressing the iterated simple types that
are not used and by taking into account cut annotations (see Section 4).

Result reporting. This step puts together all the results and presents it using different formats.
Actually, there are three possible output formats: an HTML format useful for a web server,
a text output that is suitable for a terminal and an XML format that may be used if the
output needs to be processed by another program.

4 Parsing with added cuts

Grammars based on free pregroups even with iterative simple types are context free. Thus,
for several complex syntactical constructions some types must include a way to cross part of
the environment. This is particularly the case for non projective dependencies. For instance,
the French clitics are placed between the verb and the subject: In ”il la mange” (he is eating
it) ”la” is between ”il” and ”mange”. The previous example shows such a construction. The
clitic ”l’” is assigned πr

3so
llslπ3. The main simple type is oll. The rest enables the crossing of

two axioms (one corresponding to πr
3 and π3, the other to s and sl).

To solve this problem, PPQ uses cut annotations on the types assigned to special words
like clitics or adverb. These annotations that can be seen as a limited form of semantical
interpretation replace two normal axiom links by a long distance axiom link.

The previous French example has such annotations for the type associated to the clitic l’.
Here two cuts have been added, one between πr

3 and π3 and one between s and sl. Thus on
the net, the axiom between π3 of il and πr

3 of l’ and the axiom between π3 of l’ and πr
3 of

avait are replaced by a single long distance axiom between π3 of il and πr
3 of avait. Another

long distance axiom is created for the other cut that links sl of quand and s2 of avait.
On the final picture, these special long distance axioms are shown as dashed red lines.

Such lines can cross other axioms. The cut simple types are also erased from the picture. This
interpretation is performed during the net simplification step.

5 Grammar construction

Other packages concern the construction of XML pregroup grammars : xslt programs have
been developed for this task, including a specific mode for the French Paris7 Treebank.
Another set of programs (XML2CTX, LIS2XML) provides an interface with Camelis/Glis
(http://www.irisa.fr/LIS/ferre/camelis/index.html) an implementation of Logical Informa-
tion Systems (LIS), allowing navigation. A user can define a lexicon with Glis, then save it



as a LIS context, where objects are words ; this context is then transfered to the pregroup
XML format (using LIS2XML) conversely, a pregroup grammar in XML format, can be trans-
fered to a LIS context (using XML2CTX). This mode has been used for several prototype
languages.

6 Conclusion

The pregroup parser PPQ implements majority partial composition. This program, that can
be used inline through a PHP webserver or as a command line program, uses XML files for
describing a pregroup grammar. An optional indexed database can speed up the lookup in the
lexicon. The result is a HTML or text page with pregroup nets as syntactical analysis that is
convenient for human reading. The command line program can also produce a XML output
if the result must be used by another program. This model also enables a form of semantical
interpretation limited to the reduction of annotated ”cuts”.

This program which is rather a test platform than a finished software has at present a
large cover of the French language (however with a rough pregroup type system) and several
toy lexicons for English, Breton (a Celtic language) and Bambara (an African language).
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Abstract

This paper will analyze CCGbank, a corpus of CCG
derivations, for use with the Lambek calculus. We
also present a Java implementation of the parsing al-
gorithm for the Lambek calculus presented in Fowler
(2009) and the results of experiments using that al-
gorithm to parse the categories in CCGbank. We
conclude that the Lambek calculus is computation-
ally tractable for this task and provide insight into
a full conversion of CCGbank to a bank of Lambek
derivations.

1 Introduction

The Lambek calculus (Lambek, 1958) and Combina-
tory Categorial Grammar (CCG) (Steedman, 2000)
are two related variants of categorial grammar that
have received a lot of attention from the computa-
tional linguistics community.

The attention that the Lambek calculus has re-
ceived has been mostly theoretical, with particularly
important results including its weak equivalence to
context-free grammars (CFGs) (Pentus, 1997) and
the NP-completeness of its parsing problem (Sava-
teev, 2008). In response to these results, Tiede
(1999) proves that the Lambek calculus and CFGs are
not strongly equivalent and Fowler (2009) provides a
method for restricting the Lambek calculus to obtain
a polynomial time parsing algorithm. CCG research,

on the other hand, has been more practically focused.
Hockenmaier and Steedman (2007) introduces CCG-
bank, a corpus of CCG derivations translated from
the WSJ section of the Penn treebank. Then, Clark
and Curran (2004) describe a wide-coverage statisti-
cal parser that using CCGbank for training and that
is competitive with other state of the art parsers.

The aim of this paper is to begin to bring these
two research streams together. That is, we will in-
vestigate the practicality of using the algorithm of
Fowler (2009) to parse sentences using the categories
of CCGbank. First, we analyze CCGbank for use
with the Lambek calculus and present the results of
some experiments using a Lambek calculus grammar
based on the categories in CCGbank. Then, we pro-
vide methods for converting the most problematic
derivations in CCGbank to Lambek calculus deriva-
tions for use in future research.

One might be tempted to ignore the Lambek cal-
culus in favour of extending standard CCG by in-
troducing rules such as the D-combinator of Hoyt
and Baldridge (2008) as they become necessary for
linguistic analysis. However, Zielonka (1981) proves
that the introduction rules of the Lambek calculus
cannot be replaced by any finite number of such rules.
Thus, in one step the Lambek calculus gives us a rule
system that would require the addition of an infinite
number of logically sound combinatory rules.

1



2 The Lambek Calculus

The set of categories C is built up from a set of atoms

(e.g. {S, NP, N, PP}) and the two binary connec-
tives / and \. A Lambek grammar G is a 4-tuple
〈Σ, A, R, S〉 where Σ is an alphabet, A is a set of
atoms, R is a relation between symbols in Σ and cat-
egories in C and S is the set of sentence categories.

The order of a category is a measure of its com-
plexity, which measures the depth of the nesting of
arguments and is formally defined as follows:

o(α) = 0 for α a basic category

o(α/β) = o(β\α) = max(o(α), o(β) + 1)

For example, the order of (S/NP )\(S/NP ) is 2. A
Lambek grammar with order bounded by k is a Lam-
bek grammar such that R is a relation between sym-
bols in Σ and categories in C of order ≤ k.

