
Harnessing Epoch-based Reclamation for Efficient
Range Queries

Maya Arbel-Raviv
Technion - Israel Institute of Technology

Trevor Brown
Institute of Science and Technology Austria

Abstract
Concurrent sets with range query operations are highly desir-
able in applications such as in-memory databases. However,
few set implementations offer range queries. Known tech-
niques for augmenting data structures with range queries
(or operations that can be used to build range queries) have
numerous problems that limit their usefulness. For exam-
ple, they impose high overhead or rely heavily on garbage
collection. In this work, we show how to augment data struc-
tures with highly efficient range queries, without relying on
garbage collection. We identify a property of epoch-based
memory reclamation algorithms that makes them ideal for
implementing range queries, and produce three algorithms,
which use locks, transactional memory and lock-free tech-
niques, respectively. Our algorithms are applicable to more
data structures than previous work, and are shown to be
highly efficient on a large scale Intel system.

1 Introduction
Concurrent sets are of great interest in applications such as
relational databases, where they can be used as fast indexes.
Realistic database workloads make heavy use of range query
operations (RQs), which return all of the keys in some range
[low,hiдh] that are in the set. For example, consider the well
known TPC-C benchmark, which simulates a large scale
online transaction processing application for a wholesale
supplier. In TPC-C, approximately 45% of all database trans-
actions perform RQs over database indexes. Unfortunately,
most concurrent set implementations do not support RQs,
so they cannot be used for this purpose.
In this work, we develop a general technique for adding

support for linearizable RQs to an existing concurrent set.
The main challenge in implementing RQs is appropriately
handling concurrent modifications to the data structure. If
the data structure does not change throughout a RQ opera-
tion, then a RQ can be accomplished by a simple traversal
over the relevant key range in the data structure. However,
in the presence of concurrent updates, a traversal is unlikely
to be linearizable.

Some of this work was done while Trevor Brown was a postdoctoral re-
searcher at the Technion, and some was done while Maya Arbel-Raviv was
visiting the University of Toronto and Trevor Brown was a PhD student
there.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
2018. ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178489

We observe that it is conceptually straightforward to im-
plement RQs with two assumptions: (1) given a pointer to a
node, a process is able to determine whether the node was
inserted (or deleted) before or after a given RQ, and (2) a
process performing a RQ has pointers to all nodes deleted
during the RQ. Given these assumptions, a RQ can be imple-
mented as follows. First, traverse the data structure, and save
each key whose node was inserted before the RQ and either
not deleted, or deleted after the RQ. Then, for each node
deleted during the RQ, save the key if the node was inserted
before the RQ and deleted after the RQ. Finally, return the
set of saved keys.
It turns out that assumption (2) is easily satisfied by any

algorithm that reclaims memory using epoch-based reclama-
tion (EBR). EBR can be used with any data structure, and is
close in spirit to automatic garbage collection. It requires lit-
tle effort on the part of a programmer, and can be extremely
fast [9]. EBR is a popular choice in unmanaged languages
such as C and C++, where one must manually perform mem-
ory reclamation.
The fascinating thing about EBR is that, in the process

of ensuring that nodes are not freed until no process can
access them, it essentially implements an efficient algorithm
for saving all nodes deleted during a given operation. Each
deleted node is placed in a limbo list before being freed, and it
remains accessible until each process has started a new oper-
ation, since the node was deleted. So, for example, any nodes
deleted during a RQ remain accessible until the entire RQ ter-
minates. (This is also true for read-copy-update (RCU) [22],
which has limbo lists and satisfies the same property.)

In this work, we present a novel technique for adding
RQs to concurrent data structures that reclaim memory us-
ing EBR. A process performs a RQ by traversing the data
structure and collecting the set of keys it contains. Then, it
traverses the limbo lists to locate any keys that it may have
missed due to concurrent deletion operations. In order to
satisfy assumption (1), whenever a RQ encounters a node
in the data structure, or in a limbo list, it needs a way to
determine whether the node was inserted or deleted before
or after the RQ. We solve this problem by adding a global
timestamp, which is incremented by each RQ (using a fast
fetch-and-increment instruction), and augmenting each node
with an insertion time and a deletion time that contains the
value of the timestamp at the exact moment the node was
inserted or deleted.

https://doi.org/10.1145/3178487.3178489

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

This timestamping mechanism allows us to linearize RQs
at the increment of the timestamp. Explicitly knowing when
each RQ is linearized allows us to design a novel technique
for experimentally validating the correctness of our RQ im-
plementations. Furthermore, it led us to discover (and fix)
some extremely subtle bugs in our code (e.g., with validation
errors that appeared once every 1,000 executions).

