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Abstract. We provide a graphical representation of proofs in the product-free
Lambek calculus, called term graphs, that is related to several other proof net
presentations. The advantage of term graphs is that they arevery simple compared
to the others. We use this advantage to provide an NP-completeness proof of the
product-free Lambek Calculus that uses the reduction of [8]. Our proof is more
intuitive due to the fact that term graphs allow arguments that are graphical in
nature rather than using the algebraic arguments of [8].

1 Introduction

The Lambek calculus [4], is a variant of categorial grammar that is of interest to compu-
tational linguists because of its ability to capture a wide range of the semantics of natural
language. In this paper we will only be concerned with the product-free fragment be-
cause of its simplicity and the paucity of linguistic uses ofthe product connective. The
product-free Lambek calculus has a number of interesting computational properties.
First, it is weakly equivalent to context-free grammars [6]but not strongly equivalent
[9]. Second, it has recently been proven to have an NP-complete sequent derivability
problem [8]. Finally, recent research has shown that as longas the order of categories
is bounded, polynomial time parsing is possible [2, 3].

With these latter two results, we have precisely determinedwhere the intractability
of the Lambek calculus lies, but the NP-completeness proof of [8] and the polynomial
time algorithm of [3] seem to use entirely different methodsfor proving correctness.
The former uses a primarily algebraic approach whereas the latter uses a graphical
approach based on the graphical LC-Graphs of [5].

The purpose of this paper will be to introduce a new representation of proof nets,
called term graphs, that are similar to the LC-Graphs of [5] but simpler in that they
require two less correctness conditions and they avoid the introduction of terms from
the lambda calculus. Term graphs are important because theybridge the gap between
the methods of [8] and [3]. That is, despite being superficially very different from the
structures of [8], they are fundamentally quite similar, aswe will see. In addition, the
abstract term graphsof [3] are an abstraction over graphical structures that areessen-
tially identical to our term graphs. Once we have introducedterm graphs, we will use
them to provide a proof of the NP-completeness of the sequentderivability problem for
the product-free Lambek calculus that is more intuitive than that of [8] giving us insight
into his reduction. This NP-completeness proof also allowsus to consider these two
results in the same language which will help future researchin the area.



This paper will proceed as follows: In section 2, we will introduce the Lambek
calculus and term graphs and prove the correctness of term graphs. Then, in section
3 we will introduce the polynomial reduction of [8] and provide an NP-completeness
proof that is graphical in nature.

2 The Lambek Calculus and Term Graphs

In this section, we introduce the Lambek calculus in its sequent presentation and then
quickly ignore the sequent presentation in favour of term graphs. Term graphs, like
other proof net methods, allow easier analysis of computational problems pertaining to
these sorts of logics. We prove the correctness of term graphs via the LC-graphs of [5].

2.1 The Lambek Calculus

The sequent derivability problem for the Lambek calculus takes as input a sequent made
up of categories. The categories for the product-free fragment are built up from a set
of atomsand the two binary connectives/ and\. A sequent is a sequence of categories
known as the antecedent together with the⊢ symbol and one additional category called
the succedent. The sequent derivability problem asks whether an input sequent is logi-
cally derivable from the axioms and rules shown in figure 1.

We will be considering two closely related variants of the Lambek calculus: The
original Lambek calculus (L) and the Lambek calculus allowing empty premises (L∗).
A sequent isderivable inL∗ if and only if it has a proof according to the sequent
calculus in figure 1. In addition, we say that the sequent is derivable inL if and only if
it is derivable inL∗ such thatΓ is non-empty when applying the rules\R and/R.

α ⊢ α

Γ ⊢ α ∆βΘ ⊢ γ
\L

∆Γα\βΘ ⊢ γ

αΓ ⊢ β
\R

Γ ⊢ α\β

Γ ⊢ α ∆βΘ ⊢ γ
/L

∆β/αΓΘ ⊢ γ

Γα ⊢ β
/R

Γ ⊢ β/α

Fig. 1. Axioms and rules of the Lambek calculus (from [4]).

