


cally monitor traffic conditions along the corridor. Although
the concept of using buses, aided with Automatic Vehicle
Location (AVL) techniques, as probes of traffic conditions
has recently gained considerable momentum, the use of mo-
bile vision technology as proposed in this work has not been
investigated to the best of our knowledge. Stationary real-
time monocular machine vision systems have been recently
developed for tracking vehicles under congested conditions
for the purpose of traffic management [4].

From a technical perspective, the under development
machine-vision-based approach is active and dynamic, as
both the tracking agent and the targets are mobile in a dy-
namic environment. The level of complexity is signifi-
cantly higher than the case of pole-mounted video technol-
ogy where the camera and the background are both practi-
cally static, which mainly relies on passive-vision techniques
to detect moving traffic objects and characteristics. The pro-
posed approach will employ recent trends in computer vi-
sion research, namely the Active Vision Paradigm. Active
vision systems have mechanisms that can actively control
camera parameters such as orientation, focus, zoom, and ver-
gence in response to the requirements of the task and external
stimuli. Mounting active vision systems on buses will have
the advantage of providing real-time network-wide feedback
of the current traffic conditions while possessing the intel-
ligence and visual skills that allow them to interact with a
rapidly changing dynamic environment such as moving traf-
fic. The main approach is to stabilize the visual field of view
of our camera system by compensating for the vibrations due
to the motion of the bus. This can be achieved by comput-
ing the displacement between successive video image frames
and updating the gaze angles of the camera to cancel out this
displacement which can be computed as a translational off-
set in the image coordinate system. Once the video image
stream is stable, the next task is to detect and track vehicles
that appear in the camera field of view. The relative speed of
vehicles with respect to the speed of the bus can be estimated
by tracking the motion of vehicles between frames. An accu-
rate estimate of traffic speed can be obtained from the knowl-
edge of the speed of the camera, which has the same speed as
the bus, and the relative speeds estimated from the video im-
ages. Further traffic characteristics such as density and the
presence of incidents can also be deduced from the image
sequence.

2.1 Technical Rationale and Approach

Components similar to the bus mounted machine vision
system are currently available in other fields. In particu-
lar, recent research carried out by Rabie and Terzopoulos
[16, 19] on active vision in a simulated 3D virtual environ-
ment has enabled a new paradigm for computer vision re-
search that is called ”animat vision”. The essence of the
concept is to implement active vision systems allowing vir-

tual animal robots (or animats) to understand perceptually
the realistic virtual worlds in which they are situated so
that they may effectively interact with other animats situ-
ated within these worlds. A set of active vision algorithms
have been successfully implemented, within the animat vi-
sion framework, that integrate motion, stereo and color anal-
ysis. These algorithms support robust color object track-
ing, vision-guided navigation, visual perception, and obsta-
cle recognition and avoidance abilities, enabling the animat
to better understand and interact with its dynamic virtual en-
vironment.

We are combining the stereo, motion, and color algo-
rithms together with a robust tracking algorithm, namely the
KLT feature tracker, to increase the robustness and function-
ality of our overall vision system. The KLT feature tracker is
based on the early work of Lucas and Kanade [14] and later
developed fully by Tomasi and Kanade [20]. The only pub-
lished, readily accessible description of this tracker is con-
tained in a paper by Shi and Tomasi [17]. The final bus-
mounted vision system will be able to detect moving tar-
gets of interest (moving vehicles) and segment their region
of support using motion detection and optical flow estima-
tion. It will then change its stereo camera gaze angles to fix-
ate the detected target of interest. With the target inside the
left and right camera’s field of view, the feature tracker algo-
rithm will take control to keep the moving target fixated and
in view. Tracking will also facilitate the estimation of the
relative speed of the tracked vehicle. The stereo algorithm
will estimate the relative distance between the bus-mounted
cameras and vehicles visible in front of the bus. These dis-
tances will be used by the tracker to filter out undesirable
features (disconnected features and features on objects that
are too close to the bus), and focus on tracking features that
belong to the same vehicle.

The ongoing research builds on existing and tested vision
techniques as a starting point from which we continue further
development, augmenting them with enhancements suitable
for the new application at hand. Finally, the developed vision
components will be integrated into a sophisticated dynamic
machine vision system that will be mounted on transit buses
and calibrated to work at optimum performance.