We present several different variants of our technique: one
that uses locks, one that uses hardware transactional memory
(HTM), and one that offers wait-free RQs (for data structures
with wait-free traversals). Our technique can be applied to
many more data structures than previous approaches.

We demonstrate each variant of our technique by showing
how RQs can be added to a large variety of data structures.
This includes several advanced data structures (studied in our
experiments) that cannot be used with the leading techniques
for adding RQ support. We also perform experiments which
demonstrate that our RQs are extremely fast for small ranges,
and are also fast for extremely large ranges, matching the
performance of techniques designed specifically to take a
snapshot of an entire data structure.
Contributions
• Wepresent three new algorithms for adding RQ support to

existing concurrent sets, using locks, HTM and lock-free
techniques, respectively.

• Our new algorithms can be used with many more data
structures than previous techniques (see §2). We also ad-
dress a hole in the theoretical underpinnings of two pre-
vious approaches [13, 24] (see §3).

• We demonstrate our algorithms by applying them to six
different data structures. Experiments over a variety of
workloads, including a realistic database application, show
that our algorithms are extremely fast.

2 Related work
A small selection of data structures have been carefully de-
signed with support for RQs [6, 26] or iteration [7, 8, 25].
Their respective techniques are closely tied to the underlying
data structures, and it is difficult to see how they could be
generalized. Instead, we are interested in general techniques
for adding RQs to an existing concurrent data structure.
One easy way to implement RQs is to use transactional

memory (TM). TM allows blocks of code to be executed as
transactions that either commit and take effect atomically,
or abort and have no effect on shared memory. TM can be
implemented in software (STM) [14, 16] or hardware (HTM)
(on recent Intel and IBM processors). STM currently has high
overhead, and HTM has limitations that make transactions
more likely to abort as they access more memory (making
large RQs exceedingly likely to abort).

Read-log-update (RLU) [21] is a synchronization technique
that combines locking, read-copy-update (RCU) [22] and
techniques borrowed from STM. It yields relatively simple
implementations, but it requires redesigning a data structure

from scratch. Readers see a snapshot of the data structure, so
RQs are easy. However, like RCU, updates suffer from high
overhead, since every update must invoke an operation called
RLUSync, which waits for all concurrent operations to fin-
ish. (The authors suggest accelerating updates by deferring
RLUSync calls, but this makes all operations non-linearizable.)
One can also implement RQs by explicitly taking a snap-

shot of the data structure, and then collecting keys from the
snapshot. Several techniques have been proposed for taking
snapshots of a vector [1, 5, 20].
Petrank and Timnat generalized the approach in [20] to

take a snapshot of a concurrent set [24], and implemented an
iteration operation. They also gave correctness and progress
proofs, and demonstrated their technique on a linked list
and a skip-list.
At a high level, they introduced a Snap-collector object,

which multiple threads can use to collaboratively build a
snapshot of the data structure. The Snap-collector is essen-
tially a collection of reports, each of which represents the
insertion or deletion of a key during an iteration operation.
Whenever there is an active iteration operation, updates that
change the data structure must report their changes, and
searches and other updates must also report changes they
observe (to facilitate a complex linearization argument).
The Snap-collector has a few significant downsides.
1. It assumes the existence of a data structure traversal proce-

dure, but the authors do not explain what such a procedure
should guarantee. (We address this in §3.)

2. It can only be used with data structures in which deletions
mark nodes as logically deleted before physically deleting
them, and are linearized when the node is marked.

3. It is not clear how the transformation could be applied to
data structures that offer group updates, which insert/delete
many keys atomically, or to balanced trees and other, more
complex data structures.

4. Since each iteration operation takes a snapshot of the
entire data structure, small range queries cannot be im-
plemented efficiently from iteration operations.

5. The Snap-collector creates many small auxiliary objects,
including reports, wrappers for reports, and wrappers
for nodes. This increases its space complexity and adds
allocation and reclamation overhead.

Recently, the Snap-collector was extended to support more
efficient RQs [13] by addressing the fourth downside, above.
However, it still suffers from the others. Moreover, this ex-
tended algorithm causes all updates and searches to suffer
additional overhead for each concurrent RQ.

