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Unconstrained real world environments are often full of clutter. Therefore, robustness to occlusion
is vital for any artificial recognition system. Recently, the Deep Boltzmann Machine (DBM) has
been shown to be good at generative modeling and recognition of visual objects. In this work we
develop an extension to the DBM framework to make the system more accurate when recognizing
handwritten digits under partial occlusion. The key is the introduction of additional indicator ran-
dom variables which specify where in the image to ignore the occluder. The new model is still a
Boltzmann machine as some extra terms are added to the DBM energy function. During inference,
the model tries to figure out what are the occluder and the “object” given an occluded image. In ad-
dition, we can easily transfer the learned occluder model to other DBMs learned on different types
of data, e.g. faces or objects.

1 Deep Boltzmann Machines

A Deep Boltzmann Machine (DBM) consists of several layers of binary stochastic nodes including
D visible nodes v ∈ {0, 1}D and hidden nodes hj ∈ {0, 1}Nj , where j is the layer label. With only
connections between adjacent layers, a two layer DBM can be defined by an energy function:

EDBM (v,h1,h2) = −vTW1h1 − (h1)TW2h2 (1)

The probability of any given state {v,h1,h2} can be obtained by exponentiating and dividing by
the normalization constant. [1, 2] describe ways to train the DBM to model high dimensional visual
data as well as achieve good recognition results.

During inference, v is clamped and the posterior p(h|v) is approximated using mean-field updates.
However, this is not desirable when there are significant noise in v as the entire input, including the
noise, is conditioned upon in p(h|v).

2 Denoising Gated Boltzmann Machines

To provide robustness for situations with occlusion, we introduce the Denoising Gated Boltzmann
Machine (DGBM). It is a modified version of the DBM where we have added two additional sets of
variables to help “explain” the occluder in an image. Figure 1 shows the architecture of the DGBM.

The new energy function is defined as1:

EDGBM = EDBM (v,h1,h2)−ψTUg +
D∑
i

γiψi log(1 + (vi − ṽi)2) (2)

In the DGBM, the difference is in the introduction of ψ ∈ {0, 1}D and ṽ ∈ {0, 1}D and their 3rd
order interactions with v. During inference, ṽ is observed and v becomes latent. When ψi = 1,

1The biases are omitted for clarity of presentation.
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Figure 1: The network diagram of a DGBM.

the model2 strongly prefers that vi ≈ ṽi. When ψi = 0, the log1p(·) penalty term is gated off, and
the DBM is free to fantasize about what is behind the occluder. Therefore, the role of ψ serves as
an indicator for where to ignore any possible occluders. In addition, the DGBM also contains an
additional RBM with weights U and hidden nodes g to model the structure of ψ.

2.1 Inference

The posterior of interest is p(v,ψ|ṽ), or the distribution of the unoccluded image and the occluder
given ṽ. We can sample from this posterior via alternate Gibbs sampling of p(v,ψ|h1,g, ṽ),
p(g|ψ), and p(h1|v). p(h1|v) is sampled by performing an up-pass through the DBM.

Due to the form of the energy function in eq. 2, there are no interactions between vi, ṽj , and ψk,
when i 6= j 6= k. This means that when we sample p(v,ψ|ṽ), combinations of {vi, ψi} can be
sampled independently as a multinomial with 4 different states. The energy of the 4 states are:

E(vi = 0, ψi = 0) = 0

E(vi = 0, ψi = 1) = γi log(1 + ṽ2i )−
∑
k

Uikgk

E(vi = 1, ψi = 0) = −
∑
j

W 1
ijh

1
j

E(vi = 1, ψi = 1) = γi log(1 + (1− ṽi)2)−
∑
k

Uikgk −
∑
j

W 1
ijh

1
j

We can then sample easily from the probability defined over these 4 states, e.g.

p(vi = 0, ψi = 0) =
exp−E(vi=0,ψi=0)∑
vi,ψi

exp−E(vi,ψi)
(3)