In figure 1, lowercase Greek letters represent categories and uppercase Greek letters
represent sequences of categories.

2.2 Term Graphs

In this section, we will introduceterm graphs1 which are a simplification of the LC-
Graphs of [5], which in turn are based on the proof nets of [7].The advantage of

1 We call them term graphs because they are a graphical representation of the semantic term.



term graphs over LC-Graphs is that we have only two correctness conditions instead
of four and the fact that we avoid the introduction of lambda terms. Furthermore, both
of the term graph correctness conditions are conditions on the existence of certain paths
whereas the LC-Graph correctness conditions are conditions on the existenceandab-
sence of certain paths.

Definition 1. A term graphfor a sequent is a directed graph whose vertices are cate-
gory occurrences and whose edges are introduced in four groups. Like other proof net
presentations, we will proceed with a deterministic step first and a non-deterministic
step second.

First, we assign polarities to category occurrences by assigning negative polarity
to occurrences in the antecedent and positive polarity to the succedent. Then, the first
two groups of edges are introduced by decomposing the category occurrences via the
following vertex rewrite rules:

(α/β)− ⇒ α− → β+ (1)

(β\α)− ⇒ β+ ← α− (2)

(α/β)+ ⇒ β−
L99 α+ (3)

(β\α)+ ⇒ α+
99K β− (4)

Each vertex rewrite rule specifies how to rewrite a single vertex on the left side to two
vertices on the right side. The neighbourhood of the vertex on the left side of each rule
is assigned toα on the right side. Dashed edges are referred to asLambek edgesand
non-dashed edges are referred to asregular edges. These two groups of edges will also
be referred to asrewriteedges.

After decomposition via the rewrite rules, we have an ordered set of polarized ver-
tices, with edges between some of them. We say that a vertexbelongsto a category
occurrence in the sequent if there is a chain of rewrites going back from the one that
introduced this vertex to the one that rewrote the category occurrence.

Lemma 1. After decomposition via the rewrite rules has terminated, there is a unique
vertex with in-degree0 belonging to each category occurrence in the sequent.

Proof. By induction over the rewrite rules.

A third group of edges is introduced such that there is one Lambek edge from the
unique vertex with in-degree0 in the succedent to each unique vertex with in-degree0
in each of the antecedent category occurrences. These edgesare referred to asrooted
Lambek edges. This completes the deterministic portion of term graph formation.

A matchingis a planar matching of these vertices in the half plane whereatom
occurrences arematchedto atoms occurrences with the same atom but with opposite
polarity. The fourth group of edges are introduced as regular edges from the positive
vertices to the negative vertices they are matched to. Ifα andβ are matched in a match-
ingM then we writeM(α, β). See figures 2 and 3 for an example.

The two edge types of a term graph induce two distinct graphs,the regular term
graph and theLambek term graph. We will prefix the usual graph theory terms with
regularandLambekto distinguish paths and edges in these graphs.
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Fig. 2. Two depictions of an integral term graph for the sequent(S/N)/(N/N), N/N, N ⊢ S.

S1 N2 N3 N4 N5 N6 N7 S8

S1 N2 N3 N4 N5 N6 N7 S8

Fig. 3.An L∗-integral term graph that is not integral (top) and a term graph that is notL∗-integral
(bottom) for the sequent(S/N)/(N/N), N/N, N ⊢ S.

Lemma 2. In a term graph, there is a unique vertex with in-degree0.

Proof. By lemma 1, each category in the antecedent and succedent hasa unique vertex
with in-degree0 before the introduction of the rooted Lambek edges. However, after the
introduction of those edges, the only vertex with in-degree0 is the one in the succedent.

Definition 2. In a term graph, the unique vertex of in-degree0 is denoted byτ .

Lemma 3. The vertices in a term graph have the following restrictionson incident
edges:

Negative verticesPositive vertices6= τ τ
regular in-degree 1 1 0
regular out-degree Arbitrary 1 1
Lambek in-degree 1 0 0
Lambek out-degree 0 Arbitrary Arbitrary

Proof. By induction on the term graph formation process.

