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Abstract

Motivated by the observation that coarse and
fine resolutions of an image reveal differ-
ent structures in the underlying visual phe-
nomenon, we present a model based on the
Deep Belief Network (DBN) which learns fea-
tures from the multiscale representation of
images. A Laplacian Pyramid is first con-
structed for each image. DBNs are then
trained separately at each level of the pyra-
mid. Finally, a top level RBM combines these
DBNs into a single network we call the Mul-
tiresolution Deep Belief Network (MrDBN).
Experiments show that MrDBNs generalize
better than standard DBNs on NORB clas-
sification and TIMIT phone recognition. In
the domain of generative learning, we demon-
strate the superiority of MrDBNs at model-
ing face images.

1 Introduction

Unsupervised learning seeks to discover latent repre-
sentation which captures interesting and useful struc-
tures in high dimensional data. Deep learning ar-
chitectures successively train unsupervised learners on
the latent activations of previous learners, thereby se-
quentially transforming the raw input (e.g. pixels)
into more interesting and useful features by capturing
higher-order correlations of the input. Deep architec-
tures such as the Deep Belief Network [1] (DBN), Deep
Boltzmann Machine [2] (DBM) and Stacked Autoen-
coders [3] have been shown to be excellent at visual
object recognition [4], speech phone recognition [5, 6],
and image denoising [7].

In the domain of vision, it is common practice to use
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image pixels as the input to the bottom layer of deep
models. While an image is a representation of an
object at a specific resolution and scale, objects in
the real world possess different structures at different
scales [8]. For example, a forest to a far away ob-
server is seen as individual trees to someone close by.
Therefore, we hypothesize that it would be beneficial
to explicitly provide multiple resolutions of an image
as input to a deep model. This hypothesis is indeed
confirmed by both generative and discriminative ex-
periments in this paper.

Multiscale and multiresolution processing and analy-
sis are applied widely in the fields of image processing
and computer vision: object detection [9, 10], feature
points detection [11], alignment and tracking [12], and
image blending [13]. The usefulness of a multireso-
lution framework stems from its ability to select and
perform computations at the optimal image scale.

In this paper, we combine multiresolution representa-
tion and unsupervised generative learning. We pro-
pose a modified Deep Belief Network which takes mul-
tiresolution images as its visible input. The Multires-
olution DBN (MrDBN) has several advantages:

• Learning features from multiple resolutions and
frequencies helps the resulting classifier generalize
better.

• Learning coarse structure from low resolution im-
ages serves as a form of regularization that allows
the learning of a better generative model.

• Utilizing high resolution information as needed
during visual search can dramatically reduce com-
putation costs.

In section 2 we review the Gaussian-Binary Restricted
Boltzmann Machine, which is used as the first layer
of DBNs. Learning of the visible nodes’ residual vari-
ances and the preprocessing of the input are also dis-
cussed. Section 3 presents the details of MrDBN. Ex-
perimental results are in section 4, followed by conclu-
sions.
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2 Gaussian-Binary Restricted
Boltzmann Machine

Before describing the MrDBN, we briefly review
the Gaussian-Binary Restricted Boltzmann Machine
(GRBM). While the original Binary-Binary RBM is
the standard building block of DBNs and DBMs, the
GRBM extends the Binary-Binary RBM to handle
continuous data [14].

GRBM is a bipartite Markov Random Field over the
Nv visible nodes V ∈ RNv and Nh hidden nodes H ∈
{0, 1}Nh , defined by an energy function:

E(v,h; θ) =
1

2
vTΛv − vTΛb− hTc− vTΛ

1
2Wh (1)

θ = {W,b, c,Λ} are the model parameters. W ∈
RNv×Nh , b ∈ RNv , c ∈ RNh , and Λ is the precision
matrix of v, taken to be diagonal. We use Wij to re-
fer to the element at the ith row and jth column and
W(:,j) to refer to the jth column of W. By exponenti-
ating and normalizing, we obtain a probability density
function over the states of V and H:

p(v,h) =
p∗(v,h)

Z(θ)
=

exp−E(v,h;θ)