Parsing with the Lambek calculus is equivalent
to logical deduction from the categories of the sen-
tence. The inference rules for the Lambek calculus
are shown in figure 1. The /E and \E rules are re-
ferred to as elimination rules. The /Ii and \Ii are
referred to as introduction rules and allow the intro-
duction of hypothetical categories (shown in square
brackets) with the requirement that they are dis-

charged at a point in the proof where they are the
rightmost (in the case of /Ii) or leftmost (in the case
of \Ii) category in the proof tree.

X/Y Y
/E

X

Y Y \X
\E

X

...

[Y ]i

...
X /Ii

X/Y

[Y ]i

...
...

X \Ii
Y \X

Figure 1: Inference rules in the Lambek Calculus.

The parsing problem for a string of symbols
s1 . . . sk can be characterized as follows: s1 . . . sk ∈
Σ∗ is parseable in a Lambek grammar 〈Σ, A, R, S〉
if there exists c1, . . . , ck ∈ C such that ci ∈ R(si) for

1 ≤ i ≤ k and the categories c1, . . . , ck logically derive
some category in S via the rules in figure 1. Fowler
(2009) provides a chart parsing algorithm that uses
abstract term graphs (ATGs) as entries in the chart
that is polynomial time if the order of categories is
bounded. It is this algorithm that we will be evalu-
ating for practical use with CCGbank.

3 CCG

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a well-known variant of categorial
grammar that incorporates a number of combinatory
rules in addition to the elimination rules of the Lam-
bek calculus. We will divide the combinatory rules
into two groups. Those which are derivable in the
Lambek calculus:

• Composition

1. X/Y, Y/Z ⇒ X/Z (Forward)

2. Z\Y, Y \X ⇒ Z\X1 (Backward)

• Type-Raising

1. X ⇒ T/(X\T ) (Forward)

2. X ⇒ (T/X)\T (Backward)

And those rules which are not derivable in the
Lambek calculus (which we will refer to as non-
Lambek rules):

• Crossed Composition

1. X/Y, Z\Y ⇒ Z\X (Forward Crossing)

2. Y/Z, Y \X ⇒ X/Z (Backward Crossing)

• Substitution

1. (X/Y )/Z, Y/Z ⇒ X/Z

2. Z\(X/Y ), Z\Y ⇒ Z\X

3. Z\Y, Z\(Y \X) ⇒ Z\X

4. Y/Z, (Y \X)/Z ⇒ X/Z

1For consistency we will be using the Ajdukiewicz notation,

rather than the Steedman notation usually used for CCG.

2



Any linguistic analysis made within CCG which
uses any of the non-Lambek rules will need to be
modified to receive an analysis within the Lambek
calculus.

4 The Lambek Calculus and

CCGbank

Section 4.1 discusses the order of the categories in
CCGbank. Section 4.2 discusses an implementation
of the algorithm of Fowler (2009) run on the cate-
gories of CCGbank. Section 4.3 discusses the neces-
sary major modifications to convert the CCG deriva-
tions of CCGbank to Lambek derivations.

4.1 The order of CCGbank

The parsing algorithm described in Fowler (2009) is
only polynomial time if the order of categories are
bounded by a constant. Furthermore, the algorithm
is exponential in that constant. So, the practicality of
parsing CCGbank using this algorithm is very depen-
dent on the order of categories in CCGbank. Figure
2 shows the distribution of order across the categories
occurring in sections 02 to 21 of CCGbank. The max-
imum order of any category is 5 and the average is
0.78. These results indicate that the parsing algo-
rithm will be efficient on CCGbank categories, if not
competitive with other categorial grammar parsing
strategies.

4.2 Parsing CCGbank

We implemented the parsing algorithm of Fowler
(2009) in Java and performed our experiments on
a machine with 4 Intel Xeon CPUs at 3.0 Ghz and
16Gb of RAM. Our training data was taken from sec-
tions 02-21 of CCGbank and our test data was taken
from section 00. We have reserved section 23 for fu-
ture use.

We define Lambek grammars 〈Σ, A, Rt, S〉 where
A is the set of atoms appearing in sections 02-21.2

2We ignore the feature system of CCGbank because the

parsing algorithm cannot currently handle the unification of

features.

Figure 2: The order of categories in CCGbank

t Category-Word pairs Categories per word
0.1 59683 1.350
0.01 69382 1.569
0.001 73265 1.657
0 74667 1.689

Table 1: The effect of the threshold on the lexicon.

Σ is the set of words appearing in both sections 00
and 02-21 except that we will disregard punctuation
entirely. Rt will be defined as follows:

• Rt(s) = {c|c has frequency at least t among the
categories for s} for s in sections 02-21

• Rt(s) = {NP, N} for s not in sections 02-21

NP and N were chosen because nouns and proper
nouns make up a large portion of unknown words
in corpora. The sentence categories are defined as
S = {S, NP, PP, S/NP, NP\S} which are the root
categories of trees in sections 02-21. We will be using
the following values for t: 0.1, 0.01 and 0.001. Their
effect on the lexicon is shown in table 1.

The results of the experiments are shown in table
2. We can see that only a very small number of sen-
tences receive parses even with a value of t = 0.001.
The reason for this is the very large number of unary
type changing rules from N to NP in CCGbank.
Without solving the unary type changing problem
in CCGbank, we can increase the number of deriv-
able sentences (and consequently get a more realistic

3



Grammar Type Sentences Seconds Seconds Mean Mean
with Parses per Sentence Total # of Atoms # of ATGs

Basic, t = 0.1 47/1913 0.365 700 104.4 73.4
Basic, t = 0.01 112/1913 0.381 729 241.3 409.7
Basic, t = 0.001 247/1913 4.034 7717 611.4 5280.1
N = NP , t = 0.1 289/1913 0.369 706 104.4 183.8
N = NP , t = 0.01 678/1913 0.578 1106 241.3 1275.3
N = NP , t = 0.001 1005/1913 25.044 47908 611.4 14995.5

Table 2: Results of experiments

picture of practical parsing) by converting all occur-
rences of N to NP (denoted N = NP in figure 2).

Without converting N to NP , parsing is efficient,
but this is largely due to a small number of entries
in the chart. However, when we equate N and NP ,
parsing remains efficient for t values of 0.1 and 0.01
and the higher numbers of sentences receiving parses
makes these cases a more realistic picture of parsing.
The last case (N = NP , t = 0.001) sees a huge in-
crease in parse time, but also a significant increase in
coverage. It is likely that the parse time here would
be reduced if we used the supertagging techniques of
Clark and Curran (2004). In addition, the low cov-
erage of even our best method is likely due to the
categories in CCGbank being designed to participate
in non-Lambek rules. This will be discussed in the
next section.