Because of this result, we can determine the polarity of a vertex by its incident
edges. Therefore, we will often simplify our diagrams by omitting polarities.

Definition 3. We define two conditions on term graphs:

T: For all Lambek edges〈s, t〉 there is a regular path froms to t.
T(CT): For each Lambek edge〈s, t〉, there exists a negative vertexx such that there
is a regular path froms to x and there is no rewrite Lambek edge〈s′, x〉 such that
there is a regular path froms to s′.2.

2 T(CT) requires that we distinguish rewrite Lambek edges from rooted Lambek edges in the
representation. To avoid clutter, we will not mark this difference in our figures.



A matching and its corresponding term graph areL∗-integral iff they satisfyT. A
matching and its corresponding term graph areintegraliff they satisfyT andT(CT).

A partial matching is a matching which matches a subset of thepolarized vertices
and a partial term graph is the term graph of a partial matching. We will extend the
notions of integrity to partial matchings by requiring thatthe integrity conditions are
true of Lambek edges whose source and target are matched in the matching. Then, we
can prove that the union of two integral partial matchings isan integral partial matching
by considering those Lambek edges with a source matched by one matching and a target
matched by the other do not violate the integrity conditions.

We will prove that integrity corresponds to sequent derivability in section 2.3. As
discussed in the introduction, there are a number of connections between term graphs
and the structures of [8]. For example:

– The set of negative vertices in a term graph corresponds to the setNW of [8].
– A matched edge froms to t in a term graph corresponds toπ(t) = s for t ∈ NW of

[8]
– A rewrite edge froms to t in a term graph corresponds toϕ(t) = s of [8].
– A regular edge froms to t in a term graph corresponds toψ(t) = s of [8].
– The requirement that that matchings be planar and be betweenlike atoms of op-

posite polarity correspond to the first three correctness conditions of [8].T corre-
sponds to the fourth correctness condition andT(CT) corresponds to the fifth.

2.3 Term Graph Correctness

We will prove the correctness of term graphs with respect to the Lambek calculus via
the LC-Graphs of [5]. Since LC-Graphs and term graphs are constructed using similar
algorithms, we will define LC-Graphs in terms of how they differ from term graphs
rather than from scratch.

LC-Graphs are graphs whose vertex setV is a set of lambda calculus variables,
which are introduced during the equivalent of the rewrite rule process. During this pro-
cess, atom occurrences are associated with lambda terms. The leftmost variable in each
lambda term is a unique identifier for the atom. This correspondance between lambda
variables and atoms establishes a correspondence between LC-Graphs and term graphs.
In addition to this superficial difference, LC-Graphs differ from term graphs structurally
in the following three ways:

1. The lambda variables in an LC-Graph are locally rearranged relative to the corre-
sponding atom occurrences in a term graph as seen in the mapping in figures 4 and
5.

2. LC-Graphs do not distinguish between Lambek edges and regular edges.
3. LC-Graphs do not introduce any equivalent to the rooted Lambek edges.

The first of these three differences is required for term graphs to avoid the intro-
duction of lambda terms. The second difference allows us to express our correctness
conditions more concisely and simplifies the presentation of our proofs. This is ac-
complished by no longer needing to identify the edges in an LC-Graph that are the
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Fig. 4. The mapping between term graphs and LC-Graphs for neighbourhoods of negative ver-
tices. The lambda variableαi corresponds to the atom occurrenceAi for 1 ≤ i ≤ 6.
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Fig. 5.The mapping between term graphs and LC-Graphs for neighbourhoods of positive vertices.
The positive vertexA3 in a term graph is represented by the verticesβ1, β2, β3 andα3 in an LC-
Graph. The lambda variableαi corresponds to the atom occurrenceAi for 1 ≤ i ≤ 7.

equivalent of Lambek edges by their endpoint vertices. The last difference will allow us
to eliminate one of the correctness conditions.