Z(θ)
(2)

where Z(θ) is the normalization constant: Z(θ) =∫
v′ dv

′∑
h′ exp−E(v′,h′;θ) and p∗(·) denotes the unnor-

malized probability density. Conditioned on H = h,
the distribution over the visible nodes is:

p(v|h) ∼ N (Λ−
1
2Wh + b,Λ−1) (3)

The conditional distribution over the hidden nodes
given the visibles is:

p(h|v) = sigmoid (vTΛ
1
2W + c) (4)

By analytically integrating out the binary hidden vari-
ables, we obtain the unnormalized log-probability of a
visible vector:

log p∗(v) = −1

2
vTΛv + vTΛb

+

Nh∑
j

log
(

1 + exp{vTΛ
1
2W(:,j) + cj}

)
(5)

Learning is accomplished by performing gradient as-
cent on the log-likelihood of the parameters given the
i.i.d. training data. Since Z(θ) can not be computed
exactly in less than exponential time, algorithms such
as Contrastive Divergence [15] (CD) and Fast Per-
sistent Contrastive Divergence [16] (FPCD) can be
used for approximate maximum likelihood estimation
(MLE).

GRBMs have been used to model images [17],
speech [5], and human motions [18]. A deep archi-
tecture can be formed by stacking multiple layers of
Binary-Binary RBMs on top of the GRBM, forming a
DBN or a DBM.

2.1 Learning the residual variances

Most of the work in literature that use GRBMs treat
Λii as constants. Λ is usually set to be the identity
matrix, while the data can be preprocessed by an ar-
bitrary scaling [19]. This approach is not optimal and
leads to worse density models. The residual variances
represent the variance unexplained by the model, and
should be much smaller than the data variances. For
example, pixels of the cheek and forehead regions of
faces have much lower residual variances than pixels
of the eyes and mouth regions.

In this paper, we learn the precision parameters λ2i ,
Λii by gradient ascent on the log-likelihood objective.
We can take the partial derivative of the unnormalized
log-probability w.r.t. λi to give:

∂ log p∗(v)

∂λi
= −λiv2i + 2λivibi+

Nh∑
j

p(hj |v)viWij (6)

we update λi using the difference of two expectations1:

λi ←− λi+α
(
Edata[

∂ log p∗(v)

∂λi
]−Emodel[

∂ log p∗(v)

∂λi
]
)

(7)
We constrain λi to be: 0 ≤ λi ≤ κ. λi is initialized
with 1.0 and κ is usually set to 1000. In our experi-
ments, λi never comes close to κ.

2.2 Contrast Normalization

Before learning the parameters, we first preprocess all
data vectors v by subtracting the vectors’ mean and
setting the resulting vectors to have a norm of C:

v′ = C
v − 1

Nv

∑
i vi

‖ v − 1
Nv

∑
i vi ‖2

(8)

This step is crucial to learning a reasonable Λ. This
is due to the energy function of the GRBM. Unlike
directed models with separate parameters to explicitly
specify the prior p(h), the GRBM uses its weights W
to define the prior p(h) implicitly:

p(h) ∝ exp{cTh +
1

2
(Λ−

1
2Wh + b)TΛ(Λ−

1
2Wh + b)}

(9)

1Edata[·] is the expectation over the training distribu-
tion, Emodel[·] is the expectation over the model distribu-
tion.
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where Λ−
1
2Wh + b is the conditional mean of p(v|h)

(see Eq. 3). Since the probability assigned to a visi-
ble vector v is p(v) =

∑
h′ p(v|h′)p(h′), a GRBM is

a mixture of exponentially many diagonal Gaussians,
where each component of the mixture is specified with
1 of the 2Nh possible hidden configurations. Let’s refer
to components of the mixture with conditional means
which have relatively big norms the big-norm compo-
nents and ones with small norms the small-norm com-
ponents. Due to Eq. 9, big-norm components tend to
have a much bigger mixing proportion compared to
the small-norm components2. As the result of this
property, when learning from data of different norms,
a big-norm component will tend to take “ownership”3

not only of data close to its conditional mean, but
also of data close to the conditional mean of small-
norm components. This leads to the inability to learn
a proper Λ since a big-norm component can not predict
its “members” very precisely.