4.3 Converting CCGbank

In addition to the usual non-Lambek rules of CCG
there are a number of additional rules used in deriva-
tions in CCGbank which can be characterized as gen-
eral phrase structure rules. Due to the nature of pars-
ing algorithms for CCG, these rules do not introduce
any additional difficulties for parsing CCGbank us-
ing CCG but they cannot be easily accommodated
into a logical approach such as the Lambek calculus.
In this section, we analyze the non-Lambek rules of
CCGbank and discuss methods for converting these
analyses to ones using Lambek’s rules.

Table 3 categorizes the binary rules in CCGbank
according to their type. The first 6 rule types are

the rules from CCG and the last 3 are general phrase
structure rules. The group of Crossing Composition
rules are of concern because they are large in number
and because they are a fundamental part of CCG.
The vast majority of such rules attach lexical ad-
juncts to items that they modify. The directions of
the slashes in these lexical items can be modified so
that this is no longer crossing composition. In some
cases, this will increase lexical ambiguity, but this
lexical ambiguity appears necessary unless we adopt
some kind of crossing rules into the Lambek calcu-
lus. The “Punctuation and Conjunction” rules are
rules for handling various kinds of punctuation and
conjunctions such as “and” and “or”. One way that
these rules can be handled is to assign certain cat-
egories to punctuation marks (Hockenmaier, 2003,
pg. 34) and assigning coordination categories such
as (NP\NP )/NP to the conjunctions coordinating
NPs. The small number of rules under the “Merger”
category are rules that take two identical atoms and
produce one instance of the same atom. These can be
altered on a case by case basis since there are so few
and most can be modified so that the rule becomes
an application rule. Similarly, for the “Other” rules.

Table 4 groups the unary rules of CCGbank into
categories. The Type-Raising rules are Lambek rules,
but the remainder must be altered to be consid-
ered in a Lambek framework. Of these unary rules,
the vast majority are of the type N ⇒ NP mean-
ing that within the derivation we need to convert
some category’s instance of an N atom into an NP
atom. These can easily be changed in the lexicon,
increasing lexical ambiguity but allowing for a more

4



Rule Type # in CCGbank
Forward Application 674513
Backward Application 227663
Forward Composition 7947
Backward Composition 1844
Crossing Composition 14468
Substitution 4
Punctuation and Conjunction 172987
Mergers 32
Other 6
Total 1099464

Table 3: Counts of Binary Rules

Rule Type # in CCGbank
Type-Raising 4016
N ⇒ NP 142525
NP\S ⇒ NP\NP 8986
NP\S ⇒ (NP\S)\(NP\S) 3421
Other 4690
Total 163638

Table 4: Counts of Unary Rules

classical categorial analysis. In addition, there are
rules for handling relative clauses of the form S/
NP ⇒ NP\NP . These rules can be handled in a
similar way, but the effect on the size of the lexicon
is an open question.

5 Conclusion

Our experiments indicate that the NP-completeness
of parsing with the Lambek calculus is not the barrier
that it seems to be, given the fact that our implemen-
tation is basic and can be improved in a number of
ways. The low coverage of the parser is problematic,
but is likely due to the fact that we have not yet fully
converted CCGbank for use with the Lambek calcu-
lus. To address this, we have outlined methods for
doing such a conversion.

However, the benefits of using the Lambek calculus
as a grammar over a combinatory categorial grammar

cannot be fully realized until the derivations in the
corpus take advantage of the logical basis of Lambek’s
introduction rules. This can be accomplished by re-
visiting the methods used to convert the Penn tree-
bank to CCG by Hockenmaier and Steedman (2007).
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Abstract

The use of deep parsers in spoken dialogue
systems is usually subject to strong perfor-
mance requirements. Real-time dialogue
applications must be capable of respond-
ing quickly to any given utterance, even in
the presence of noisy, ambiguous or dis-
torted input. The parser must therefore en-
sure that the number of analyses remains
bounded at every processing step.

The paper presents a practical approach
to address this issue in the context of
deep parsers designed for spoken dia-
logue. The approach is based on a word
lattice parser for Combinatory Categorial
Grammar combined with a discriminative
model for parse selection. Each word
lattice is parsed incrementally, word by
word, and a discriminative model is ap-
plied at each incremental step to prune
the set of resulting partial analyses. The
model incorporates a wide range of lin-
guistic and contextual features and can be
trained with a simple perceptron. The
approach is fully implemented as part
of a spoken dialogue system for human-
robot interaction. Evaluation results on a
Wizard-of-Oz test suite demonstrate sig-
nificant improvements in parsing time.

1 Introduction

Developing robust and efficient parsers for spoken
dialogue is a difficult and demanding enterprise.
This is due to several interconnected reasons.

The first reason is the pervasiveness of speech
recognition errors in natural (i.e. noisy) environ-
ments, especially for open, non-trivial discourse
domains. Automatic speech recognition (ASR) is
indeed a highly error-prone task, and parsers de-
signed to process spoken input must therefore find

ways to accomodate the various ASR errors that
may (and will) arise.

Next to speech recognition, the second issue we
need to address is the relaxed grammaticality of
spoken language. Dialogue utterances are often
incomplete or ungrammatical, and may contain
numerous disfluencies like fillers (err, uh, mm),
repetitions, self-corrections, etc.

Finally, the vast majority of spoken dialogue
systems are designed to operate in real-time. This
has two important consequences. First, the parser
should not wait for the utterance to be complete
to start processing it – instead, the set of possi-
ble semantic interpretations should be gradually
built and extended as the utterance unfolds. Sec-
ond, each incremental parsing step should operate
under strict time constraints. The main obstacle
here is the high level of ambiguity arising in nat-
ural language, which can lead to a combinatorial
explosion in the number of possible readings.

The remaining of this paper is devoted to ad-
dressing this last issue, building on an integrated
approach to situated spoken dialogue processing
previously outlined in (Lison, 2008; Lison and
Kruijff, 2009). The approach we present here is
similar to (Collins and Roark, 2004), with some
notable differences concerning the parser (our
parser being specifically tailored for robust spoken
dialogue processing), and the features included in
the discriminative model.

