
LC Graphs for the Lambek calculus with product

Timothy A. D. Fowler

July 18, 2007

1 Introduction

The Lambek calculus, introduced in Lambek (1958),
is a categorial grammar having two variants which
will be considered in this paper: the Lambek calculus
with Product (L•) and the Lambek calculus without
Product (L)1.

L• can be characterized by the following six infer-
ence rules:

Γ ` α ∆βΘ ` γ
\L

∆Γα\βΘ ` γ

αΓ ` β
\R

Γ ` α\β

Γ ` α ∆βΘ ` γ
/L

∆β/αΓΘ ` γ

Γα ` β
/R

Γ ` β/α

Γαβ∆ ` γ
•L

Γα • β∆ ` γ

Γ ` α ∆ ` β
•R

Γ∆ ` α • β

Figure 1: Inference rules of the Lambek calculus.

L differs from L• in that the rules •L and •R are
prohibited in L.

A wide variety of work has contributed to the
search for an algorithm for sequent derivability in L
and L• including Girard (1987), Danos and Regnier
(1989), Roorda (1991), Retore (1996), Penn (2005)
and Carpenter and Morrill (2005). In contrast to this
work, Pentus (2006) proved that sequent derivability
in L• is NP-complete, effectively ending hope of a
polynomial time algorithm. However, because the
necessity of product for modeling natural language

1The original formulation of Lambek (1958) prohibited
empty premises which we will not do here

has not been firmly established, sequent derivability
in L remains an important open problem.

This paper will extend the work by Girard and
others with the intent of discovering the precise com-
putational differences between L and L• with an eye
towards solving the problem of sequent derivability
in L. The resultant formalism will be used to an-
alyze the NP-completeness proof of Pentus (2006).
An intuitive graphical presentation is made of Pen-
tus’ proof and we also show that the proof cannot be
transformed into an NP-completeness proof for L.

The proofs in this paper are necessarily sketches.
Full details are available in Fowler (2006).

2 Proof nets and graph repre-

sentations

Evaluating the derivability of a sequent in the Lam-
bek calculus has proven to be quite cumbersome and
as a result most work in this area is done via proof
nets.

Combinatory Categorial Grammar (see Steedman
(2000)) is a prime example of a categorial grammar
which does not use proof nets and Moot and Puite
(2002) details a very different approach to proof nets
for a multimodal extension of the Lambek Calculus
which will not be considered here. We know that
these systems are super-context free and that some
languages are also super-context free but that the
Lambek calculus is not. Despite this, the Lambek
Calculus is interesting because it is simple enough
that estimating numerical parameters in a probabilis-
tic natural language system is easy, yet its parse trees
differ drastically from those of similar context free

1

grammar systems allowing for valuable comparisons.
Proof nets, as originally introduced by Girard

(1987), are an extra-logical proof system which elim-
inates spurious ambiguity. A proof structure consists
of a deterministic proof frame and a non-deterministic
axiomatic linkage. First, all formulae in the sequent
are assigned a polarity. Formulae in the antecedent
are assigned negative polarity and the formula in the
succedent is assigned positive polarity. The proof
frame is a proof-like structure built on a sequent us-
ing the following rules:

α+ β−

⊗
α\β−

β+ α−

℘
α\β+

α− β+

⊗
α/β−

β− α+

℘
α/β+

α− β−

℘
α • β−

β+ α+

⊗
α • β+

Figure 2: Proof frame rules

Each connective-polarity pair has a unique rule
which gives us a unique proof frame for a given se-
quent. The top of the proof frame will consist of
basic categories with polarities which are called the
axiomatic formulae. An axiomatic linkage is a bijec-
tion that matches axiomatic formulae with the same
basic category but opposite polarities. See figure 4
for an example of a proof structure for a sequent.

Some proof structures correspond to proofs in the
Lambek calculus and those which do are called proof

nets. It should be noted that all proof nets for the
Lambek Calculus require a planar axiomatic linkage.
A variety of methods have been introduced to deter-
mine whether a proof structure is a proof net, all of
which are based on graphs. These methods fall into
two major categories described in sections 2.1 and
2.2.

2.1 Girard style correctness condi-

tions

Presentations in this style are based on the original
correctness conditions given in Girard (1987). This
style is characterized by building graphs based on the

proof frame rules based only on whether the rule is
a ⊗-rule or a ℘-rule. Work in this style includes the
graphs of Danos and Regnier (1989), R&B graphs of
Retore (1996), quantum graphs of Roorda (1991) and
switch graphs of Carpenter and Morrill (2005).

Danos and Regnier (1989) were the first to formu-
late graph representations of proof nets in the Girard
style. The DR-graph of a proof structure is obtained
by translating each formula in the proof structure
into a vertex and then inserting edges between each
parent-child pair in the proof frame and between each
pair of axiomatic formulae in the axiomatic linkage.