By using the normalization method of Eq. 8, we re-
move the inductive bias of the GRBM to prefer its big-
norm components. In order to reconstruct the origi-
nal images, we save the mean ( 1

Nv

∑
i vi) and norm

(‖ v − 1
Nv

∑
i vi ‖2) of each image v by concatenating

those two scalars to v′.

3 Multiresolution Deep Belief
Network

After learning the first layer GRBM, a DBN is formed
by learning a second RBM with the GRBM’s hidden
activations as input. This greedy layer-wise stacking
can be repeated as many times as desired, forming a
DBN with as many layers. See [1, 3] for a detailed
account of the formulation process.

Recently, extensions to the simple GRBM has been de-
veloped which capture the covariance structure of the
visible input. They include the mean and covariance
RBM [20], Relu RBM [21], Spike and Slab RBM [22],
and have been shown to be superior first layer models.
In this work, we will use the simple GRBM as our first
layer model, noting that MrDBN could use any of the
above mentioned extensions.

MrDBN differs from the standard DBN by taking mul-
tiple resolutions of an input image as its visible in-
puts. Given a training set of images, a sample im-

2Large values of cj only allow small-norm components
to have a larger prior when the number of data modes
is not much more than the number of hidden nodes (e.g.
each hidden node represents a mode). Moreover, having
large values of cj means that MCMC mixing (and therefore
learning) would be virtually impossible.

3ĥ owns v if it is the hidden configuration with the
largest posterior probability p(h|v).

age v0 ∈ RM×M has image size of M ×M , where we
assume M = M0 × 2K for some nonnegative integer
{K : K ≥ 2} . Starting from the original full resolu-
tion image v0, we construct images v1 with size M

2 ×
M
2

and v2 with size M
4 ×

M
4 . These lower resolution im-

ages form the upper levels of a Gaussian Pyramid and
are generated by downsampling using bicubic interpo-
lation after blurring v0 with a Gaussian kernel. We
then upsample v1 and v2 by a factor of 2 using bicu-
bic interpolation. The pixel intensity differences are
computed:

f0 = v0 −UPSAMPLE(v1) (10)

g0 = v1 −UPSAMPLE(v2) (11)

f0 and g0 are the differences between adjacent layers of
the Gaussian Pyramid which approximate the output
response of filtering v0 with a Laplacian of Gaussian
(LoG) filter. Also known as “Mexican hat” filters, LoG
filters are widely used in models of biological vision and
interest point detections. The process of Eq. 10 and 11
constructs a Laplacian Pyramid [23], which band-pass
filters the original signal. f0, g0, and v2 are compo-
nents of v0 with high, medium, and low frequency,
respectively. These vectors form the input to MrDBN.

In Figure 1, a MrDBN that models 64 × 64 images is
shown4. There are three separate “streams”, one for
each frequency component. Specifically, GRBMs are
learned with F 0, G0 and V 2 as their visible layers.
RBMs are then learned in a greedy layer-wise fashion
with the first hidden layer activations (f1, g1 and h1)
as inputs. At the top layer, label information in the
form of 1-of-K codes are included (if available) along
with the combined topmost hidden activations of all
three streams. While CD learning is used for the lower
layers of MrDBN, the top layer uses FPCD to learn a
better density model. We summarize the inference and
generation steps of MrDBN in Algorithm 1.

4 Experiments

We use two image databases and a speech corpus to
evaluate MrDBNs. The first database is the Toronto
Face Database [24] (TFD). The TFD is a large set of
face images collected from many existing databases.
It contains over 100K size 100 × 100 gray-scale face
images. It is created by merging 30 pre-existing
databases and is one of the largest collection of face
images. The database also contains identity and ex-
pression labels for a small number of the faces.

4We use capital letters to denote a specific layer of nodes
and use lowercase bold letters to denote a specific set of
activations of the corresponding layer.
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64x64

32x32 16x16

labels

Figure 1: The architecture of MrDBN. Arrows
pointing downwards represent directed connections,
whereas dual arrows represent undirected ones. See
text for details.

