Goal: non-blocking data structures

Data structures that can be accessed concurrently by many processes are
 • important
 • hard to design
 • hard to prove correct

We focus on linearizable, non-blocking data structures.
Transactional memory

Enclose each data structure operation in an atomic transaction.

Pros:
- simple to design
- simple to prove correct

Cons:
- less efficient than hand-crafted data structures
- coarse-grained transactions limit concurrency

Right solution for “casual” data structure designers.
Direct implementations

Handcrafted non-blocking implementations from hardware primitives.

Pros:
- allows good efficiency
- allows high degree of concurrency

Cons:
- hard to get implementation (provably) right

Right solution for designing libraries of data structures.
Key difficulty of implementing data structures from hardware primitives:

- Data structure operations access several words atomically
- Hardware primitives operate only on single words
Example: multiset

Multiset can be represented as a sorted, singly linked list with nodes storing keys and multiplicities.

\[\text{DELETE}(B, 2): \]

```
A 3 → B 2 → D 4
```
Example: multiset

Multiset can be represented as a sorted, singly linked list with nodes storing keys and multiplicities.

\textbf{DELETE}(B, 2):

\begin{align*}
\text{A} & | 3 \\
\text{B} & | 2 \\
\text{D} & | 4
\end{align*}
Example: multiset

How to add some copies of a key to the multiset.

\textbf{INSERT}(B, 3):

\[
\begin{array}{c}
A \ 3 \\
\rightarrow \\
B \ 2 \\
\rightarrow \\
D \ 4
\end{array}
\]
Example: multiset

How to add some copies of a key to the multiset.

\textsc{Insert}(B, 3):

\begin{itemize}
 \item A 3
 \item B 2
 \item D 4
\end{itemize}

Trevor Brown
Pragmatic Primitives for Non-blocking Data Structures
Problems arise if we concurrently \textsc{INSERT}(B, 3) and \textsc{DELETE}(B, 2).

1. Each operation prepares to do its CAS.
2. \textsc{INSERT} occurs
3. \textsc{DELETE} occurs, three copies of B are lost.

\textsc{DELETE} should succeed only if node B is unchanged.

Need multi-word primitives.
Problems arise if we concurrently \(\text{INSERT}(B, 3) \) and \(\text{DELETE}(B, 2) \).

1. Each operation prepares to do its CAS.
2. \text{INSERT} occurs
3. \text{DELETE} occurs, three copies of \(B \) are lost.

\(\text{DELETE} \) should succeed only if node \(B \) is unchanged.

Need multi-word primitives.
Example: multiset

Problems arise if we concurrently \texttt{INSERT}(B, 3) and \texttt{DELETE}(B, 2).

Each operation prepares to do its CAS.

1. \texttt{INSERT} occurs
2. \texttt{DELETE} occurs, three copies of \textit{B} are lost.

\texttt{DELETE} should succeed only if node \textit{B} is unchanged.

Need multi-word primitives.
Example: multiset

Problems arise if we concurrently \textsc{insert}(B, 3) and \textsc{delete}(B, 2).

Each operation prepares to do its CAS.

1. \textsc{insert} occurs
2. \textsc{delete} occurs, three copies of \emph{B} are lost.

\textsc{delete} should succeed \textbf{only} if node \emph{B} is unchanged.

Need multi-word primitives.
Our approach

Build “medium-level” primitives that can access multiple words.
- higher-level than CAS or LL/SC
- lower-level than full transactional memory

Advantages:
- General enough to be used in many data structures
- Specialized enough to create quite efficient implementations
- Modular proof of correctness: large parts can be reused
Our primitives work on data records.

Each data record has
- some mutable fields (one word each)
- some immutable fields

Use a data record for some natural “unit” of a data structure
- node in a tree
- entry in a table
Our primitives extend load-link (LL) and store-conditional (SC).