An overview of the paper is as follows. We first
describe in Section 2 the cognitive architecture in
which our system has been integrated. We then
discuss the approach in detail in Section 3. Fi-
nally, we present in Section 4 the quantitative eval-
uations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully
implemented and integrated into a cognitive ar-
chitecture for autonomous robots (Hawes et al.,



2007). It is capable of building up visuo-spatial
models of a dynamic local scene, and continuously
plan and execute manipulation actions on objects
within that scene. The robot can discuss objects
and their material- and spatial properties for the
purpose of visual learning and manipulation tasks.
Figure 1 illustrates the architecture schema for the
communication subsystem.

Figure 1: Architecture schema of the communica-
tion subsystem (only for comprehension).

Starting with ASR, we process the audio signal
to establish a word lattice containing statistically
ranked hypotheses about word sequences. Subse-
quently, parsing constructs grammatical analyses
for the given (partial) word lattice. A grammatical
analysis constructs both a syntactic analysis of the
utterance, and a representation of its meaning. The
analysis is based on an incremental chart parser1

for Combinatory Categorial Grammar (Steedman
and Baldridge, 2009). These meaning represen-
tations are ontologically richly sorted, relational
structures, formulated in a (propositional) descrip-
tion logic – more precisely in the HLDS formalism
(Baldridge and Kruijff, 2002). The incremental
build of derivational structures is realised within
the parser via type-raising and composition rules.

Once all the possible (partial) parses for a given
(partial) utterance are computed, they are filtered
in order to retain only the most likely interpreta-
tion(s). This ensures that the number of parses at
each incremental step remains bounded and avoid
a combinatorial explosion of the search space. The
task of selecting the most likely parse(s) among a
set of possible ones is called parse selection. We
describe it in detail in the next section.

At the level of dialogue interpretation, the logi-
cal forms are resolved against a dialogue model to
establish co-reference and dialogue moves.

Finally, linguistic interpretations must be as-
1Built using the OpenCCG API: http://openccg.sf.net

sociated with extra-linguistic knowledge about
the environment – dialogue comprehension hence
needs to connect with other subarchitectures like
vision, spatial reasoning or planning.

3 Approach

3.1 Parse selection
As we just explained, the parse selection module is
responsible for selecting at each incremental step
a subset of ”good” parses. Once the selection is
made, the best analyses are kept in the (CKY-like)
parse chart, while the others are discarded and
pruned from the chart.

To achieve this selection, we need a mechanism
to discriminate among the possible parses. This is
done via a (discriminative) statistical model cov-
ering a large number of features.

Formally, the task is defined as a function F :
X → Y where the domain X is the set of possible
inputs (in our case, X is the set of possible word
lattices), and Y the set of parses. We assume:

1. A function GEN(x) which enumerates all
possible parses for an input x. In our case,
the function represents the admissibles parses
according to the CCG grammar.

2. A d-dimensional feature vector f(x, y) ∈
<d, representing specific features of the pair
(x, y). It can include various acoustic, syn-
tactic, semantic or contextual features.

3. A parameter vector w ∈ <d.

The function F , mapping a word lattice to its
most likely parse, is then defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (1)

Given the parameters w, the optimal parse of a
given word lattice x can be therefore easily deter-
mined by enumerating all the parses generated by
the grammar, extracting their features, computing
the inner product wT · f(x, y), and selecting the
parse with the highest score.

3.2 Learning
3.2.1 Training data
To estimate the parameters w, we need a set of
training examples. Since no corpus of situated di-
alogue adapted to our task domain is available to
this day – let alone semantically annotated – we



followed the approach advocated in (Weilhammer
et al., 2006) and generated a corpus from a hand-
written task grammar.

We first designed a small grammar covering our
task domain, each rule being associated to a HLDS
representation and a weight. Once specified, the
grammar is then randomly traversed a large num-
ber of times, resulting in a large set of utterances
along with their semantic representations.

3.2.2 Perceptron learning
The algorithm we use to estimate the parameters w
using the training data is a perceptron. The algo-
rithm is fully online - it visits each example in turn,
in an incremental fashion, and updates w if neces-
sary. Albeit simple, the algorithm has proven to be
very efficient and accurate for the task of parse se-
lection (Collins and Roark, 2004; Zettlemoyer and
Collins, 2007).

The pseudo-code for the online learning algo-
rithm is detailed in [Algorithm 1].

3.3 Features
As we have seen, the parse selection operates by
enumerating the possible parses and selecting the
one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on
the selection of “good” features f(x, y) for our
model - that is, features which help discriminating
the parses. In our model, the features are of four
types: semantic features, syntactic features, con-
textual features, and speech recognition features.

3.3.1 Semantic features
What are the substructures of a logical form which
may be relevant to discriminate the parses? We de-
fine features on the following information sources:
the nominals, the ontological sorts of the nom-
inals, and the dependency relations (following
(Clark and Curran, 2003)).

These features therefore help us handle various
forms of lexical and syntactic ambiguities.

3.3.2 Syntactic features
Syntactic features are features associated to the
derivational history of a specific parse. Along-
side the usual CCG rules (application, composi-
tion and type raising), our parser also uses a set
of non-standard (type-changing) rules designed to
handle disfluencies, speech recognition errors, and
combinations of discourse units by selectively re-
laxing the grammatical constraints (see (Lison and

Algorithm 1 Online perceptron learning

Require: - Set of n training examples {(xi, zi) : i = 1...n}
- For each incremental step j with 0 ≤ j ≤ |xi|,

we define the partially parsed word lattice xj
i

and its gold standard semantics zj
i

- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x, z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1 ... T do

for i = 1 ... n do
% Loop on the incremental parsing steps
for j = 0...|xi| and if xi not already updated do

% Compute best parse according to model
Let y′ = argmax

y∈GEN(x
j
i )

wT · f(xj
i , y)

% If the decoded parse 6= expected parse, update
the parameters of the model
if L(y′) 6= zj

i then
% Search the best parse for the partial word
lattice xj

i with semantics zj
i

Let y∗ = argmax
y∈GEN(x

j
i ,z

j
i )

wT · f(xj
i , y)

% Update parameter vector w
Set w = w + f(xj

i , y
∗)− f(xj

i , y
′)

end if
end for

end for
end for
return parameter vector w

Figure 2: graphical representation of the HLDS
logical form for “I want you to take the mug”.