The second one is NORB [25]. NORB is a 3D dataset
of toy objects. There are five object categories: ani-
mals, human, airplane, cars, and trucks. 10 different
objects per category are captured with a stereo cam-
era at different azimuths, elevations and lighting con-
ditions. We will use the smaller uniform-normalized
version. This dataset contains 24,300 pairs of stereo
images for both training and test. For any object cat-
egory, 5 of the 10 toy objects of that category are des-
ignated as part of the training set and the other 5 as
part of the test set. This makes recognition challeng-
ing by having a test data distribution that is differ-
ent from the training data distribution. We will first
demonstrate the advantages of MrDBNs as generative
models on both TFD and NORB. We then evaluate
MrDBNs for classification on NORB.

The third is the TIMIT acoustic-phonetic continuous
speech corpus. It contains over 500 American English
speakers with lexically transcribed speech. We will
show that MrDBN can also be applied to speech sig-
nals to improve speech phone recognition.

4.1 Generative Experiments

One of the advantages of generative models is the
ability to better interpret noisy or ambiguous inputs.
To compare MrDBNs to DBNs as generative mod-
els qualitatively, we draw samples from each model
and visually compare them. Quantitatively, since
MrDBN augments the original image with the upper

Algorithm 1 Inference and Generation for MrDBN

Inference:
Given an input image v0 of dimensionality M ×M ,
where M = M0 × 2K , K an integer ≥ 2.

1: Low-pass filter v0 with a Gaussian kernel and down-
sample by a factor of 2 and 4 using bicubic interpo-
lation, producing v1 and v2, respectively.

2: Upsample v1 and v2 by a factor of 2 using bicubic
interpolation.

3: Subtract the upsampled images from the original to
give the difference images: f0 and g0.

4: As in a standard DBN, use the RBM weights to
compute approximate posterior distribution of a
higher layer given the layer below. E.g. p(f1|f0) =

sigmoid (f0
T

Λ
1
2W + c).

Generation:
5: Run n iterations of block Gibbs sampling on the

top level RBM.
6: Project down directed connections by computing

the conditional distribution p(xl|xl+1), where x rep-
resents any of the three streams’ hidden layer nodes.

7: Sample xl ∼ p(xl|xl+1)
8: Repeat step 6-7 until after the sampling of the layer

of F 0, G0, and V 2.
9: Reconstruct V 0:
V 0 = UPSAMPLE(UPSAMPLE(v2) + g0) + f0

layers of the Laplacian Pyramid, it is not straight for-
ward to perform model comparison using the test log-
probabilities. For an indirect measure, we compute the
test reconstruction error after propagating the activi-
ties from the visible input all the way to the top and
then back down again, using Algorithm 1. Reconstruc-
tion error is a crude approximation of Contrastive Di-
vergence and is typically monotonically related to the
average data log-probability, provided that reasonable
looking samples are obtained when sampling from the
model.

4.1.1 Faces

We randomly selected 60K images from the TFD as
training data and 10K as test data. The V 0 layer of the
MrDBN is created by downsampling5 to 48× 48 from
the original resolution of 100× 100. Lower resolutions
of 24×24 and 12×12 are used in the MrDBN. Contrast
normalization is done as described in section 2.2, set-
ting C to 10. The MrDBN has size 1500 for F 1, 1000
forG1, 1000 forH1; 500 for F 2, 500 forG2 and 1000 for
H2; the top layer has 250 hidden nodes. For compari-
son, we trained a standard DBN with 3 hidden layers
and approximately the same number of parameters as
the MrDBN. For both models, all of the layers except

5Gaussian blurring and bicubic interpolation are used.
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the top RBM are trained using CD. The top RBM
is trained using FPCD with 100 fantasy particles and
they are run for 50 Gibbs iterations before computing
the negative phase statistics for one weight update.
Sparsity is induced using the method described in [26]
for the lower layers. 100 epochs are used to train the
lower layers while 200 epochs are used for the top layer.
No further fine-tuning is performed. The top layer are
trained using a L2 weight cost of 0.002. The weight
decay for fast weights is set to 0.05. Learning rate is
initially set to be 0.05, linearly decaying to 0.001. The
fast learning rate is set to be the same as the initial
learning rate.