LL/SC object
- stores a single word
- LL reads value stored
- SC(ν) (store-conditional) writes ν only if value has not changed since last LL by process performing SC.
LLX(r) returns a snapshot of the mutable fields of r

SCX(V, R, field, new) by process p
- writes value new into field, which is a mutable field of a data record in V
- finalizes all data records in $R \subseteq V$
- only if no record in V has changed since p’s LLX on it

After a data record is finalized, no further changes allowed.
Example: removing all copies of a key in multiset

\textbf{DELETE}(B, 2) using LLX and SCX.
Use one data record for each node.

1. \textbf{LLX}(A)
 \[\langle A.\text{count} = 3, A.\text{next} = B \rangle \]

2. \textbf{LLX}(B)
 \[\langle B.\text{count} = 2, B.\text{next} = D \rangle \]

3. \textbf{SCX}(\langle A, B \rangle, \langle B \rangle, A.\text{next}, D)
 - changes $A.\text{next}$ to D
 - finalizes B
 - succeeds only if no changes since LLXs on A and B

A 3 → B 2 → D 4
Example: removing all copies of a key in multiset

DELETE\((B, 2)\) using LLX and SCX. Use one data record for each node.

\[
\begin{align*}
\text{LLX}(A) & \rightarrow \langle A.\text{count} = 3, A.\text{next} = B \rangle \\
\text{LLX}(B) & \rightarrow \langle B.\text{count} = 2, B.\text{next} = D \rangle \\
\text{SCX}(\langle A, B \rangle, \langle B \rangle, A.\text{next}, D) & \quad \text{changes } A.\text{next} \text{ to } D \\
& \quad \text{finalizes } B \\
& \quad \text{succeeds only if no changes since LLXs on } A \text{ and } B
\end{align*}
\]
Others have built medium-level multi-word primitives.

- Large LL/SC objects (Anderson Moir 1995, ...)
 ⇒ unable to access multiple objects atomically

- Multi-word CAS (Israeli Rappoport 1994, ...)
 ⇒ more general, less efficient

- Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
 ⇒ even more general, less efficient

- k-compare-single-swap (Luchangco Moir Shavit 2009)
 ⇒ lacks ability to finalize
 ⇒ less efficient for some applications
Others have built medium-level multi-word primitives.

- Large LL/SC objects (Anderson Moir 1995, ...) ⇒ unable to access multiple objects atomically
- Multi-word CAS (Israeli Rappoport 1994, ...) ⇒ more general, less efficient
- Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...) ⇒ even more general, less efficient
- k-compare-single-swap (Luchangco Moir Shavit 2009) ⇒ lacks ability to finalize
 ⇒ less efficient for some applications
Others have built medium-level multi-word primitives.

- Large LL/SC objects (Anderson Moir 1995, ...)
 ⇒ unable to access multiple objects atomically
- Multi-word CAS (Israeli Rappoport 1994, ...)
 ⇒ more general, less efficient
- Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...)
 ⇒ even more general, less efficient
- k-compare-single-swap (Luchangco Moir Shavit 2009)
 ⇒ lacks ability to finalize
 ⇒ less efficient for some applications
Others have built medium-level multi-word primitives.

- Large LL/SC objects (Anderson Moir 1995, ...) ⇒ unable to access multiple objects atomically
- Multi-word CAS (Israeli Rappoport 1994, ...) ⇒ more general, less efficient
- Multi-word RMW (Afek Merritt Taubenfeld Touitou 1997, ...) ⇒ even more general, less efficient
- k-compare-single-swap (Luchangco Moir Shavit 2009) ⇒ lacks ability to finalize
 ⇒ less efficient for some applications
More detailed specification: LLX

LLX(r) can return one of the following results.

- a **snapshot** of mutable fields of r
- **FINALIZED** (iff r has been finalized by an SCX)
- **FAIL** (in our implementation this happens only if a concurrent SCX accesses r)

We also allow **reads** of individual mutable fields.
Before calling SCX\((V, R, field, new)\), process \(p\) must get a snapshot from an LLX\((r)\) on each record \(r\) in \(V\).