Then, a switching of the DR-graph is obtained by
finding the set of all ℘-rules in the proof frame and
deleting exactly one of the two edges between the
conclusion and the two premises of each rule in the
proof frame. Danos and Regnier (1989) proved that
a proof structure is a proof net if and only if every
switching is acyclic.

2.2 Roorda style correctness condi-

tions

Roorda (1991) introduced a significantly different
method for evaluating the correctness of proof struc-
tures. This method requires the annotation of the
proof frame with lambda calculus terms as well as the
creation of a set of substitutions as shown in square
brackets in figure 3.

α
+
: u β

−

: tu

α\β
−

: t

β
+
: v′ α

−

: u
[v := λu.v′]

α\β
+
: v

α
−

: tu β
+
: u

α/β
−

: t

β
−

: u α
+
: v′

[v := λu.v′]
α/β

+
: v

α
−

: (t)0 β
−

: (t)1

α • β
−

: t

β
+
: v′ α

+
: v′′

[v := 〈v′, v′′〉]
α • β

+
: v

Figure 3: Annotation of lambda terms and substitu-
tions.

In addition to the substitutions specified above, for

each pair 〈X
+
: α, X

−

: ∆〉 in the axiomatic linkage,
we add a substitution of the form [α := ∆].

2

A
−

: ab A
+
: b ⊗

(A/A)
−

: a

A
+
: d

A
−

: (f)0 A
−

: (f)1 ℘

(A • A)
−

: f A
+
: g

℘

(A/(A • A))
+
: e

⊗
((A/(A • A)) • A)

+
: c

Substitutions := [c := 〈e, d〉], [e := λf.g], [g := ab], [b := (f)1], [d := (f)0]

Figure 4: A proof structure for (A/A) ` ((A/(A • A)) • A) with annotations.

Roorda (1991) then provides a method for deter-
mining proof structure correctness based on variable
substitutions for both L and L•. Penn (2005) pro-
vides a graph representation of this method for L as
follows. Construct a graph by creating a vertex for
each lambda variable occurring in the proof frame.
Then, introduce a directed edge from the lambda
variable on the left of a substitution to the lambda
variables on the right of the substitution.

Penn (2005) then gives the following correctness
conditions for these LC graphs:

• I(1) There is a unique node s in G with in-degree
0 such that for all v ∈ V , s 2v.

• I(2) G is acyclic.

• I(3) For every substitution of the form [v :=
λu.v′], v′ u.

2.3 Evaluation of Girard and Roorda

style correctness conditions

Given our goal of investigating the difference be-
tween L and L•, we must evaluate the two correctness
styles.

The Girard style conditions have the advantage
that they have been defined for both L and L• but
the significant disadvantage that by virtue of the fact

2
 denotes path accessibility

that it ignores the differences among ⊗ rules and
among ℘ rules, removing product does not simplify
the complexity of these conditions.

On the other hand, the Roorda style conditions do
become simplified with the removal of product, given
that projections and pairings are removed. However,
no graph formalism has been introduced for L• in
this style until now.

3 LC Graphs for L
•

We will construct our LC graph for L• sequents in
exactly the same way as for L with the obvious dif-
ference that we will have the two • rules and the sub-
stitutions associated with the positive • rule. It turns
out that this is all that is necessary to accommodate
L•. Then, we will add the following correctness con-
dition.

• I(4) For every substitution of the form [v :=
λu.v′] and for every x ∈ V , either every path
from x to u contains v or v x.

We can prove that these correctness conditions are
sound and complete relative to the correctness condi-
tions for variable substitutions in Roorda (1991) in a
very similar way to the proofs for LC graphs in Penn
(2005). Most proofs follow from the close mirror-
ing between the correctness conditions for LC graphs

3

and the correctness conditions for variable substitu-
tions. To prove that I(1) is necessary requires an ap-
plication of structural induction and some facts about
projections in the lambda calculus. Details of these
proofs can be found in Fowler (2006).

It is important to notice that the only difference
between LC graphs for L and those for L• is a sin-
gle correctness condition. This simple difference does
not appear in the treatment of proof nets in Roorda
(1991) with the result that we now have a new tool for
examining how different the two calculi are in terms
of their parsing complexity.

Figure 4 shows a proof structure for a sequent
which is potentially in L•. Figure 5 shows the corre-
sponding LC graph. The path from d to f violates
I(4) causing this proof structure to not qualify as a
proof net.

a

b

c

d

e

f

g

Figure 5: The LC Graph for the proof structure in
figure 4.

4 The NP Completeness proof

Pentus (2006) showed that derivability in L• is NP -
complete and we wish to analyze that proof using LC
graphs to determine whether it can be adapted to an
NP -completeness proof for derivability in L.