To give a sense of the types of filters learned from each
resolution, we plotted some randomly chosen filters
in the left column of Figure 2. The right column is
the learned residual variances Λ for the corresponding
resolution streams.

In Figures 3 and 4, we plot samples generated from
the standard DBN, MrDBN and a more complicated
DBN with mPoT first layer [7]. The Gibbs chain is
started at 0 initially and samples are drawn every 100
steps. No burn-in samples were discarded.

(a) mPoT DBN

(b) Standard DBN

Figure 3: Samples drawn from various DBNs trained
on the Toronto Faces Database. (a) Random sam-
ples of a DBN with mPoT as the first layer, repro-
duced from [7]. (b) Samples from a standard DBN
with learned Λ. Starting at the top row, from left to
right, each sample is generated after 100 steps of block
Gibbs sampling.

Figure 4: Samples drawn from MrDBN. Starting at the
top row, from left to right, each sample is generated
after 100 steps of block Gibbs sampling. Note the level
of details and the ability of the MCMC chain to mix
rapidly.

From visual examination, MrDBN generates sharper
and more realistic faces than the standard DBN. In
addition, it also mixes very fast, generating multiple
types of expressions. It is worth noting the facial de-
tails MrDBN captures. For example, mustaches, teeth,
and eyeglasses are clearly visible. Compared to the
samples from the mPoT-DBN, samples from MrDBN
allow us to distinguish the gender, age, and even the
emotion of the synthesized faces.

We also looked at the test set reconstruction. The
baseline DBN gave a mean squared error (MSE) of 17.9
per image while MrDBN gave 15.9 MSE per image6.

4.1.2 NORB

Since border regions of the 96 × 96 NORB images
are largely homogeneous, we cropped out the borders,
leaving the middle 64× 64 block. Contrast normaliza-
tion sets C to be 10. For MrDBN, we use 4000, 2000,
and 3000 hidden nodes for layers F 1, G1, and H1, re-
spectively. 2000, 1000 and 1500 hidden nodes are used
for F 2, G2, and H2, respectively. 500 top layer hidden
nodes are used. For comparison, we trained a standard
DBN with 3 hidden layers and approximately the same
number of parameters as the MrDBN. Training is same
as in section 4.1.1 except we use a L2 weight cost of

6For 48× 48 images with intensity ranging from 0.0 to
1.0, MrDBN reconstructions are better by about 0.03 per
pixel.
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(a) 12× 12 filters (b) Λ

(c) 24× 24 filters (d) Λ

(e) 48× 48 filters (f) Λ

Figure 2: Filters and residual variances of all three resolutions of MrDBN trained on faces.

0.001 for the top layer.

Figures 5 shows 100 samples drawn from each model.
The states of the top layer for both DBNs are set to
0 initially. Following 1000 steps of block Gibbs sam-
pling at the top, we project the activations down to
the visible layers to generate a sample. These sam-
ples are shown starting at the top left, moving from
left to right. As can be seen from Figure 5, the Gibbs
chain from MrDBN mixes a bit faster and the sam-
ples are slightly cleaner than those generated from a
standard DBN. Quantitatively, the MSE of the test
reconstruction is 60.2 per image (DBN), and 52.0 per
image (MrDBN).

Lower reconstruction errors are not conclusive evi-
dence that MrDBN is better than DBN due to the
possibility of spurious modes in some unknown parts
of space. However, combined with samples drawn from
both models in Figures 4 and 5(b), It is reasonable to
believe that MrDBN is a better generative model.

4.2 Recognition Experiments

4.2.1 NORB

We evaluate MrDBNs on NORB classification. To
reduce computation time, we first downsampled
normalized-uniform NORB images into size 32 × 32
stereo pairs from the original size of 96 × 96 using
bicubic interpolation. We tried two different MrDBNs.
The first one, MrDBN [32-16-8] uses three resolutions:
{ 32×32, 16×16, and 8×8 }. The second one, MrDBN
[32-16], uses two resolutions: { 32× 32 and 16× 16 }.