[5] defines the following terms, necessary to understand thecorrectness conditions:

Definition 4. A lambda-nodeis a positive vertex in an LC-Graph with two regular out-
neighbours, one of which is positive and one of which is negative. The positive one is
its plus-daughterand the negative one is itsminus-daughter.

For example,B1, B2 andB3 in figure 5 are lambda-nodes. The intuition is that
they correspond to Lambek edges. We can now define the correctness conditions on
LC-Graphs and state theorem 1 (proven in [5]):

I (1): There is a unique node inG with in-degree0, from which all other nodes are
path-accessible.
I (2):G is acyclic.
I (3): For every lambda-nodev ∈ V , there is a path from its plus-daughteru to its
minus-daughterw
I (CT): For every lambda-nodev ∈ V , there is a path inG, v ; x wherex is a
terminal node and there is no lambda-nodev′ ∈ V such thatv ; v′ → x.



Theorem 1. A sequent is derivable inL∗ iff it has an LC-Graph satisfying conditions
I(1-3). A sequent is derivable inL iff it has an LC-Graph satisfying conditionsI(1-3)
andI(CT).

The equivalence between theI conditions and theT conditions begins with the
following two lemmas.

Lemma 4. In a term graph, the rewrite edges and the rooted Lambek edgesform a tree
with τ as its root.

Proof. By induction on the rewrite rules together with the way that the rooted Lambek
edges are introduced.

S1

N2

N3N4

N5 N6

N7S8

Fig. 6.The tree of rewrite and rooted Lambek edges for(S/N)/(N/N), N/N, N ⊢ S

Lemma 5. In anL∗-integral term graph, if there is a path froma to b, then there is a
regular path froma to b.

Proof. The path froma to b may contain a Lambek edge〈s, t〉, but by T, there is a
regular path froms to t. Replacing the Lambek edge with the regular path and repeating
gives us a regular path froma to b.

We next define a new condition on term graphs that is a counterpart toI (2).

T(C): The term graph is acyclic.

We now prove that anyL∗-integral term graph is necessarily acyclic.

Proposition 1. T⇒ T(C)

Proof. Suppose there is a cycle. Then, by lemma 5, there is a regular cycle. That cycle
cannot containτ sinceτ has no in-edges. However, by lemma 4, there is a path fromτ
to every vertex and by lemma 5 that path is regular. But, by lemma 3 all vertices have
regular in-degree at most one. Therefore, no cycles can exist.

Proposition 2. T⇒ I(1)

Proof. By lemma 4, there is a path fromτ to every node in the term graph and by
lemma 5 there is a regular path fromτ to every node. Then, by the mapping of term
graphs to LC-Graphs, these paths have equivalents in the LC-Graph.

Proposition 3. T⇒ I(2)



Proof. By proposition 1,T⇒ T(C) and by inspection of the mapping from term graphs
to LC-Graphs, no new cycles can be introduced.

Proposition 4. T⇒ I(3)

Proof. By the mapping.

Proposition 5. I(1), I(3)⇒ T

Proof. I (3) requires that all nodes be accessible from the root, which means that for the
rooted Lambek edges〈τ, t〉, there is a regular path fromτ to t. Then, because of the way
that positive vertices in a term graph are mapped from their equivalents in LC-Graphs,
enforcingI (3) requires that for rewrite Lambek edges〈s, t〉, there be a regular path from
s to t.

Proposition 6. T(CT)⇔ I(CT)

Proof. The only point of interest is the fact that the Lambek edges whose source is
τ could rule out some term graphs when are provable inL∗. However, such Lambek
edges are specifically ruled out byT(CT).

Theorem 2. A sequent is derivable inL iff it has a term graph satisfyingT. A sequent
is derivable inL∗ iff it has a term graph satisfying conditionsT andT(CT).

3 NP-Completeness Proof

Now that we have defined a simple graphical representation ofproofs in the Lambek
calculus, we can proceed with a graphical proof of NP-Completeness that in some ways
mirrors the proof of [8]. We begin with the same reduction fromSAT as [8].