3 Defining correct traversals
We consider data structures in which the keys of nodes are
not changed directly. (Instead, to change a node’s key, one
replaces the node with a new copy.) As in [24], we assume
the existence of a data structure traversal procedure. This
traversal procedure serves as the skeleton of a range query

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

algorithm. The traversal determines which nodes are visited,
and in which order. When the traversal visits a node, it in-
vokes a function Visit provided by the range query algorithm.
We now address the omission in [24] by giving a property
that this procedure must satisfy.

COLLECT: The traversal procedure must visit each node
that contains a key in [low,hiдh] and is in the data structure
at all times throughout the traversal. The traversal must not
visit any node whose key was never in the data structure
throughout the traversal.

We believe this is also the correct property for traversals
in [24] (where [low,hiдh] is the universe). COLLECT shares
some similarities to a complex property called locality that
was recently proposed in an unpublished manuscript [2].

It is straightforward to argue that sorted lists (resp., skip-
lists) satisfy the COLLECT property, since it follows almost
immediately from the structural properties of the list (resp.,
bottom level in the skip-list). However, it is much more diffi-
cult to reason about trees. For instance, consider an internal
(node-oriented) BST in which a key k at an internal node u
is deleted by locating its successor k ′ at a leaf v , swapping
the two nodes, and deleting v . In such a data structure, a
traversal can visit u before it is swapped with v , then visit u
again after they are swapped, missing v altogether, and vio-
lating COLLECT. One can imagine similar problems arising
because of rotations in balanced trees.

In the rest of this section, we show how one can perform
traversals that satisfy the COLLECT property for a large
class of tree-based data structures.

3.1 Depth-first search (DFS) satisfies COLLECT for
many trees

Consider a binary search tree that implements a set (possibly
with group updates). Suppose search operations in this tree
are exactly the same as in a sequential BST. Note that this
describes many state-of-the-art concurrent search trees (e.g.,
[11, 15, 17, 23]). We show that a simple DFS-based traversal
satisfies COLLECT for any such data structure, regardless of
how its updates are implemented.
Figure 1 shows the search operation and traversal pro-

cedure for an internal BST. We give a short proof that this
traversal procedure satisfies COLLECT. This procedure and
proof are easily extended to handle external (leaf-oriented)
BSTs, and trees in which nodes contain many keys.

The crucial observation is that each path followed during a
traversal can be viewed as a search. Thus, if a traversalmisses
a node in the data structure, we can construct an execution
that performs an incorrect search (yielding a contradiction).

Proof. To obtain a contradiction, suppose an invocationT of
Traversal(low,hiдh) violates COLLECT. Two cases arise.

Case 1: some node u containing a key k ∈ [low,hiдh] is in
the data structure at all times throughout T , but T does not
visit u. Suppose we add, to this execution, an invocation S

1 Search(key)
2 node = root
3 while node , ⊥
4 nodekey = node .key
5 i f key = nodekey then return node .value
6 e l se i f key < nodekey then node = node .lef t
7 e l se i f key > nodekey then node = node .r iдht
8 return ⊥

9 Traversal(low, hiдh)
10 s = empty stack
11 s .push(root)
12 while not s .isEmpty()
13 node = s .pop()
14 i f node , ⊥ then
15 nodekey = node .key
16 i f low ≤ nodekey ≤ hiдh then Visit(node)
17 i f low < nodekey then s .push(node .lef t)
18 i f hiдh > nodekey then s .push(node .r iдht)

Figure 1. Internal BST search operation, and DFS-based
traversal procedure.

of Search(k) that begins at the same time as T . S begins by
reading the root pointer (at line 2). We schedule this read so
it happens at the same time as T reads the root pointer (at
line 11). Thus, S and T both visit the same root node.

Next, S andT both read the key nodekey contained in that
node (lines 4 and 15 respectively). Without loss of generality,
suppose k < nodekey, so S will read node.left (at line 6). Since
low ≤ k , we have low < nodekey, soT will also read node.left
(at line 17). We schedule S’s read of node.left so it happens
at the same time as T ’s read. Thus, both the search and the
traversal visit the same node.