The network size for MrDBN [32-16-8] is 1200 and
1200 for F 1 and F 2; 1000 and 1000 for G1 and G2;
700 and 700 for H1 and H2. The top layer has 4500
hidden nodes. The network size for MrDBN [32-16] is
1200 and 1200 for G1 and G2; 1500 and 2000 for H1

and H2. The top layer has 4500 hidden nodes. Note
that the F stream is not present in MrDBN [32-16],
since it is the 64× 64 resolution stream.

2300 random samples from the training setaistats 2012
are taken aside as validation while the other 22,000
samples are divided into 220 mini-batches of 100 sam-
ples each7. Contrast normalization is done and the
norm of each vector is set to 10. We train the first 3
layers using CD while the top layer uses FPCD. The la-
bels are one-of-K codes and are a part of the visibles of
the top RBM. To classify, we first use step 4 of Algo-
rithm 1 to approximate the posterior p(f2,g2,h2|v).

We then pick the label ˆ̀ that gives the highest log-
probability of the top RBM:

ˆ̀ = arg max
`

log p∗(`, f2,g2,h2) (12)

Since there are only 5 training objects for each cat-
egory, overfitting is a problem. We set the top layer
weight costs to be relatively high at 0.01. Learning
rate is decayed from 0.05 to 0.001. The weights are
initialized from a Normal distribution with standard
deviation of 0.01. 50 training epochs are run and we
use early stopping by looking at the validation error.
We did not use additional discriminative fine-tuning
on MrDBN as it leads to overfitting. Table 1 presents
the test errors of different models. The test error of

Deep Belief Net [4] 8.3%
DBN (learning Λ) (this work) 7.4%
Deep Boltzmann Machine [2] 7.2%
MrDBN 32-16 (this work) 5.8%
3rd Order DBN [26] 5.2%
Tiled Convolutional Nets [27] 3.9%

Table 1: NORB classification error rates.

7We randomly translated the training data during un-
supervised learning of the first layer GRBMs. We found
that using these additional unlabeled data helps slightly,
but only when it was applied to the first layer.

7This is a deep convolutional network trained with ad-
ditional labeled data generated from translations.
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(a) Samples from a standard DBN (b) Samples from MrDBN

Figure 5: Samples drawn from a DBN and a MrDBN trained on NORB. Samples are drawn from a single Markov
chain sampling from each model. From left to right then top to bottom, each image is generated after 1,000
block Gibbs steps.

5.8% for MrDBN is significantly better than the er-
ror for the standard DBN. Comparing the error of a
DBN learning Λ to the previously reported error for a
standard DBN, learning Λ is found to be beneficial for
classification.

To see the usefulness of the representation of each
stream, we trained a separate top layer with labels
for each of the streams. By doing these experiments,
we are performing classification with features learned
from a particular frequency component. These stream-
specific top layer RBMs also use 4500 hidden nodes
and are trained in the same way as MrDBNs. Table 2
shows the error rates.

32x32 16x16 8x8 Combined
MrDBN [32-16-8] 11.2% 10.7% 9.2% 7.1%
MrDBN [32-16] 11.2% 6.9% N/A 5.8%
DBN 32 7.4 % N/A N/A N/A

Table 2: Classification errors using each frequency
stream. By combining features of multiple streams,
we obtain reduction of error in the last column. Note
that the two 16 × 16 stream is different because the
16 × 16 stream in MrDBN [32-16] is low-frequency
and the 16 × 16 stream in MrDBN [32-16-8] is high-
frequency.

What is surprising from Table 2 is that we can achieve
a reasonable error rate of 9.2% with a resolution of
only 8 × 8. The fact that high resolution is not a

requirement of good recognition has been observed in
human psychology [28]. In addition, we can clearly im-
prove recognition by combining features from multiple
streams. The combined model (which is a MrDBN)
has a single RBM (with labels) layer on top. This is
very different from a committee of classifiers, one from
each of the streams.