Kruijff, 2009) for details). In order to ”penalise”
to a correct extent the application of these non-
standard rules, we include in the feature vector
f(x, y) new features counting the number of times
these rules are applied in the parse. In the deriva-
tion shown in the Figure 3, the rule corr (correc-
tion of a speech recognition error) is for instance
applied once.

pick
s/particle/np

cup
up corr

particle
s/np

>

the
np/n

ball
n

np >

s >

Figure 3: CCG derivation of “pick cup the ball”.

In the usual case, the perceptron will learn to as-
sign negative weights to the syntactic features dur-
ing the training process. In other words, these fea-
tures can be seen as a penalty given to the parses
using these non-standard rules, thereby giving a
preference to the “normal” parses over them. This
ensures that the grammar relaxation is only ap-
plied “as a last resort” when the usual grammatical
analysis fails to provide a parse.

3.3.3 Contextual features
One striking characteristic of spoken dialogue is
the importance of context. Understanding the vi-
sual and discourse contexts is crucial to resolve
potential ambiguities and compute the most likely
interpretation(s) of a given utterance.

The feature vector f(x, y) therefore includes
various contextual features. Our dialogue system
notably maintains in its working memory a list of
contextually activated words (Lison and Kruijff,
2008). This list is continuously updated as the
dialogue and the environment evolves. For each
context-dependent word, we include one feature
counting its occurrence in the utterance.

3.3.4 Speech recognition features
Finally, the feature vector f(x, y) also includes
features related to the speech recognition. The
ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice (Figure 4).

Figure 4: Example of word lattice

We want to favour the hypotheses with high
confidence scores, which are, according to the
statistical models incorporated in the ASR, more
likely to reflect what was uttered. To this end, we
introduce in the feature vector several acoustic fea-
tures measuring the likelihood of each recognition
hypothesis.

3.4 Incremental chart pruning
In the previous subsections, we explained how the
parse selection was performed, and on basis of
which features. We now briefly describe how it
can be used for incremental chart pruning.

The main idea is to specify a beam width pa-
rameter in the parser. This beam width defines the
maximal number of analyses which can be kept in
the chart at each incremental step. If the number
of possible readings exceeds the beam width, the
analyses with a lower parse selection score are re-
moved from the chart. Practically, this is realised
by removing the top signs associated in the chart
with the set of analyses to prune, as well as all the
intermediate signs which are included in these top
signs and are not used in any of the analyses re-
tained by the parse selection module.

The combination of incremental parsing and in-
cremental chart pruning provides two decisive ad-
vantages over classical, non-incremental parsers:
first, we can start processing the spoken inputs
as soon as a partial analysis can be outputted by
the ASR. Second, the pruning mechanism ensures
that each parsing step remains time-bounded. It
is therefore ideally suited for spoken dialogue sys-
tems used in human-robot interaction.

4 Experimental evaluation

We performed a quantitative evaluation of our ap-
proach, using its implementation in a fully inte-
grated system (cf. Section 2). To set up the
experiments, we gathered a Wizard-of-Oz cor-
pus of human-robot spoken dialogue for our task-
domain, segmented and annotated manually with
their expected semantic interpretation. The data
set contains 195 individual utterances 2 along with
their complete logical forms.

The results are shown in the Table 1. We tested
our approach for five different values of the beam
width parameter. The results are compared against
a baseline, which is the performance of our parser

2More precisely, word lattices provided by the ASR, con-
taining up to 10 alternative recognition hypotheses.



Beam width Average parsing Exact-match Partial-match
time (in s.) Precision Recall F1-value Precision Recall F1-value

(Baseline) (none) 10.1 40.4 100.0 57.5 81.4 100.0 89.8
120 5.78 40.9 96.9 57.5 81.9 98.0 89.2
60 4.82 41.1 92.5 56.9 81.7 94.1 87.4
40 4.66 39.9 88.1 54.9 79.6 91.9 85.3
30 4.21 41.0 83.0 54.9 80.2 88.6 84.2
20 4.30 40.1 80.3 53.5 78.9 86.5 82.5

Table 1: Evaluation results (in seconds for the parsing time, in % for the exact- and partial-match).

without chart pruning. For each configuration, we
give the average parsing time, as well as the exact-
match and partial-match results (in order to verify
that the performance increase is not cancelled by
a drop in accuracy). We observe that the choice
of the beam width parameter is crucial. Above
30, the chart pruning mechanism works very ef-
ficiently – we observe a notable decrease in the
parsing time without significantly affecting the ac-
curacy performance. Below 30, the beam width is
too small to retain all the necessary information in
the chart, and the recall quickly drops.

5 Conclusions

In this paper, we presented an original method to
improve the efficiency of deep parsers (in partic-
ular, parsers for categorial grammars) with an in-
cremental chart pruning mechanism used to limit
at every processing step the number of analyses
retained in the parse chart.

The incremental chart pruning mechanism is
based on a discriminative model exploring a set of
relevant semantic, syntactic, contextual and acous-
tic features extracted for each parse. At each in-
cremental step, the discriminative model yields a
score for each resulting parse. The parser then
only retains in its chart the set of parses associated
with a high score, the others being pruned.

As forthcoming work, we shall examine the ex-
tension of our approach in new directions, such
as the introduction of more refined contextual fea-
tures or the use of more sophisticated learning al-
gorithms such as Support Vector Machines.
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Memoising Proof Net Theorem-Proving

Glyn Morrill

5th March 2009

We observe that in proof net theorem proving, only a subset of the axiom links of
a partial proof structure are essential to the extendibility of the partial proof structure
to a proof net. Therefore, when the essential axiom links of a partial proof structure
are a subset of those of another with the same span, the latter is subsumed and can be
compressed out of a chart. We illustrate these ideas with a CKY proof net continuous
partial proof structure memoising algorithm for chart Lambek theorem proving.

1 Background

The following theory of proof nets for the calculus of Lambek (1958)[4] is standard; see
principally Roorda (1991)[7].