For each \(r\) in \(V\), the last LLX\((r)\) by \(p\) is linked to the SCX.

If any \(r\) in \(V\) was changed since the linked LLX\((r)\) \(\Rightarrow\) SCX returns \texttt{FAIL}.

Non-failed SCX sets \(field \leftarrow new\) and finalizes records in \(R\).

Spurious failures of SCX are allowed.
Progress properties of LLX and SCX

Individual LLXs and SCXs are wait-free, but may fail.

- If LLXs and SCXs are performed infinitely often, they succeed infinitely often.
- If SCXs are performed infinitely often, they succeed infinitely often.

Also, if no overlap between V-sets of SCX’s, all will succeed.
Individual LLXs and SCXs are wait-free, but may fail.

- If LLXs and SCXs are performed infinitely often, they succeed infinitely often.
- If SCXs are performed infinitely often, they succeed infinitely often.

Also, if no overlap between \(V \)-sets of SCX’s, all will succeed.
Individual LLXs and SCXs are wait-free, but may fail.

- If LLXs and SCXs are performed infinitely often, they succeed infinitely often.
- If SCXs are performed infinitely often, they succeed infinitely often.

Also, if no overlap between V-sets of SCX’s, all will succeed.
Key idea of implementation

Lock-free Locks

- “Locks” on data records acquired by SCX operations
- If a record you need is locked by another SCX, you can help that SCX and release lock
- Finalized records remain permanently locked

Based on cooperative technique of Turek et al. [1992] and Barnes [1993]
SCX records

Each SCX creates an **SCX record**.

An SCX record contains all information needed to help SCX.

<table>
<thead>
<tr>
<th>V</th>
<th>R</th>
<th>field</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>expected values</td>
<td>(for CAS steps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$state$</td>
<td>bit</td>
</tr>
</tbody>
</table>
Add two fields to each data record r:

- **info**: pointer to SCX record of last SCX that locked r
- **marked**: boolean used to finalize r

```
A 3
0

B 2
0

D 4
0
```

Expected value for CAS comes from LLX.

⇒ **CAS succeeds** only if info field unchanged since LLX
Add two fields to each data record r:
- $info$: pointer to SCX record of last SCX that locked r
- $marked$: boolean used to finalize r

```
A 3
B 2
D 4
```

Expected value for CAS comes from LLX.
\Rightarrow CAS succeeds only if info field unchanged since LLX.
Add two fields to each data record r:

- **info**: pointer to SCX record of last SCX that locked r
- **marked**: boolean used to finalize r

Expected value for CAS comes from LLX.

\Rightarrow **CAS succeeds** only if info field unchanged since LLX
Structure of SCX algorithm

SCX(V, R, field, new)

create SCX record s
for each r in $s.V$
 [lock r]
 CAS $s.\text{new}$ into $s.\text{field}$
 $s.\text{state} \leftarrow \text{committed}$
end SCX
Structure of SCX algorithm

\[
\text{SCX}(V, R, \text{field}, \text{new}) \ \text{HELP}(s) \\
\text{create} \ \text{SCX} \ \text{record} \ s \\
\text{for each} \ r \ \text{in} \ s. V \\
\quad [\text{lock} \ r] \\
\quad \text{CAS} \ s.\text{new} \ \text{into} \ s.\text{field} \\
\quad s.\text{state} \leftarrow \text{committed} \\
\text{end SCX} \ \text{HELP}
\]
Help algorithm

\[
\text{HELP}(s) \\
\text{for each } r \text{ in } s.V \\
\text{try to CAS } s \text{ into } r.info \\
\text{if } r.info \neq s \text{ then} \\
\quad \text{if } s.\text{locksSucceeded} \text{ then} \\
\quad\quad \text{return TRUE % Someone else finished the operation} \\
\quad \text{else} \\
\quad\quad s.state \leftarrow \text{aborted} \\
\quad \text{return FALSE} \\
\text{s.\text{locksSucceeded} } \leftarrow \text{TRUE} \\
\text{r.marked } \leftarrow \text{TRUE} \text{ for each data record in } R \\
\text{CAS } s.\text{new} \text{ into } s.field \\
\text{s.state } \leftarrow \text{committed} \\
\text{return TRUE} \\
\text{end HELP}
\]
Key things to prove