Furthermore, we trained a standard DBN which took
as its input the concatenated vector of the same im-
age at the resolutions of 32 × 32, 16 × 16 and 8 × 8
instead of the Laplacian Pyramid decomposition. The
test error achieved by this DBN is 7.2%, similar to
that of a standard DBN trained on just 32× 32 stereo
images (which is 7.4%). This supports our hypothesis
that generalization is improved by using the Laplacian
Pyramid to decompose the input data into frequency
components.

4.2.2 TIMIT corpus

We tested MrDBN for phone recognition on the
TIMIT acoustic-phonetic continuous read speech cor-
pus8. TIMIT provides phone-level transcription of
broadband recordings for American English speakers
of different sexes and dialects. It is the standard
benchmark dataset for phone recognition in the speech
recognition research comunity. The corpus is divided

8
http://www.ldc.upen.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
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into a 462-speaker training set, a 50-speaker valida-
tion set, and a 24-speaker core test set. We report our
Phone Error Rates (PER) on the core test set while
using the validation set to tune learning and model
parameters.

The speech was analyzed using a 25-ms Hamming win-
dow with a 10-ms fixed frame rate. Our features are
40 Fourier-transform-based filter-bank coefficients dis-
tributed on a mel-scale (and energy) together with
their first and second temporal derivatives. This re-
sults in a vector of dimensionality 123. The network
inputs are contextual windows that are concatenations
of 8 to 12 consecutive frames. The entire TIMIT train-
ing set contains over 1,000,000 training vectors and we
form 8,700 minibatches of 128 training examples each.
For example, we treat an input vector of 10 frames
as a 2D image of 10 by 123, and we down-sample in
the time domain only. Therefore, the corresponding
low-resolution input would have dimensionality of 5
by 123. Following the training protocols of [29], We
used 183 target class labels (i.e., 3 states for each one
of the 61 phones). After estimating the hidden state
probability using MrDBN, we perform Viterbi decod-
ing using a bigram language model estimated from the
training set. After decoding, the 61 phone classes were
mapped to a set of 39 classes as in [30] for scoring.

Similar to the MrDBN used for NORB, we first learn
a DBN with 3 hidden layers each containing 500 nodes
on the low resolution stream (data is 5 by 123) and an-
other DBN with 1000 hidden nodes layers on the high
resolution stream (data is 10 by 123). We combine
the two streams at the top layer and jointly fine-tune
the model to minimize cross-entropy error of the 183
softmax labels using Stochastic Gradient Descent with
Backprop. The learning rate, momentum and weight
decay values were all selected by looking at the vali-
dation set errors.

See Figure 6 for the resulting error rates for both the
standard DBN and the MrDBN. As can be seen in
the figure, MrDBN reduces absolute test error rates by
approximately 1.5%. We note that MrDBN obtained a
core test set error rate of 20.3%, which improves upon
the current state-of-the-art recognition result (20.7%
9) on TIMIT. See [29] for a detailed comparison of
reported TIMIT results in literature10.

9Note that this result is from a much bigger network
with 8 hidden layers of 2048 nodes each [29].

10We note that [31] used extra speaker identity labels
(which are not part of the standard TIMIT evaluation) to
achieve 19.6% PER by performing input transformations
on input features to account for speaker differences.

Figure 6: Test set error rates on the TIMIT Corpus.
We plot the errors with respect to the number of in-
put frames per data vector and their 95% confidence
interval.

5 Conclusions

We have combined the widely used multiresolution
framework with a popular deep generative model. By
learning feature hierarchies on multiresolution data,
MrDBN can generalize better than a standard DBN
on the NORB classification task and the TIMIT phone
recognition task. We have also shown that MrDBN is
a superior generative model.

We hypothesize that training on lower resolution data
can help regularize the network from overfitting on
the details of training images. For generative learn-
ing, lower resolution and lower dimensional images
also have a regularization effect by forcing the latent
variables to model coarser structures of objects. In
future work, we plan to apply MrDBN to problems
with occlusions and noise, to speed up visual search,
and adapt multiresolution learning to Deep Boltzmann
Machines.
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