Definition 5. Letc1 ∧ . . .∧ cm be a SAT instance with variablesx1, . . . , xn. We define
the sequentΣ as in figure 7 (from [8]).

The space of matchings is analyzed via two partial matchingsMt andNt based
on a truth assignmentt (where truth assignments are sequences of booleans). First,
we prove that the partial matchingMt is always integral and then we prove that the
partial matchingNt is integral if and only if theSAT instance is satisfiable. Finally,
in proposition 9, we prove that anyL∗-integral matching must partition into two such
partial matchings.

The atoms ofΣ arepj

i , qj

i , aj

i , bji , cji anddj

i for 1 ≤ i ≤ n and1 ≤ j ≤ m.

Lemma 6. X has4m+ 2 atoms forX ∈ {Ai, Bi, Ci, Di, Ei(t), G,Hi}.

Proof. By induction.

Definition 6. For X ∈ {Ai, Bi, Ci, Di, Ei(t), G,Hi}, X+ is the leftmost2m + 1
atoms andX− is the rightmost2m+ 1 atoms. We refer to these ashills.



A0
i = a0

i \p
0
i C0

i = c0
i \p

0
i

Aj
i = (qj

i /((b
j
i\a

j
i )\A

j−1

i ))\pj
i Cj

i = (qj
i /((dj

i\c
j
i )\C

j−1

i ))\pj
i

Ai = Am
i Ci = Cm

i

B0
i = a0

i D0
i = c0

i

Bj
i = qj

i−1/(((b
j
i /Bj−1

i )\aj
i )\p

j−1

i−1 ) Dj
i = qj

i−1/(((d
j
i /Dj−1

i )\cj
i )\p

j−1

i−1 )
Bi = Bm

i \pm
i−1 Di = Dm

i \pm
i−1

G0 = p0
0\p

0
n H0

i = p0
i−1\p

0
i

Gj = (qj
n/((qj

0\p
j
0)\G

j−1)\pj
n Hj

i = ((qj
i−1/(q

j
i /Hj−1

i ))\pj
i−1)\p

j
i

G = Gm Hi = Hm
i

E0
i (t) = p0

i−1

Ej
i (t) =



qj
i /(((q

j
i−1/Ej−1

i (t))\pj
i−1)\p

j−1

i ) if ¬txi appears incj

(qj
i−1/(q

j
i /(E

j−1

i \pj−1

i )))\pj
i−1 if ¬txi does not appear incj

Ei(t) = Em
i (t)\pm

i

Πi = Ei(0)/(Bi\A
m
i ), Hm

i , (Di\C
m
i )\Ei(1)

Σ = Π1, . . . , Πn ⊢ Gm

Fig. 7. The sequentΣ for the SAT instancec1 ∧ . . . ∧ cn. Note that¬0x = ¬x and¬1x = x.
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Proposition 7. Let t = 〈t1, . . . , tn〉 be a truth assignment and letMt be the following
partial matching (depicted in figure 8). For1 ≤ i ≤ n,Mt(B

+

i , A
−

i ) andMt(D
+

i , C
−

i ).
If ti = 0 thenMt(Ei(1)+, B−

i ), Mt(A
+

i , Ei(1)−), Mt(H
+

i , D
−

i ) andMt(C
+

i , H
−

i ).
If ti = 1 thenMt(Ei(0)+, D−

i ),Mt(C
+

i , Ei(0)−),Mt(H
+

i , B
−

i ) andMt(A
+

i , H
−

i ).
Then,Mt is integral.

Proof. Figure 9 shows the partial term graph consisting of the vertices fromBi\Ai (or
equivalently fromDi\Ci which are identical under renaming ofα andβ). However, by
introducing the edges fromMt for Ai, Bi, Ci andDi, contracting paths regular path
longer than1 and removing Lambek edges〈s, t〉 which have a regular path froms to
t, we get the abstraction of a term graph shown in figure 10. Thisabstraction over a
term graph is essentially identical to a term graph except that the Lambek in-degree of
negative vertices is now unbounded due to path contraction.