By repeating this process inductively, we can schedule all
of S ’s reads so they return the same values as reads performed
in T . Consequently, S visits a subset of the nodes visited by
T . Therefore, since T does not visit u, neither does S . Since
we have assumed that the data structure is a search tree,
no other node in the tree can contain k . So, S will return ⊥,
despite the fact that u is in the data structure at all times
throughout the search. This contradicts our assumption that
searches are correct.
Case 2: T visits a node u whose key k ′ was never in the

data structure throughout T . Using the same approach as
above, we can construct a Search(k ′) operation that visits
u, and consequently returns u’s value, contradicting our
assumption that searches are correct. □

We stress that our technique for adding RQ operations will
work with any traversal procedure that satisfies COLLECT.
The data structure constraints described above are sufficient,
but not necessary, for a traversal that satisfies COLLECT.

4 Algorithm
We now describe our technique for adding range query (RQ)
operations to a data structure. We define a new RQ Provider
abstract data type (ADT) and give three implementations of

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

it. Then, we explain how it can be used to implement RQs.
We make the following assumptions about the data structure:

1. There is a traversal algorithm that satisfies COLLECT.
2. Every update operation that changes the set of keys

is linearized at a write or CAS, and the programmer
knows where this write or CAS occurs in the code.

4.1 RQ Provider ADT
All processes operating on a data structure share a RQProvider,
and RQs use it to collect the sets of keys that they will re-
turn. A RQ Provider offers operations: TraversalStart(low,
hiдh), TraversalEnd(), Visit(node),UpdateWrite(addr, newval,
inodes, dnodes) and UpdateCAS(addr, oldval, newval, inodes,
dnodes).

A process invokes TraversalStart(low, hiдh) at the start of
a RQ. (In our implementations, the RQ is linearized at this
invocation.) Then, the process traverses the data structure,
and invokes Visit(node) for each node it visits. After the
traversal, the process invokes TraversalEnd(), which returns
all keys in [low,hiдh] that were in the data structure when
the RQ was linearized.
UpdateWrite and UpdateCAS are not used by RQ opera-

tions. Instead, they are used by update operations to relay
information to range queries about when nodes are inserted
and/or deleted. In each update operation that changes the
set of keys in the data structure, a process must invoke Up-
dateWrite(addr ,newval , inodes, dnodes) orUpdateCAS(addr ,
oldval , newval , inodes, dnodes) instead of the original write
∗addr = newval or CAS(addr , oldval , newval) where the
update would have been linearized. The argument inodes
(resp., dnodes) should contain pointers to all nodes that will
be inserted (resp., deleted) by the update.

4.2 Epoch-based reclamation ADT
We specified the RQ Provider ADT without mentioning EBR
to allow implementations that do not rely on EBR. However,
all of our implementations harness EBR to achieve high effi-
ciency. So, we briefly describe the EBR ADT that we assume.

EBR provides four operations: StartOp, EndOp, Retire and
GetLimboLists. The first three are standard in all implementa-
tions of EBR. StartOp and EndOp are invoked at the beginning
and end of each data structure operation, and Retire(node) is
invoked after a node is removed from the data structure. Re-
tire and GetLimboLists can be invoked only between StartOp
and EndOp. Intuitively, GetLimboLists returns all limbo lists
containing nodes deleted during the current data structure
operation. The programmer need not be aware of GetLim-
boLists, as it is only invoked by our RQ Provider implementa-
tions. We produced an efficient implementation of this ADT.
Details appear in the full version of this paper.

4.3 Lock-based implementation
This implementation uses unbounded timestamps, and locks
which can be acquired either by several processes at once in

2 5 8 12 15

TraversalStart(4, 13): set TS = 9, Visit(2), Visit(5)

2 5 8 12 156

Insert(6) at TS = 9, Visit(6)

Delete(12) at TS = 9, Visit(8), Visit(15)

2 5 8 12 156

RQ Provider = {5}

RQ Provider = {5}

RQ Provider = {5, 8}

TraversalEnd() RQ Provider = {5, 8, 12}

i:7 d:⊥ i:4 d:⊥ i:2 d:⊥ i:7 d:⊥ i:5 d:⊥

i:7 d:⊥ i:4 d:⊥ i:2 d:⊥ i:7 d:⊥ i:5 d:⊥i:9 d:⊥

i:7 d:⊥ i:4 d:⊥ i:2 d:⊥ i:7 d:9 i:5 d:⊥i:9 d:⊥

Figure 2. Lock-based RQ Provider: example execution.

shared mode or by a single process in exclusive mode. There
is a global timestamp TS , which is protected by a global
lock L. Each node is augmented with fields itime and dtime ,
which record the timestamp when the node was inserted
and deleted, respectively. Initially, each of these fields con-
tains a special value ⊥, which indicates that the timestamp
has not been set. For simplicity, we assume that each node
contains one key, which we denote by node .key. (However,
it is straightforward to support multiple keys per node, and
we have implemented support for this in our code.)