2.2 Learning

Given unlabeled images {(v1), . . . , (vN )}, we have a corresponding occluded image as well as the
“mask” of the occluder. This results in an enlarged dataset of {(v1, ṽ1,ψ1), . . . , (vN , ṽN ,ψN )}
Figure 2 shows some examples from this enlarged dataset. We perform learning by maximizing the
average log-likelihood of the enlarged data set: maxθ

1
N log p(v, ṽ,ψ).

Like other undirected graphical models, the gradient of the log-likelihood l(θ) is given as:

∂l(θ)

∂θ
= −

〈∂EDGBM
∂θ

〉
data

+
〈∂EDGBM

∂θ

〉
model

(4)

2γi is a parameter that is typically positive and large after learning.
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Figure 2: Examples of training data for the DGBM.

Maximum likelihood learning is intractable due to the multiple hidden layers of the DBM. We avoid
this problem by using variational learning and approximate the posterior over the hidden layers
of the DBM with a factorial distribution. Mean-field fixed-point equations are run to estimate the
data-dependent expectations. For the model dependent expectations we use Persistent Contrastive
Divergence (PCD) [4].

3 Experiments

We performed experiments on the MNIST handwriting dataset with rectangular occluders. To gen-
erate the occluded images, we randomly placed blocks (with their width and height varying from 7
to 16 pixels randomly) within the 28 by 28 MNIST digits. We used a DGBM composed of a [784
500 1000] DBM and an additional 300 hidden g nodes. The DBM was pretrained generatively us-
ing variational learning with recognition weights (as described in [2]) for 200 epochs on the regular
MNIST data. The RBM defined by weights U was pretrained using PCD on ψ for 100 epochs.
After composing to form the DGBM, we trained for an additional 50 epochs to learn the parameters
of the DGBM except for the original DBM weights, which are already a very good model of the
digits.

3.1 Qualitative Visualizations

For denoising, we used the inference procedure described in section 2.1. In particular, we clamp on
ṽ and run 300 iterations of alternate Gibbs sampling. While Gibbs sampling do not seek to find the
mode of the posterior, it nevertheless achieves good results. Figure 3 shows the denoising of test
cases.

3.2 Recognition Errors

To see how well a DBM would perform at the problem of recognition, we added occluders to the en-
tire MNIST training and testing datasets. A [784 500 1000] DBM was formed by greedy pretraining
and generatively fine-tuned for an additional 200 epochs, using recognition weights. To fine-tune
further and treating the DBM as a discriminative classifier, we followed the method described in [1].
The activity of H2 layer nodes after 25 iterations of mean-field iterations conditioned on the visible
inputs are found for all training data. We then concatenated the H2 activities with the input V and
treated these activations as the new input. 3 more hidden layers were added above this new aug-
mented input with the last layer being the softmax output. This entire unrolling of the DBM is used
to fully leverage the ability of the DBM to combine top-down and bottom-up predictions.

Following the same strategy for the DGBM, we performed our denoising algorithm using 300 iter-
ations of Gibbs sampling and saved the activity of the H2 layer nodes. We concatenated it with the
noisy input data to form a 1784 dimensional input and added 2 additional layers before the output
softmax. Figure 4 shows the discriminative DGBM network structure.

For both the DBM and DGBM, backpropagation is used to calculate the gradients and nonlinear
Conjugate gradient optimization was used on minibatches of size 1000 for 30 epochs. The test error
for the DBM on MNIST with occluder is 7.49% while we achieved a lower error of 6.53% with the
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Figure 3: Denoising results. The first 3 columns are the ground truth v, ṽ, andψ, respectively. Sub-
sequent columns show p(v|ṽ) and p(ψ|ṽ) at iterations of 50, 100 and 300. The process generalizes
nicely to block occluders with different appearances.

DGBM. As a comparison, [3] reported an error rate of 8.39% using a discriminative Deep Belief
network with sparse connections.

Softmax

Figure 4: The network diagram of a DGBM for discrimination, H3 and H4 has the same size as H1

and H2, respectively.
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