Given a SAT instance c1 ∧ . . . ∧ cm, Pentus (2006)
introduced the following categories:

E0
i (t) = p0

i−1\p
0
i for t ∈ {0, 1} (1)

Ej

i (t) = (pj

i−1
\Ej−1

i (t)) • pj

i if ¬txi
3 ∈ cj (2)

Ej

i (t) = pj

i−1
\(Ej−1

i (t) • pj

i) otherwise (3)

Fi = (Em
i (1)/Hm

i) • Hm
i • (Hm

i \Em
i (0))(4)

G0 = p0
0\p

0
n (5)

Gj = (pj
0\G

j−1) • pj
n (6)

H0
i = p0

i−1\p
0
i (7)

Hj

i = pj

i−1
\(Hj−1

i • pj

i) (8)

These categories are then used to construct the se-
quent F1, . . . , Fn ` Gm. Pentus (2006) then proved
that F1, . . . , Fn ` Gm is derivable in L• if and only if
E1(t1), . . . , En(tn) ` Gm is derivable in L• for some
truth assignment 〈t1, . . . tn〉 ∈ {0, 1}n.

We now want to consider all possible LC graphs for
E1(t1), . . . , En(tn) ` Gm. It can be shown that for a
fixed 〈t1, . . . , tn〉, there is exactly one proof structure
for E1(t1), . . . , En(tn) ` Gm. Given the similarity of
these sequents, we can show that the LC graph for
an arbitrary 〈t1, . . . , tn〉 is as seen in figure 6.

The LC graph is independent of 〈t1, . . . , tn〉 except
for an m by n chart of edges (shown as dotted lines).
Then, the edge in column j, row i is not present if
and only if ¬ti

xi appears in cj .

With a simple check, we can see that no proof
structure for this sequent can ever violate I(1), I(2)
or I(3) by checking its LC graph.

Since ¬ti
xi is present in cj if and only if the pres-

ence of that variable causes cj to be true for truth
assignment 〈t1, . . . , tn〉, all of the edges in a column
are present if and only if cj is necessarily false under
〈t1, . . . , tn〉. As can be seen this occurs if and only if
an I(4) violation is caused by the path from bj to dj .

With this result, we can see that not only is I(4)
an important part of Pentus’ NP-completeness proof,
but that it is the only correctness condition with any
influence on the derivability of F1, . . . , Fn � Gm and
consequently on the satisfiability of c1 ∧ . . . ∧ cm.

This also leads us to the inevitable conclusion that
this proof cannot be transformed into a similar proof
for L because of its absolute dependence on I(4)
which is not present in LC graphs for L.

For the details behind the LC graphs for these se-
quents see Fowler (2006).

3
¬1v is a shorthand for v and ¬0v is a shorthand for ¬v.

4

. . .

. . .

...
...

...
...

. . .

. . .

u

bm

cm

dm

em

b1

c1

d1

e1

b0

d0

un am
n a1

n a0
n

u1 am
1 a1

1 a0
1

Figure 6: LC graph of E1(t1), . . . , En(tn) ` G.

5 Conclusion

Having introduced LC graphs for L•, comparing
them with LC graphs for L reveals that the difference
is only a single path condition on certain vertices in
the graph. Furthermore, we can see by applying this
observation to the NP -completeness proof of Pentus
(2006) that this path condition is absolutely essen-
tial to that proof. This has given us a graphical in-
sight into the precise differences between L and L•

as well as having shown that manipulating the proof
of Pentus (2006) will likely be impossible to prove
NP -completeness for L.

References

Bob Carpenter and Glyn Morrill. Switch graphs
for parsing type logical grammars. Proceedings of

IWPT, 2005.

Vincent Danos and Laurent Regnier. The Structure
of Multiplicatives. Archive for Mathematical Logic,
28:181–203, 1989.

Timothy Fowler. A graph formalism for proofs in the
Lambek calculus with product. Master’s thesis,
University of Toronto, 2006.

Jean-Yves Girard. Linear Logic. Theoretical Com-

puter Science, 50:1–102, 1987.

Joachim Lambek. The mathematics of sentence
structure. American Mathematical Monthly, 65:
154–170, 1958.

R. Moot and Q. Puite. Proof Nets for the Multimodal
Lambek Calculus. Studia Logica, 71(3):415–442,
2002.

Gerald Penn. A Graph-Theoretic Approach to
Sequent Derivability in the Lambek Calculus.
ENTCS, 53:274–295, 2005.

Mati Pentus. Lambek calculus is NP-complete. The-

oretical Computer Science, 357:186–201, 2006.

Christian Retore. Perfect matchings and series-
parallel graphs: multiplicatives proof nets as
R&B-graphs. In M. Okada & A. Scedrov J.-
Y. Girard, editor, Linear ’96, volume 3 of
Electronic Notes in Theoretical Science. Elsevier,
http://www.elsevier.nl/, 1996.

Dirk Roorda. Resource Logics: Proof-theoretical In-

vestigations. PhD thesis, Universiteit van Amster-
dam, 1991.

Mark Steedman. The Syntactic Process. The MIT
Press, 2000.

5