Then, regardless of whetherti = 0 or ti = 1, this partial abstract term graph is
combined with the partial term graph forHi (shown in figure 11) by inserting edges
between identical atoms from the positive vertices to negative vertices. It can be seen
that the combined term graph isL∗-integral by observing that each Lambek edge is in
fact overlaid by a regular path.

In a parallel process, the abstract term graph for eitherBi\Ai orDi\Ci is combined
with the term graph forEi(ti), which is constructed out of components shown in figure
12. However, like the combination withHi, the result is a term graph where all Lambek
edges are forward edges despite the variation ofEi(ti) as exemplified in figure 13.

T(CT) is straightforward to check because for each Lambek edge 〈s, t〉 in these
partial term graphs, the vertexs has a regular edge to a vertexx with a Lambek in-
neighbour which does not have a regular path froms.

Therefore,Mt is integral.
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the source and target of some edges. They can be ignored once the term graph forEi(ti) is
complete.
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target is always the lowest positive vertex which does not have another in-edge.



Proposition 8. Let t = 〈t1, . . . , tn〉 be a truth assignment and letNt be the following
partial matching (depicted in figure 14). For1 < i ≤ n, Nt(Ei(ti)

+, Ei−1(ti−1)
−),

Nt(E1(t1)
+, G−) andNt(G

+, En(tn)−). Then,Nt is integral iffNt is L∗-integral iff
t is a satisfying truth assignment forc1 ∧ . . . ∧ cm.

Proof. The relevant subgraph of the term graph forNt is shown in figure 15 for the
general case and in figure 16 for a specific example.

There are several types of Lambek pairs. Consider〈u, v〉 such thatu, v ∈ Ei(ti) for
somei. Then, ifu = pj

i−1
andv = qj

i−1
for j ≥ 1, the path leavesu to the right but

must eventually return tov since any rightward movement due to anF edge is mirrored
by a leftward movement due its paired edge resulting in noT violation. If u = qj

i and
v = pj−1

i for j ≥ 1, either the link is completed immediately or it is completedvia an
angled edge whose target isv. The case whereu, v ∈ G whereu = pj

n andv = qj
n is

similar to the first case.
Next, consider〈u, v〉 such thatu = pj−1

n andv = pj
0

for somej ≥ 1. v is reached
beforeu iff no edgeT j

i is present for1 ≤ i ≤ n iff cm does not contain¬ti
xi for any

1 ≤ i ≤ n iff c1 ∧ . . . ∧ cm is unsatisfiable.
Finally, consider the rooted Lambek edges〈u, v〉 whereu = pm

n andv = pm
i for

somei. u is the leftmost atom in the bottom row andv appears somewhere to its right in
the bottom row. Then, there must be a regular path fromu to v since the angled edges
target the lowest vertex without an in-edge.

Checking thatT(CT) is never violated is straightforward via the same casesas
above.

G+ E2(0)
− E2(0)

+ E1(1)
− E1(1)

+
G−
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2
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2

p1+

2

q2−

2

p2+

2
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2

p3+

2
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2
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2
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2
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2

p2−

2

q3+
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p3−
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1
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1
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1
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1

q3−
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p3+
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1

q1+

1
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1
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1
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1
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1
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q1−
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0

q3−
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0

p0−

0

q1+

0

p1−

0

q2+

0

p2−

0

q3+

0

p3−

0

Fig. 16.The term graphNt for the SAT instanceI = (¬x1 ∨ x2)∧ (x1 ∨ x2)∧ (x1 ∨¬x2) and
the truth assignmentt =< 0, 1 >. The fact thatt is not a satisfying assignment forI corresponds
to the fact thatp1−

0 appears beforep0+

2 in Nt



p0
i

. . . qm−1

i pm−1

i
qm

i pm
i pm

i qm
i pm−1

i qm−1

i
. . . p0

i

Ei(0)
− A+

i

Fig. 17.A close-up of the boundary betweenEi(0)
− andA+

i . The edges between the atoms of
Ei(0)

− have been omitted because they vary according to the SAT instance.

pm
i p0

i−1
. . . qm−1

i−1 pm−1

i−1
qm

i−1 pm
i−1 pm

i−1
. . . . . . . . . pm

i

C+

i D−

i Ei(1)
+ Ei(1)

−

Fig. 18.A close-up of the boundary betweenD−

i andEi(1)
+. The edges inEi(1) vary depending

on the SAT instance, but alternate regular and Lambek edges frompm
i to pm

i−1.

