CSC 263 Midterm Solutions July 6, 2004

(1) (a) (4 points) Define the BST (Binary Search Tree) property.

Solution: A binary tree is a BST if every node x has a value key(z) such that
key(left(z)) < key(xz)  and key(right(z)) > key(x).

Of course, this is assuming that left(z) and right(z) exist. If either one does not, then
the corresponding inequality is not applicable.

(b) (4 points) Show that if you perform a rotation around any edge of a BST tree then the
resulting tree is a BST tree. You may want to use a picture.

Solution: Consider the following rotation, where z, y are nodes and A, B, C' are subtrees.
We assume the tree on the left is a BST tree and prove that the tree on the right is also
a BST tree. The picture focuses on a subtree of a potentially larger tree; that is, in the
left picture, y might have ancestors, which become the ancestors of = on the right.
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The subtrees A, B, C' don’t change, so they retain the BST property. Let a,b,c be the
roots of A, B, C respectively. From the left tree, we know key(a) < key(z), key(d) <
key(y), key(c) > key(y). Therefore, it is ok to have A as the left subtree of z, B as the
left subtree of y and C' as the right subtree of y. We also know key(z) < key(y) so it is
ok to have y is the right child of z. Finally, the whole subtree in the picture contains
exactly the same elements after the rotation as it did before (they just get rearranged);
therefore the parent of y retains the BST property after the rotation.



(2) A ternary counter is a string of k “trits” tx_1tx ... to, each of which can be 0, 1, or 2. As with
a binary counter, we can perform the operation INCREMENT on a ternary counter. If we start
with every trit equal to 0, then after n INCREMENTS, the counter holds the number n written
in base 3. For example, if £k = 4 and n = 6, we have
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The cost of each INCREMENT is the number of trits that change. We are interested in the
worst-case sequence complexity, WCSC(n), of performing n INCREMENTs starting form all

0’s.

(a)

(8 points) Compute WCSC(n) using the aggregate method. You may use the fact that
o 1/3" =3/2.

Solution: As in lecture, notice that ¢; changes every 3’ increments. Therefore, after n

increments, we have
J2

WCSC(n) = n/3,
i=0
where /£ is the index of the largest trit that ever becomes non-zero. Therefore,

o0
WCSC(n) <n 1/3" =3n/2.
=0

(8 points) Compute WCSC(n) using the accounting method. Make sure to specify the
charge for each INCREMENT and the credit invariant.

Solution: We’ll charge 3/2 for each increment. The credit invariant will be that each
trit with value 1 will have credit 1/2 and every trit with value 2 will have credit 1.
We can achieve this credit invariant as follows: in each increment, exactly one trit will
increase in value. We use 1 unit of the charge to pay for increasing this trit, and store
the extra 1/2 with the trit. When we need to change a trit with value 2 to 0, we can
use the 1 unit of credit stored at that trit.

Therefore, WCSC(n) < Total Charge < 3n/2.



(3) We want to augment Red-Black Trees so that each node x stores a number z.height, the
height of the subtree rooted at xz. Briefly explain how to modify the following standard
operations to maintain this information at every node. The modifications should not change
their running times (in ©-notation).

(a)

(5 points) Rotation:

Solution: Consider the following picture again (going from left to right):
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Again, let a,b,c be the roots of A, B,C, respectively. We simply reset y.height to
max{b.height,c.height} + 1 and reset z.height to max{a.height,y.height} + 1. This
takes constant time since we look at only a constant number of nodes.

(5 points) BST-INSERT:

Solution: If we insert a new node z, it gets added to the tree as a leaf. Assign
z.height := 0. Starting with z’s parent, visit each of the ancestors of z. For each
such ancestor y, set y.height to max{left(y).height,right(y).height} + 1. This takes
time O(logn) since we follow one path from a leaf to the root.

(5 points) BST-DELETE:

Solution: Let z be the node that gets removed by BST-DELETE. Again, starting with
x’s parent, visit each of the ancestors of x. For each such ancestor y, set y.height to
max{left(y).height,right(y).height} + 1. This takes time O(logn) since we follow one
path from a leaf to the root.



(4) Consider the following procedure for testing whether a given array of integers is sorted:

boolean IsSorted ( integer A[], integer n )
For i = 1 to n-1 do
If (A[i] > A[i+1]) then
Return False
Return True
End

Throughout this question, we will measure the running time in terms of the number of com-
parisons that IsSorted performs.

(a) (4 points) What is the worst-case running time, T,,.(n), of IsSorted on an array of length
n? Justify your answer.

Solution: T,.(n) =n—1 € O(n). If the array is sorted, then the loop will never break,
so we’ll execute the comparison n — 1 times.

(b) (2 points) Consider the sample space S, of all permutations of (1,2,...,n), with the
uniform distribution (that is, each permutation is equally likely). Let A be a random
array from S,. Let B, ; be the event that A[i] > A[j]. What is the value of Pr(B;;)?

Solution: PI‘(BZ',]') = 1/2.
(c) (6 points) Let t(A) be the running time of IsSorted on array A. Express Pr(t(A) = k)

in terms of the events Bi 9, Bo3,..., By r+1. Explain why this is at most 1/2k=1 Is it
strictly less than 1/2k=1?

Solution:
PI‘(t(A) = k) = PI‘(—|Bl,2 N —|Bz’3 n...N _'kal,k N Bk,k—l—l)-

First notice that

Pr(t(A) = k‘) < PI‘(ﬂBl,Q N _|BQ,3 n...N _‘kal,k)
< Pr(=Bip) - Pr(—By3|-Biy)---Pr(=By_14|~B12,7B23,...,"Br_ox-1)-

Intuitively, if we know that A[:] is bigger than all the previous elements, then that
makes it more likely to be bigger than A[i + 1]. More formally, this means that
Pr(_‘Bz’,i—i—l'_‘Bl,Z, .. -,_‘Bi—l,z’) < 1/2. Hence, Pr(t(A) = k}) < 1/2k_1.

(d) (4 points) Compute Tg,4(n), the average-case running time of IsSorted over the sample
space Sp. You may use the fact that Y po, k/ck=1 = O(1) for any constant ¢ > 1.

Solution: We just need to calculate

Tavg(n) S kPr(t(A) = k)
S it k/2k !

pppe k/2k=1

o(1).
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Since it obviously takes at least 1 comparison to test if A is sorted, Tyyq(n) is O(1).