High-level description Each update acquires L in shared
mode (allowing concurrency) and reads TS atomically with
the write or CAS where the update is linearized. Then, after
this write or CAS, it sets the itime (resp., dtime) fields of the
nodes it inserted (resp., deleted).
Each RQ acquires L in exclusive mode to increment TS

from t to t ′, and is linearized at this increment. We think of
the RQ as occurring between t and t ′, so that updates at time
t occur before the RQ, and updates at time t ′ occur after the
RQ. The RQ traverses the data structure, invoking Visit(node)
for each node it encounters. Visit(node) uses the node’s itime
and dtime to determine whether it was in the data structure
when the RQ was linearized. If so, Visit saves the node in the
RQ Provider so it can be returned by TraversalEnd. Finally,
it traverses the limbo lists maintained by EBR to locate any
keys in the range that were deleted after the RQ and were
missed during the traversal.

Example execution Figure 2 shows an example execution
with a RQ over [4, 13], which is linearized before an Insert(6)
and Delete(12). The RQ invokes Visit(2) and Visit(5), saving
5 in the RQ Provider since its node was inserted at time 4,
which is before the RQ. It then invokes Visit(6), but 6 is not
saved since its node was inserted at time 9, after the RQ.
After the Delete(12), the RQ invokes Visit(8) and Visit(15),
saving 8 since its node was inserted at time 2, before the RQ.
Finally, TraversalEnd visits all nodes deleted during the RQ,
and sees that 12 was deleted at time 9, after the RQ. So, it
returns 12, along with the previously saved keys.

Detailed description Pseudocode for our implementation
appears in Figure 3. We first assume that the data struc-
ture physically deletes nodes at the same time as it logically

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

deletes their keys. Then, we will show how to handle data
structures in which nodes are first logically deleted, and later
physically deleted (possibly by a different thread).

Recall that a process invokes Retire(node) to add node to a
limbo list only after node is removed from the data structure.
Thus, one must take care to avoid the following situation.
Suppose a process p performs an UpdateCAS or UpdateWrite
that deletes a node during a RQ by another process q, and
q’s RQ misses this node during its traversal. Before p can add
the node to a limbo list (using Retire), q traverses the limbo
lists, and fails to find the node. In this case, q’s RQ will fail
to return the key stored in this node, even though it was in
the data structure when the RQ was linearized.

To avoid this situation, UpdateCAS begins by announcing
any nodes that would be deleted by the update in a single-
writer multi-reader array, before deleting these nodes. By
having UpdateCAS announce the nodes it will attempt to
delete, we ensure that any node deleted during a RQ can
always be found, either in the data structure, or in process’
announcements, or in the limbo lists.

After announcing, UpdateCAS acquires L in shared mode,
reads TS , performs the CAS where the update is linearized
(the update CAS), and releases L. If the CAS succeeds, then
UpdateCAS sets the itime (dtime) fields of the nodes it in-
serted (deleted). Any deleted nodes are added to the current
limbo list using Retire (performing memory reclamation for
the underlying data structure). Then, UpdateCAS deletes its
announcements.
One might wonder why nodes’ itime fields are not set

before the update CAS. This approach would also work, as
long as the nodes being inserted can only be accessed by
the process that successfully inserts them. However, in some
data structures (especially lock-free ones), processes can help
one another perform operations, so several processes can
all attempt to insert the same node(s), and end up writing
conflicting values to their itime fields. By having a process
write to these nodes’ itime fields only after performing the
update CAS successfully, we ensure that only one process
writes to the itime field of each node. (We assume that only
one process will perform a successful update CAS or update
write for each operation.)