2.2 The Prototype Bus-Mounted Vision System

The bus-mounted vision system consists of two main
modules; the motion stabilization module and the stereo
tracking module, as shown in Fig. 1. Together they imple-
ment a gaze control capability that enables the camera sys-
tem to stabilize the visual world due to vibrations caused by
the motion of the bus, as well as to detect visual targets in the
camera field of view, change gaze to lock them in, and visu-
ally track them between image frames. Disparities between
the stabilized left and right camera images will be estimated
by the stereo tracking module, thus giving an estimate of the



Figure 1: The Prototype Bus-mounted Active Vision System Diagram.

relative distance to objects in the image.
The vision system will have to contend with noisy im-

ages acquired under varying environmental conditions such
as fog, rain, snow-fall, or extra darkness. An Artificial Neu-
ral Network (ANN) module, shown in Fig. 1, will be trained
to receive the noisy stereo image stream, and recognize those
conditions and their severity. To the neural network module,
these conditions will appear as ”noise frames” that are su-
perimposed onto the ideal clear image stream that the sys-
tem will initially be trained to deal with. The appropriate
filtering algorithm within the neural network module would
be, then, triggered to filter out that noise and restore a clear
image stream.

2.3 Visual Field Stabilization using Optical Flow

It is necessary to stabilize the visual field of the stereo
camera system because of the continuous motion of the bus.
The optokinetic reflex in animals stabilizes vision by measur-
ing image motion and producing compensatory eye move-
ments. Stabilization is achieved by computing the displace-
ment between successive image frames and updating the
camera gaze angles by this displacement offset. The dis-

placement is computed as a translational offset in the image
frame coordinate system by a least squares minimization of
the optical flow constraint equation between image frames at
times t and t� 1 [5].

Given a sequence of time-varying images, points imaged
on the retina appear to move because of the relative motion
between the eye and objects in the scene. The instantaneous
velocity vector field of this apparent motion is usually called
optical flow [3]. Optical flow can provide important informa-
tion about the spatial arrangement of objects viewed and the
rate of change of this arrangement [8]. Various techniques
for determining optical flow from a sequence of two or more
frames have been proposed in the literature [9, 1, 14]. Opti-
cal flow, once reliably estimated can be very useful in various
computer vision applications. Discontinuities in the optical
flow can be used in segmenting images into moving objects
[5, 10]. Navigation using optical flow and estimation of time-
to-collision maps have been discussed in [6] and [15].

Once the camera visual view is stabilized against any vi-
brations, the camera gaze is redirected at a moving target
of interest. Redirecting gaze when a target of interest ap-
pears in the image frame can be a complex task. One so-



lution would be to section the peripheral image into smaller
patches or focal probes [5] and search all the probes for large
motion fields. The strategy will work well for sufficiently
small images, but for dynamic vision systems, that must pro-
cess natural images, this approach is not effective. We pro-
pose a method based on motion cues to help narrow down
the search for a suitable gaze direction. We propose to create
a saliency image consisting of the optical flow field between
two stabilized image frames. The saliency image S is then
convolved with a circular disk of area equal to the expected
area of the target object of interest as it appears in the image
frame1. The blurring of the saliency image emphasizes mov-
ing objects in the image. The maximum in S is taken as the
location of the fastest moving object and serves as the new
gaze direction for the stereo camera system.

2.4 Target Tracking
Once the stereo camera system has been redirected to

gaze at an appropriate target, the stereo tracking module as-
sumes the task of selecting good features from the current
image frame, consistently tracking these features over time.
Tracking moving objects in video streams has been a popular
topic in the field of computer vision in the last few years. The
different tracking techniques for video data can be classified
into four main approaches:

1. 3D Model based tracking: Three-dimensional model-
based vehicle tracking systems have previously been
investigated in the literature [13, 2]. The emphasis is
on recovering trajectories and models with high accu-
racy for a small number of vehicles. The most serious
weakness of this approach is the reliance on detailed ge-
ometric object models. It is unrealistic to expect to be
able to have detailed models for all vehicles that could
be found on the roadway.

2. Region based tracking: The idea here is to identify
a connected region in the image associated with each
vehicle and then track this region over time using a
cross-correlation measure. Initialization of the process
is most easily done by subtracting the background scene
from the acquired image. A Kalman filter-based adap-
tive background model allows the background estimate
to evolve as the weather and time of day affect lighting
conditions. Foreground objects (vehicles) are detected
by subtracting the incoming image from the current
background estimate, looking for pixels where this dif-
ference image is above some threshold and then finding
connected components [7]. This approach works fairly
well in free flowing traffic. However, under congested

1Reasonably small areas suffice, since objects in the image frame are
typically small in front of the bus-mounted camera. Methods for estimating
appropriate areas for the object, such as Jagersand’s information theoretic
approach [11], may be applicable.

traffic conditions, vehicles partially occlude one another
instead of being spatially isolated, which makes the task
of segmenting individual vehicles difficult. Such vehi-
cles will become grouped together as one large blob in
the foreground image.