Given a set A of atomic types, we define the set F of types by:

(1) F ::= A | F•F | F\F | F/F

A polar type Ap comprises a type A together with a polarity p = • (“input”) or ◦ (“out-
put”). The polar type tree |Ap| of a polar type Ap is the ordered tree defined by:

(2) |P p| = P p if P is atomic

|A•B•| =
|A•| |B•|

℘

CCCC zzzz
|A•B◦| =

|B◦| |A◦|

⊗

EEEE yyyy

|A\B•| =
|A◦| |B•|

⊗

EEEE yyyy |A\B◦| =
|B◦| |A•|

℘

DDDD {{{{

|B/A•| =
|B•| |A◦|

⊗

EEEE yyyy |B/A◦| =
|A•| |B◦|

℘

CCCC zzzz

A sequent A0, . . . , An ⇒ A comprises a finite non-empty sequence A0, . . . , An of antecedent
types and a succedent type A. The frame of a sequent A0, . . . , An ⇒ A is the sequence
〈|A◦|, |A0

•|, . . . , |An
•|〉. For example, the frame of the sequent (3) is (4), where we have

numbered the leaves.

(3) (S/(N\S), (N\S)/N, (S/N)\S ⇒ S

(4)

S◦
3 N•

4 N◦
5 S•

6 N•
8 S◦

9

S•
2 ℘

BBBB
{{{{

⊗

EEEE
zzzz

N◦
7 ℘

CCCC
||||

S•
10

S◦
1 ⊗

FFFF
||||

⊗

DDDD
wwww

⊗

BBBB
vvvv

We define the complement X of a polar type X by A• = A◦ and A◦ = A•. Two polar
types are complementary if and only if they are the complements of each other. An axiom
link on a proof frame is a pair of complementary leaves. An axiom linking for a proof

1



frame is a set of axiom links with at most one axiom link per leaf and which is planar,
i.e. there are no two axiom links (i, k) and (j, l) such that i < j < k < l. That an axiom
linking is planar means that it can be drawn in the half-plane without crossing lines. A
partial proof structure (PPS) is a frame together with an axiom linking. A proof structure
is a frame together with an axiom linking that links every leaf. A switching of a PPS is a
graph resulting from removing one of the immediate descendent edges of each ℘-node. A
proof net is a proof structure in which i) every switching is a connected and acyclic graph
(Danos-Regnier acyclicity and connectedness; see Danos and Regnier, 1989[2]), and ii) no
axiom link connects the leftmost and rightmost descendent leaves of an output division
(we call this Retoré no subtending). No subtending prohibits empty antecedents.

(5) Theorem. A sequent is a theorem of the Lambek calculus if and only there is an
axiom linking which forms a proof net on its frame.

Fadda and Morrill (2005)[3] show that in view of the intuitionistic nature of Lambek
sequents (that there is exactly one root of output polarity), every proof structure which
satifies Danos-Regnier (DR) acyclicity also satifies DR connectedness. Therefore we need
only check for DR acyclicity (and no subtending). We call a partial proof structure correct
if and only if it satifies DR acyclicity and no subtending. Correctness is decidable in
polynomial time, e.g. by the red-blue graphs of Retoré and Lecomte (1995)[5].

(6) Corollary. A sequent is a theorem of the Lambek calculus if and only there is an
axiom linking which forms a correct proof structure on its frame.

Therefore we can carry out Lambek theorem-proving by building up proof nets incremen-
tally, checking for correctness (DR acyclicity and Retoré no subtending) at each step.
We have a Lambek theorem iff we succeed in linking all the leaves while satisfying these
criteria.

2 Chart theorem-proving without compression

Planar linking is a Dyck language. Its grammar can be given as follows:

(7) S → A A | A S A | S S

Given a frame with n =
.
2 leaves L1, . . . , Ln,1 there is the CKY chart theorem-proving

algorithm without compression defined in Figure 1 (cf. Morrill 1996)[6]. We memorize
continuous planar linkings, where a continuous planar linking is a set of axiom links
connecting contiguous leaves. The span of a continuous planar linking is identified with
the pair comprising the positions of the start of its first axiom link and the end of its last
axiom link. Here we notate a continuous planar linking as a well-parenthesized strings of
brackets encoding textually the planar axiom linking over the span.

Then for example the chart computed for (4) is as follows:

(8)
9 ∅
8 ∅
7 {[]} ∅
6 ∅ {[[]]}
5 ∅ ∅ ∅
4 {[]} ∅ {[][[]]}
3 ∅ {[[]]} {[[]][]} {[[][[]]]}
2 ∅ ∅ ∅ {[[[]][]]}
1 {[]} ∅ {[][[]]} {[][[]][]} {[][[][[]]], [[[[]][]]]}

2 3 4 5 6 7 8 9 10

1Observe that the leaves cannot be pairwise matched if n 6=
.
2.
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for i := 1 to n− 1 do
if Li = Li+1 and [] with span (i, i + 1) is a correct linking

then C(i, i + 1) := {[]}
else C(i, i + 1) := ∅;

for l := 4 to n in steps of 2 do
for i := 1 to n + 1− l do

begin
k := i + l − 1;
C(i, k) := ∅;
if Li = Lk

then for each K ∈ C(i + 1, k − 1) do
if [K] with span (i, k) is a correct linking

then C(i, k) := C(i, k) ∪ {[K]};
for j := i + 2 to k − 1 in steps of 2 do

for each K1 ∈ C(i, j − 1) and K2 ∈ C(j, k) do
if K1K2 with span (i, k) is a correct linking

then C(i, k) := C(i, k) ∪ {K1K2}
end;

if C(0, n) 6= ∅
then print “theorem”
else print “non-theorem”.

Figure 1: Lambek chart theorem-proving without compression

3 Subsumption of linkings

In a graph we define a terminal node as one with only one incident edge. Let G be a
subgraph of a correct partial proof structure. We call a node in G open iff in the partial
proof structure it is a leaf not connected by an axiom link. We call a node in G closed iff
it is not open, i.e. iff in the partial proof structure it is either a leaf connected by an axiom
link or a mother. If a terminal node N in G is open, it might be extended with an axiom
link in extensions of the partial proof structure and might come to form part of a (DR)
cycle. But if N is closed, it will never have another incident edge in any extension of the
partial proof structure and its incident edge is irrelevant to whether or not there will ever
be cycles. We call pruning the removal from G of the incident edge of a closed terminal
node. Likewise (cf. Béchet 2003)[1], consider a root ℘-node in a graph. Every switching
breaks the path between its daughters through their mother. Therefore the edges to its
daughters are irrelevant to the detection of cycles. We call harrowing the removal from G
of the incident edges of a root ℘-node.