Definition 7. Given a matchingM , we denote the match of the occurrence ofpj

i in Xp

to pj

i in Y q asM(pj

i , X
p, Y q).

Lemma 7. M(pm
i , Ei(0)−, A+

i ) cannot belong to anL∗-integral matching.

Proof. Because there is a regular edge frompm
i in Ei(0)− to pm

i in A+

i the matched
edge would violateT (C), as seen in figure 17.

Lemma 8. M(pm
i−1, D

−

i , Ei(1)+) cannot belong to anL∗-integral matching.

Proof. Consider figure 18. If such an edge were to exist, then the onlyway for a regular
path frompm

i in C+

i to pm
i−1 in D−

i to exist is for their to be a regular path between
pm

i in C+

i and some vertex inEi(1). However, the first vertex of that path among the
vertices ofEi(1) is the target of a Lambek edge〈s, t〉 and a regular path froms to t
would need to includepm

i in Ei(1)−. However, that would violateT (C).

Ei(0)
+ Ei(0)

− A+

i A−

i B+

i B−

i H+

i H−

i C+

i C−

i D+

i D−

i Ei(0)
+ Ei(0)

−

Fig. 19. The 14 hills ofΠi. The matches shown are obligatory because the atoms in thosehills
occur exactly twice in the term graph.

Ei(0)
− A+

i H−

i C+

i Ei(0)
− Ei+1(0)

+ B−

i+1 H+

i+1 D−

i+1 Ei+1(0)
+

Πi Πi+1

Fig. 20.The 10 hills containingpj
i for i < n.



Proposition 9. Any matching which does not extendMt for some truth assignmentt is
notL∗-integral.

Proof. Let M be anL∗-integral matching and let1 ≤ i ≤ n be maximal such that
neither of the following matchings are submatchings:

Ei(0)+ Ei(0)− A+

i B−

i H+

i H−

i C+

i D−

i Ei(0)+ Ei(0)−

Ei(0)+ Ei(0)− A+

i B−

i H+

i H−

i C+

i D−

i Ei(0)+ Ei(0)−

Let 0 ≤ j ≤ m. Then, fori = n, pj

i appears in6 hills (from left to right):

Ei(0)−, A+

i , H
−

i , C
+

i , Ei(1)−, G+

For i < n, pj

i appears in10 hills:

En(0)−, A+

i , H
−

i , C
+

i , Ei(1)−, Ei+1(0)+, B−

i+1
, H+

i+1
, D−

i+1
, Ei+1(1)+

However, because of our maximality assumption and the planarity requirement, we
know that of the rightmost5, onlyEi+1(t)

+ does not match another of the rightmost
5. If i = n, let E+ = G+ and otherwise, letE+ = Ei+1(t)

+. In either case,E+

represents the rightmost unconstrained hill.
We now wish to consider the possible matchings ofEi(0)−, A+

i , H
−

i , C
+

i , Ei(1)−

andE+, but only for the occurrences of the atompj

i . For this section only, we will
denote these matches by matching the hills they belong to, but we must remember that
these matches are only for thepj

i atoms and not the whole hill.

– Case 1: Ei(0)− A+

i

Due to planarity,M(pj

i , Ei(0)−, A+

i ) forcesM(pm
i , Ei(0)−, A+

i ) and by lemma 7
this matching is notL∗-integral.