UpdateWrite is very similar to UpdateCAS, so it is omitted.
(Note that we do not change the linearization points of

updates. We simply add extra steps surrounding them.)
TraversalStart(low, hiдh) simply acquires L in exclusive

mode, then increments TS and immediately releases L. It is
linearized at the increment of TS .
Visit(node) invokes a helper function TryAdd(node, ⊥,

FromDataStructure). TryAdd first waits until node .itime has
been set. Then, it uses the itime to determine whether the
node was inserted before or after the RQ. If it was inserted af-
ter the RQ, then TryAdd terminates without saving node .key
in the RQProvider. Finally, ifnode .key is in [low,hiдh], TryAdd
saves node .key in the RQ Provider.

1 Global variables: TS , L
2 Shared variables for process p : announcep [1...]
3 Private variables for process p : timep , lowp , hiдhp , resultp

5 UpdateCAS(addr, oldval, newval, inodes, dnodes)
6 Announce all of the nodes in dnodes in announcep
7 L.acquireShared() // Read TS atomically with CAS
8 ts = TS
9 r es = CAS (addr, oldval, newval)
10 L.release()
11 i f r es = oldval then
12 for each node ∈ inodes do node.itime = ts
13 for each node ∈ dnodes
14 node.dtime = ts
15 Retire(node) // Add node to the appropriate limbo list
16 Remove all announcements in announcep
17 return r es

19 TraversalStart(low, hiдh)
20 resultp = ∅ ; lowp = low ;hiдhp = hiдh
21 L.acquireExclusive() // Update TS
22 TS = TS + 1
23 timep = TS
24 L.release()

26 Visit(node)
27 return TryAdd(node, ⊥, FromDataStructure)

29 TraversalEnd()
30 Collect pointers p1, ..., pk to other processes’ announcements
31 for each annptr ∈ p1, ..., pk // note: ∗annptr is a node pointer
32 TryAdd(∗annptr, annptr, FromAnnouncement)
33 l1, ..., lm = GetLimboLists() // Collect pointers to all limbo lists
34 for each list ∈ l1, ..., lm // Traverse limbo lists
35 for each node ∈ list do TryAdd(node, ⊥, FromLimboList)
36 return resultp

38 Private functions
39 TryAdd(node, annptr, source)
40 while node.itime = ⊥ do wait
41 i f node.itime ≥ timep then return // node inserted after RQ
42 // Check if/when node was deleted
43 i f source = FromDataStructure then
44 do nothing // node was not deleted when RQ was linearized
45 e l se i f source = FromLimboList then
46 while node.dtime = ⊥ do wait
47 i f node.dtime < timep then return // node deleted before RQ
48 e l se i f source = FromAnnouncement then
49 dtime = ⊥
50 while dtime = ⊥ and ∗annptr = node do dtime = node.dtime
51 i f dtime = ⊥ then
52 // loop exited because the process removed this announcement
53 // if the process deleted node, then it has now set node.dtime
54 dtime = node.dtime // reread dtime
55 i f dtime = ⊥ then return // the process did not delete node,
56 // but another process might have
57 i f dtime < timep then return // node deleted before RQ
58 i f node.key ∈ [low, high] then
59 add (node.key, node.value) to resultp

Figure 3. Lock-based RQ Provider

TraversalEnd starts by collecting pointers to all of the an-
nouncements made by other processes. (Each announcement
is a pointer to a node, and TraversalEnd collects pointers to

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

these announcements, so it can re-read them later, to see
if they still point to the same nodes.) Note that it must col-
lect the announcements before searching the limbo lists for
missing nodes, since processes first announce nodes they are
planning to delete, and only later add them to the limbo lists,
after successfully deleting them. Thus, by searching first in
the data structure, then in the announcements, then in the
limbo lists, we guarantee that we will not miss any nodes
deleted during the RQ.

For each announcement pointer annptr that TraversalEnd
collects, it invokes TryAdd(∗annptr , annptr , FromAnnounce-
ment). Each invocation of TryAdd waits until itime is set,
and terminates if the node was inserted after the RQ. Then,
it additionally waits at line 50 until either dtime is set, or
the node is no longer announced (by process that originally
announced it). Note that we cannot simply wait until dtime
is set, because the node was found in the announcements of
some process, which only indicates that the process would
like to delete the node. It does not guarantee that the node
will be deleted. Thus, dtime might never be set.