We call the closure of the graph of a correct PPS under pruning and harrowing its
reduct. Where M is the axiom linking of a correct PPS, we define its essential axiom links
M↓ to be the subset of axiom links of M which still remain in the reduct of the PPS. This
is the key here to subsumption in memoisation of distinct PPSs with the same span. Two
linkings of the same leaves can be different, but all we need to remember to check DR
acyclicity of extensions are the subsets of essential links, and if the essential axiom links
of one PPS are a subset of those of another, the latter is subsumed and can compressed
out in the chart.2

Thus there is the CKY chart theorem-proving algorithm with compaction in Figure 2,
which stores the essential axiom links of continuous linkings as ordered pairs of numbers.
Then the chart computed for (4) is as shown in Figure 3.

2Note the direction of subsumption: any DR-cycle free extension of the latter would also be a DR-cycle
free extension of the former, therefore it is only the former which needs to be remembered.
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for i := 1 to n− 1 do
if Li = Li+1 and {(i, i + 1)} is a correct linking

then C(i, i + 1) := {[{(i, i + 1)}]}
else C(i, i + 1) := ∅;

for l := 4 to n in steps of 2 do
for i := 1 to n + 1− l do

begin
k := i + l − 1;
C(i, k) := ∅;
if Li = Lk

then for each K ∈ C(i + 1, k − 1) do
if {(i, k)} ∪K is a correct linking

then C(i, k) := C(i, k) ∪ {({(i, k)} ∪K)↓};
for j := i + 2 to k − 1 in steps of 2 do

for each K1 ∈ C(i, j − 1) and K2 ∈ C(j, k) do
if K1 ∪K2 is a correct linking

then C(i, k) := C(i, k) ∪ {(K1 ∪K2)↓}
end;

if C(0, n) 6= ∅
then print “theorem”
else print “non-theorem”.

Figure 2: Lambek chart theorem-proving with compression
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∅
∅
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∅
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∅
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∅
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{∅}

{∅}
{∅}

2
3

4
5

6
7

8
9

10

Figure 3: Chart for (4) with only essential axiom links
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Product-free Lambek Calculus is NP-complete
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Abstract

In this paper we prove that the derivability problems for product-
free Lambek calculus and product-free Lambek calculus allowing empty
premises are NP-complete. Also we introduce a new derivability charac-
terization for these calculi.

Introduction

Lambek calculus L was first introduced in [3]. Lambek calculus uses syntactic
types that are built from primitive types using three binary connectives: multi-
plication, left division, and right division. Natural fragments of Lambek calculus
are the product-free Lambek calculus L(\, /), which does not use multiplication,
and the unidirectional Lambek calculi, which have only one connective left: a
division (left or right).

For the non-associative variant of Lambek calculus the derivability can be
checked in polynomial time as shown in [2] (for the product-free fragment of the
non-associative Lambek calculus this was proved already in [1]).

In [5] NP-completeness was proved for the derivability problem for full asso-
ciative Lambek calculus. In [6] there was presented a polynomial algorithm for
its unidirectional fragments.

We show that the classical satisfiability problem SAT is polynomial time
reducible to the L(\, /)-derivability problem and thus L(\, /) is NP-complete.

After first presenting this result author was pointed to [4] where a very
similar (but more complex) technique to explore the derivability for product-
free Lambek calculus was presented, though without proving any complexity
results.

1 Product-free Lambek Calculus

Product-free Lambek calculus L(\, /) can be constructed as follows. Let P =
{p0, p1, . . .} be a countable set of what we call primitive types. Let Tp be the
set of types constructed from primitive types with two binary connectives /, \.
We will denote primitive types by small letters (p, q, r, . . .) and types by capital
letters (A, B, C, . . .). By capital greek letters (Π, Γ, ∆,. . .) we will denote finite

∗This research was supported in part by the Russian Foundation for Basic Research grant
08-01-00399.
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(possibly empty) sequences of types. Expressions like Π → A, where Π is not
empty, are called sequents.

Axioms and rules of L(\, /):

A→ A,
Φ→ B ΓB∆→ A

ΓΦ∆→ A
(CUT),

ΠA→ B
Π→ (B/A)

(→ /), Φ→ A ΓB∆→ C
Γ(B/A)Φ∆→ C

(/→),

AΠ→ B
Π→ (A\B)

(→ \), Φ→ A ΓB∆→ C
ΓΦ(A\B)∆→ C

(\ →),

(Here Γ and ∆ can be empty.)
In this paper we will consider two calculi — L(\, /) and L∗(\, /), called

product-free Lambek calculus allowing empty premises. In L∗(\, /) we allow
the antecedent of a sequent to be empty.

2 Reduction from SAT

Let c1 ∧ . . .∧ cm be a Boolean formula in conjunctive normal form with clauses
c1 . . . cm and variables x1 . . . xn. The reduction maps the formula to a sequent,
which is derivable in L(\, /) (and in L∗(\, /)) if and only if the formula c1∧. . .∧cm
is satisfiable.

For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi stand
for the literal xi.

Let pji , q
j
i , a

j
i , b

j
i ; 0 ≤ i ≤ n, 0 ≤ j ≤ m be distinct primitive types from P.

We define the following families of types:

G0 
 (p0
0\p0

n)

Gj 
 (qjn/((q
j
0\p

j
0)\Gj−1))\pjn

G
 Gm

A0
i 
 (a0

i \p0
i )

Aji 
 (qji /((b
j
i\a

j
i )\A

j−1
i ))\pji

Ai 
 Ami

E0
i (t)
 p0

i−1

Eji (t)


{
qji /(((q

j
i−1/E

j−1
i (t))\pji−1)\pj−1

i ), if ¬txi appears in cj

(qji−1/(q
j
i /(E

j−1
i (t)\pj−1

i )))\pji−1, if ¬txi does not appear in cj

F ji (t)
 (Eji (t)\p
j
i )

Fi(t)
 Fmi (t)

B0
i 
 a0

i

Bji 
 qji−1/(((b
j
i/B

j−1
i )\aji )\p

j−1
i−1 )

Bi 
 Bmi \pmi−1
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Let Πi denote the following sequences of types:

(Fi(0)/(Bi\Ai)) Fi(0) (Fi(0)\Fi(1)).