– Case 2: C+

i Ei(1)−

Due to planarity,M(pj

i , C
+

i , Ei(1)−) forcesM(pm
i−1, D

−

i , Ei(1)+) and by lemma
8 this matching is notL∗-integral.

– Case 3: H−

i E+

Due to planarity,M(pj

i , H
−

i , E
+) forcesM(pj

i , C
+

i , Ei(1)−) which cannot beL∗-
integral according to case 2.

This leaves us with only two possible matchings forpj

i :



– Case 1: Ei(0)− A+

i H−

i C+

i Ei(1)− E+

We will now shift from analyzing the matches for a generalpj

i and focus on one
important atom. Consider the possible matches for the atompm

i−1 in D−

i , the right-
most atom inD−

i . There are five, as can be seen in figure 20 (from left to right)
which we will rule out:

1. pm
i−1 in A+

i−1

Such a match is between the rightmost atom inD−

i and the leftmost atom
in A+

i−1
as can be seen in figures 17 and 18. Then, we can see that no atom

between these two has a regular out-edge to any atom not between these two.
But, the regular in-neighbour ofpm

i−1 in D−

i is pm
i−1 in A+

i−1
because of the

match and the regular in-neighbour ofpm
i−1 inA+

i−1
is pm

i inEi−1(0)− because
of the regular rewrite edge in figure 17. But, there is a Lambekedge whose
target ispm

i−1 in D−

i and whose source ispm
i in C+

i as seen in figure 18. Then,
there cannot possibly be a regular path frompm

i inC+

i to pm
i−1 inD−

i , resulting
in aT violation.

2. pm
i−1 in C+

i−1

Because of planarity, the atoms inD−

i−1
would need to match the atoms in

Ei−1(1)+. However, by lemma 8,M would not beL∗-integral.
3. pm

i−1 in Ei(0)+

Contradicts our assumption thatM does not have this submatching.
4. pm

i−1 in H+

i

Such a match would violate planarity sincepj

i in Ei(0)− matchespj

i in C+

i .
5. pm

i−1 in Ei(1)+

Then,M would not beL∗-integral by lemma 8.

– Case 2: Ei(0)− A+

i H−

i C+

i Ei(1)− E+

As in the previous case, we will focus on one important atom. This time, that atom
will be pm

i+1 inA+

i , the leftmost atom inA+

i . Again, there are five possible matches:

1. pm
i+1 in Ei(0)−

Then,M would not beL∗-integral by lemma 7.
2. pm

i+1 in H−

i

Such a match would violate planarity, sincepj

i in A+

i matchespj

i in Ei(1)−.
3. pm

i+1 in Ei(1)−

Contradicts our assumption thatM does not have this submatching.
4. pm

i+1 in B−

i+1

Contradicts the maximality assumption (becauseB−

i+1
is part ofΠi+1).

5. pm
i+1 in D−

i

Contradicts the maximality assumption (becauseD−

i+1
is part ofΠi+1).

Therefore,M must extendMt for some truth assignmentt.



Theorem 3. c1 ∧ . . .∧ cm is satisfiable iffΣ is derivable inL iff Σ is derivable inL∗.

Proof. Propositions 7, 8 and 9 prove that any matching must partition intoMt andNt

for some truth assignmentt. We need only consider the Lambek edges with a source
in Mt and a target inNt or vice versa but the only such edges are the rooted Lam-
bek edges. It is tedious, but not difficult, to check that eachsuch Lambek edge has an
accompanying regular path and thatT(CT) is not violated.

4 Conclusion

We have introduced a graphical representation of proof netsthat is closely linked to
both the structures of [8] and the abstract term graphs of [3]. Together these two results
describe the boundary between tractability and intractability.

Our representation is very simple, requiring just two conditions (other than the
matching conditions) to characterize correctness in the Lambek calculus. Furthermore,
term graphs avoid the introduction of unneeded complexity such as the lambda terms of
[5] and the algebraic terms of [1]. This has allowed us to provide a more intuitive proof
of the NP-completeness result of [8], which allows us to moreclearly see the boundary
of tractability for the product-free Lambek calculus.
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