After waiting in the loop at line 50, if dtime is still not
set, then the loop exited because the node is no longer an-
nounced byp. Ifp had deleted the node, then it would have set
its dtime before removing its announcement. Thus, TryAdd
rereads node .dtime , after seeing that the announcement was
removed, to determine whether p deleted the node.
If node .dtime is still not set, then p has not deleted the

node. So, either (1) a different process deleted the node, or (2)
it has not been deleted. In case (1), TraversalEnd will find the
node in another process’ announcements, or in a limbo list.
In case (2), the node will have been found during the data
structure traversal, and saved in the RQ Provider by a previ-
ous call to TryAdd. In all other cases, node .dtime is set. If it
shows that the node was deleted before the RQ, then TryAdd
terminates without saving node .key in the RQ Provider. Oth-
erwise, TryAdd checks if node .key ∈ [low, hiдh], and, if so,
saves it in the RQ Provider.
Next, TraversalEnd traverses the limbo lists, and invokes

TryAdd(node, ⊥, FromLimboList) for each node. These in-
vocations of TryAdd are similar to the invocations for an-
nounced nodes, except that we can simply wait until dtime is
set, since we know that each node has already been deleted.
Finally, TraversalEnd returns the saved nodes at line 36.

Correctness Observe that the linearizability argument for
the original data structure operations goes through unchanged,
since we do not change the linearization point of any opera-
tion. We argue that RQs are linearizable.

First, we argue that nodes’ timestamps are accurate. Each
update that changes the data structure holds L in shared
mode when it reads ts = TS (at line 8) and performs the
write or CAS where it is linearized. Therefore, the timestamp
ts , which is written to any nodes inserted or deleted by the

update, is the exact value of the timestamp when the update
was linearized.

Next, we argue that, for each key k ∈ [low,hiдh] in the
data structure when the RQ was linearized, there is an invo-
cation I of TryAdd on some nodeu that contains k and was in
the tree when the RQ was linearized. Since we have assumed
a traversal procedure that satisfies COLLECT, if u was in the
data structure throughout the entire traversal, then we will
invoke TryAdd on it. If u was in the data structure when the
RQ was linearized, but was subsequently deleted (and the
traversal did not visit it), then TraversalEnd will find it either
in the announcements of the process that deleted it, or in a
limbo list, and invoke TryAdd on it.
Finally, we argue that I saves k in the RQ Provider (for

each I and k). Suppose, to obtain a contradiction, that I does
not add u .key = k in the RQ Provider. Three cases arise,
the first two of which are straightforward. Case 1: I saw at
line 41 that u was inserted after the RQ, or saw at line 47 or
line 57 that u was deleted before the RQ. This contradicts
our assumption that u was in the data structure when the
RQ was linearized. Case 2: I saw at line 58 that u .key <
[low,hiдh]. This contradicts our assumption that u .key =
k ∈ [low,hiдh].

Case 3: I saw dtime = ⊥ at line 55. In this case, some
process p announced u and later removed its announcement
without setting u .dtime . This implies that p did not delete u.
Note that I must have been invoked by TraversalEnd, after
the data structure traversal. If no other process deleted u,
then the traversal must have already invoked Visit(u), which
invoked TryAdd, which saved u .key in the RQ Provider (a
contradiction). On the other hand, if another process deleted
u, then u will be found in another process’ announcements,
or in a limbo list, and it will be passed to another invocation
of TryAdd. Thus, each case leads to a contradiction. □

Optimizations Recall that TryAdd does not save nodes
with dtime < timep in the RQ Provider. Suppose each pro-
cess has its own limbo lists, and they are implemented as
linked lists, with insertion at the head, as in the distributed
EBR algorithm DEBRA [9]. Then the nodes in limbo lists will
be sorted in descending order by dtime . Consequently, while
TraversalEnd is traversing the limbo lists, before it invokes
TryAdd, it can check if node .dtime , ⊥ and node .dtime <
timep . If so, it can immediately stop traversing that limbo
list, since all other nodes in the list were deleted before the
RQ.
Additionally, we can modify TraversalEnd so that it at-

tempts to skip any nodes deleted after the data structure
traversal has finished (meaning they were either inserted af-
ter the RQ, or were definitely visited during the data structure
traversal). We do this by reading TS at the start of Traversal-
End, storing it in a variable endTS , and skipping any nodes
in the limbo lists with dtime > endTS .