Theorem 2.1. The following statements are equivalent:

1. c1 ∧ . . . ∧ cm is satisfiable.

2. L(\, /) ` Π1 . . .Πn → G

3. L∗(\, /) ` Π1 . . .Πn → G.

This sketch of the proof of this theorem is presented in section 5. The lemmas
are proved using the derivability characterization presented in the next section.

3 Derivability Characterization

Let At be the set of atoms or primitive types with superscripts, {p(i)|p ∈ P, i ∈
Z}. Let FS be the free monoid (the set of all finite strings) generated by elements
of At. We will denote elements of FS by A, B, C and so on, by ε we will denote
the empty string.

Consider two mappings:

t : FS→ P, t(Ap(i)) = p; d : FS→ Z, d(Ap(i)) = i.

Let A v B(A @ B) denote that A is a (strict) prefix of B.
For A ∈ FS,A 6= ε let PA = {B | B v A,B 6= ε}. The relation v is a total

order on PA.
Let α be a partial function on PA. For each such function we can define the

following:

B <α C⇔ ∃n ≥ 1, αn(B) = C,
µ−α (B) = min

@
(B, α(B)),

µ+
α (B) = max

@
(B, α(B)).

A function f : X → X is an antiendomorphism if ∀a, b ∈ X, f(ab) = f(b)f(a).
In a free monoid it can be defined by its actions on the generators.

Consider two antiendomorphisms (·)← and (·)→ on FS defined by

(p(0))← = p(−1), (p(0))→ = p(1),

(p(i))← = (p(i))→ = p(−i−sgn(i)), for i 6= 0.

Consider J·K : Tp → FS, a mapping from Lambek types to elements of the
free monoid defined by

JpK = p(0), J(A/B)K = JBK→JAK, J(A\B)K = JBKJAK←.

Let us define ϕ — a partial function on PJAK that reflects the structure of
the Lambek type A:

ϕ(A) =

{
inf@{B | A @ B, |d(B)| = |d(A)| − 1}, if d(A) > 0;
sup@{B | B @ A, |d(B)| = |d(A)| − 1}, if d(A) < 0.
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Suppose we have a Lambek sequent A1 . . . An → B. Let

W = J(. . . (B/An)/ . . .)/A1K = JA1K→ . . . JAnK→JBK.

Let NW = {A ∈ PW | d(A) = 2i+ 1, i ∈ Z}.
Let π be a function from NW to PW, and ψ be a partial function on PW

defined by

ψ(A) =

{
π(A), if A ∈ NW;
ϕ(A), if A /∈ NW and d(A) 6= 0.

To characterize derivability of the sequent A1 . . . An → B we shall use the
following conditions, which we call proof conditions.

1. Function π is a bijection between NW and PW \ NW.

2. t(π(A)) = t(A).

3. µ−π (A) @ µ−π (B)⇒ µ+
π (A) @ µ−π (B) ∨ µ+

π (B) @ µ+
π (A).

4. A ∈ NW =⇒ A <ψ ϕ(A).

5. A /∈ NW ∧ A 6= A0 =⇒ ∃B(B <ψ A ∧ B 6<ϕ A).

Lemma 3.1. L∗(\, /) ` A1 . . . An → B if and only if there exists π satisfying
proof conditions (1)-(4).

L(\, /) ` A1 . . . An → B if and only if there exists π satisfying proof condi-
tions (1)-(5).

4 Graphic Representation

Consider the following Lambek sequence:

(p/(r\q)) (r\q) (p\s)→ s

The corresponding element of FS:

p1q−2r−3r2q1p2s1s0

Elements of PW correspond to occurences of atoms in the string. So we can draw
arrows between such occurences to represent functions ϕ and ψ. We draw arrows
for π for members of NW in the upper semiplane of the string and arrows for ϕ
in the lower. Dotted arrows denote parts of ϕ that are not part of ψ. Consider
the following diagram:

p1
��

 ! "#OO
q−2

����OO r−3
��

����OO r2�� �� OOq
1

��

�� ��
p2

�� �� OOs
1

��

�� �� OO
s0

Such diagrams are called proofnets.
Proofnets provide useful intuition about proof conditions. For example proof

condition (3) is equivalent to statement ”arrows in the upper semiplane can be
drawn without intersections”. Proof condition (4) states that for every dotted
arrow if we start at its origin and follow solid arrows we will reach its destination.

It is readily seen that this proofnet satisfies proof conditions (1)-(5) and thus
L(\, /) ` (p/(r\q))(r\q)(p\s)→ s.
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5 Sketch of the Proof of the Main Theorem

Lemma 5.1. 〈t1, . . . , tn〉 is a satisfying assignment for c1∧ . . .∧ cm if and only
if L∗(\, /) ` F1(t1) . . . Fn(tn)→ G and if and only if

L(\, /) ` F1(t1) . . . Fn(tn)→ G.

Lemma 5.2. L(\, /) ` Πi → Fi(ti), where ti ∈ {0, 1}.

Lemma 5.3. If the formula c1∧. . .∧cm is satifiable, then L(\, /) ` Π1 . . .Πn →
G.

Proof. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for c1∧. . .∧cm. According
to Lemma 5.1 L(\, /) ` F1(t1) . . . Fn(tn) → G. Now we apply Lemma 5.2 and
the cut rule n times.

Lemma 5.4. If L∗(\, /) ` Π1 . . .ΠiFi+1(ti+1) . . . Fn(tn) → G, then there is
ti ∈ {0, 1} such that L∗(\, /) ` Π1 . . .Πi−1Fi(ti) . . . Fn(tn)→ G

Lemma 5.5. If L∗(\, /) ` Π1 . . .Πn → G, then the formula c1 ∧ . . . ∧ cm is
satisfiable.

Proof. Applying n times Lemma 5.4, we get that there exists 〈t1, . . . , tn〉 ∈
{0, 1}n such that L∗(\, /) ` F1(t1) . . . Fn(tn) → G. By Lemma 5.1 this means
that 〈t1, . . . , tn〉 is a satisfying assignment for c1 ∧ . . . ∧ cm.

Since for all sequents L(\, /) ` Π→ A⇒ L∗(\, /) ` Π→ A, Lemma 5.3 and
Lemma 5.5 together give us Theorem 2.1.
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