- Locking correctly protects all mutable fields of a record
- All helpers of an SCX agree on outcome (failed/succeeded)
- No ABA problems on fields accessed by CAS
- Progress properties
Problems arise if different SCX operations lock records in different orders.

1. p locks A, B
2. q locks B, A
3. Real locks: deadlock!
4. Lock-free locks: abort & retry, but repeat forever \Rightarrow livelock!

Need SCXs to “lock” in consistent order (\Rightarrow one will eventually succeed)
Progress: livelock

Problems arise if different SCX operations lock records in different orders.

1. p locks A, B
 q locks B, A

2. Real locks: deadlock!

3. Lock-free locks: abort & retry, but repeat forever \Rightarrow livelock!

Need SCXs to “lock” in consistent order (\Rightarrow one will eventually succeed)
Progress: livelock

Problems arise if different SCX operations lock records in different orders.

1. \(p \) locks \(A, B \)
2. \(q \) locks \(B, A \)

- Real locks: deadlock!
- Lock-free locks: abort & retry, but repeat forever \(\Rightarrow \) livelock!

Need SCXs to “lock” in consistent order
\(\Rightarrow \) one will eventually succeed
Problems arise if different SCX operations lock records in different orders.

1. p locks A, B
2. q locks B, A
3. Real locks: deadlock!

Lock-free locks: abort & retry, but repeat forever \Rightarrow livelock!

Need SCXs to “lock” in consistent order (\Rightarrow one will eventually succeed)
Progress: livelock

Problems arise if different SCX operations lock records in different orders.

1. p locks A, B
2. q locks B, A
3. Real locks: deadlock!
4. Lock-free locks: abort & retry, but repeat forever \Rightarrow livelock!

Need SCXs to “lock” in consistent order (\Rightarrow one will eventually succeed)
Progress: livelock

Problems arise if different SCX operations lock records in different orders.

1. p locks A, B
2. q locks B, A
3. Real locks: deadlock!
4. Lock-free locks: abort & retry, but repeat forever \Rightarrow livelock!

Need SCXs to “lock” in consistent order (\Rightarrow one will eventually succeed)
Avoiding livelock intelligently

Constraint

After SCX’s stop succeeding, eventually all new SCX’s must have consistent order on V-sets.

Easy to satisfy, because you can ignore concurrency.
With no contention:
SCX performs
- $k + 1$ CAS steps if it depends on k LLXs
- $f + 2$ writes if it finalizes f data records

LLX only performs reads.

With contention, LLXs and SCXs may have to help and/or retry.

Future work: Amortized complexity bounds with contention.
Summary

Contributions:

- Semantics of LLX and SCX
 (could be implemented, e.g., with HTM)
- Vastly simplifies proofs of correctness for non-blocking data structure implementations

Further work:

- VLX (generalizes validate instruction)
- Non-blocking balanced BSTs
 (and template for building other trees)
- Experimental results
Extra slides
When k-compare-single-swap (kCSS) is inefficient

Example: tree where each node has 32 child pointers (or keys).

\[
\begin{array}{c}
\alpha \\
\bullet \\
\delta \\
\end{array}
\quad \text{DELETE}(c) \quad \begin{array}{c}
\alpha \\
\text{[nil]} \\
\delta \\
\end{array}
\]

\[
\begin{array}{c}
c \\
\end{array}
\]

Requires a 33-compare-single-swap operation

With no contention:
- kCSS: 2 CASs, 2 writes, 66 non-cached reads
- SCX+LLXs: 2 CASs, 1 write, \(\leq 13\) non-cached reads