3. Active contour based tracking: A dual to the region-
based approach is tracking based on active contour
models, or snakes [12]. The idea is to have a rep-
resentation of the bounding contour of the object and
keep dynamically updating it. The advantage of hav-
ing a contour-based representation instead of a region
based representation is reduced computational com-
plexity. However, the inability to segment vehicles that
are partially occluded remains. If one could initialize a
separate contour for each vehicle, then one could track
even in the presence of partial occlusion [4].

4. Feature based tracking: Finally, yet another approach
to tracking abandons the idea of tracking objects as a
whole but instead tracks sub-features such as distin-
guishable points or lines on the object. The advantage
of this approach is that even in the presence of partial
occlusion, some of the sub-features of the moving ob-
ject remain visible. The technology of tracking points
and line features is developed fully as the KLT feature
tracker by Tomasi and Kanade [20] and a readily acces-
sible description of this tracker is contained in the paper
by Shi and Tomasi [17].

For our specific application, we require efficiency, robust-
ness to occlusion, and real-time tracking at all times. The
feature-based tracking approach, described above, satisfies
our requirements. We, thus, propose to incorporate the KLT
feature tracker into the stereo tracking module. This tracker
locates good features by examining the minimum eigen-
value of each 2 by 2 image-gradient matrix, and features
are tracked using a Newton-Raphson method of minimizing
the difference between the two matrices in two consecutive
frames. Multiresolution tracking allows for large displace-
ments between images [17]. To further enhance the tracker
algorithm, we propose to enrich the description of each pixel
in the image by making use of the (R, G, B) color signals
from our color images by including them in the feature de-
scription for each pixel. This is expected to improve the fea-
ture tracking process considerably by restricting the match-
ing process to features of similar color composition, which
can be considered as a sort of color-feature constraint.
2.5 Vehicle Speed Estimation

To help our tracking algorithm focus on the tracked ve-
hicle and to reduce distraction due to background clutter in
the image sequence, we feed our tracking algorithm differ-
ence images instead of the actual images. The difference im-
ages are created by subtracting the previously acquired im-



age of the road from the image acquired at the current time
instant. This has the advantage of blocking out the details in
the background of the tracked vehicle while only emphasiz-
ing the vehicle to be tracked. This is possible due to the fact
that the closer the vehicle is to the camera, the larger its mo-
tion will be, and the farther away the vehicles are, the more
insignificant their motions will be. Thus, when subtracting
previous image from current image, only the large motions
of the vehicle in front of the bus will be emphasized in the
difference image, while the vehicles that are far away from
the bus get cancelled out of the difference image.

To facilitate this, we make use of small camera fields of
view, thus only capturing a small area of the image in front
of the bus, where the possibility of capturing only a single
vehicle is higher. Even if the camera captures more than one
vehicle in front of the bus, the difference image will still em-
phasis the motion of the closer vehicle to the bus-mounted
camera. Fig. 2-(a) shows three selected image frames of a
longer sequence acquired by a camera mounted on a Toronto
Transit Commission (TTC) bus on route in one of the streets
of Toronto. Fig. 2-(b) shows the corresponding difference
images with the three bright white points on the license plate
of the 4x4 vehicle corresponding to the good features that the
tracker algorithm was able to select and successfully track
between image frames. The images clearly show that key
features are correctly detected and tracked over time. The
displacement of these tracked features between image frames
will give the relative speed of the tracked vehicle, knowing
that the video camera is recording at 30 frames per second.
Given that we know the speed of the bus, through an inte-
grated low cost GPS/Dead Reckoning system, we can esti-
mate the speed of the tracked vehicle.

2.6 Stereo Analysis

Stereo analysis is a process of extracting scene depth
information by measuring the disparity of corresponding
points between left and right binocular images.

In future work we will make use of the stereo bus-
mounted camera by employing a stereo algorithm to estimate
the relative distance between the bus-mounted cameras (the
observer) and the tracked vehicles visible in the image. This
will allow the tracking module to reject objects that are too
close or too distant, thus giving a more accurate estimate of
the relative speed of the tracked vehicle. Tracking features
on objects that are too close to the observer can be prone
to errors due to the difficulty of accurately estimating large
displacements typical of close objects. The estimated dis-
parities will also be used to allow the tracker to focus on
tracking feature points that have similar disparity estimates
(low variance disparities) and where there are no disparity
discontinuities (high variance disparities) in between them
indicating that they belong to the same vehicle.

3 Conclusion
This paper has presented research-in-progress to develop

a mobile, bus-mounted machine vision technology for tran-
sit and traffic monitoring in urban corridors, as required by
Intelligent Transportation Systems. The ongoing research
builds on existing and tested vision techniques as a start-
ing point from which we continue further development, aug-
menting them with enhancements suitable for the new appli-
cation at hand. The developed vision modules will be inte-
grated into a sophisticated dynamic machine vision system
that will be mounted on transit buses and calibrated to work
at optimum performance.
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