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

Supporting logical deletion We now show how our lock-
based RQ Provider can be modified to support data structures
in which nodes are marked as logically deleted, and are later
physically removed.
In such data structures, a deletion operation is typically

linearized at the step where it marks a node (the marking
step). Consequently, UpdateWrite or UpdateCAS should be
used to perform the marking step, not the physical deletion.
And, thednodes argument to these operations should contain
pointers to all nodes to be logically deleted.
We briefly describe the changes to the pseudocode in

Figure 3. UpdateCAS should no longer announce nodes in
dnodes , or invoke Retire to add nodes in dnodes to the cur-
rent limbo list, because these nodes are now only logically
deleted by the CAS. Instead, each update that physically
deletes node(s) must perform the announcements before
it physically deletes any node, invoke Retire after deleting
them, and then remove the announcements.
The remaining changes appear in TryAdd. At line 44, we

previously knew that the node was not deleted when the
RQ was linearized, simply because we found the node while
traversing the data structure. With logical deletion, this is
not necessarily true, so we check whether the node has been
logically deleted. (We assume the data structure provides a
predicate called IsLogicallyDeleted(node) for this purpose.) If
the node is not logically deleted, then it was not deleted when
the RQ was linearized. Otherwise, we wait until node .dtime
is set, and use it to determine whether the node was deleted
before or after the RQ (similar to line 46 and line 47).

Note that, in certain algorithms with logical deletion, one
process can physically delete a node thatwas logically deleted
by another process. In such an algorithm, the nodes in limbo
lists will not necessarily be ordered by dtime , so the first
optimization described above might not be applicable.

4.4 HTM-based implementation
Current HTM implementations are very fast, but they offer
no progress guarantees, and transactions can abort for any
reason. Thus, it is necessary to pair code that uses HTMwith
a fallback code path to be executed if a hardware transaction
aborts. (Typically, transactions are attempted several times
in hardware before the fallback code is executed.)

We show how HTM can be used to substantially improve
the performance of our lock-based RQ Provider. The most
significant bottleneck in our implementation is the acquisi-
tion of locks (in shared mode) in UpdateCAS. We use HTM
to mostly avoid the acquisition of locks in UpdateCAS.

More specifically, we replace lines 7 to 10 of Figure 3 with
an improved transactional version of that code, and execute
the original code only if a transaction fails to commit after
a fixed number of attempts (30 in our experiments). Each
transaction first checks if L has been acquired in exclusive
mode, and aborts if it has. Then, the transaction performs

lines 8 and 9 and commits. If L is acquired in exclusive mode
at any time during the transaction, the transaction will abort.
Note that the transaction only needs to read L. Conse-

quently, it scales much better than the original algorithm in
update-heavy workloads (as we will see in the experiments).

4.5 Lock-free implementation
There are two blocking components of the original lock-
based RQ Provider: the lock L, and the loops in TryAdd that
wait until a node’s itime and dtime fields are set. In this
section, we show how these blocking components can be
modified to produce a lock-free RQ Provider.
One easy way to produce a lock-free RQ Provider is to

use a powerful lock-free synchronization primitive such as
k-CAS [18]. A k-CAS operation atomically performs CAS
on k distinct memory addresses. So, for example, we could
replace the lock-based code between line 7 and line 14 of
Figure 3 with code that reads TS , then uses k-CAS to atom-
ically: perform the original update CAS, set all itime and
dtime fields in nodes being inserted/deleted, and verify that
TS has not changed since it was last read. This would elimi-
nate the use of locks, as well as the waiting in TryAdd (since
itime and dtime would be set atomically, with the update).
However, k-CAS is relatively expensive, so this approach
would be slow in practice.

Instead, we opt for a more lightweight approach. The idea
is to replace the critical sections in UpdateCAS and Traversal-
Start with lock-free code that accomplishes the same thing,
and then to handle missing itime and dtime values in a more
intelligent way. (We omit a discussion of UpdateWrite, but it
is similar.)

We use the lock-free double-compare-single-swap (DCSS)
primitive of Harris et al. [18]. DCSS takes 5 arguments: two
addresses, two expected values, and one new value. It atomi-
cally reads the two memory addresses, checks if they contain
the two expected values, and if so, writes the new value into
the second address. DCSS allows us to perform the update
CAS only if TS contains a specific timestamp. Thus, we
can replace the critical section in UpdateCAS with a loop
that repeatedly reads TS and performs DCSS until the DCSS
either succeeds, or fails because the original update CAS per-
formed by the underlying algorithm would also have failed
(not simply because TS has changed). The critical section in
TraversalStart can simply be replaced with a fetch-and-add
instruction on TS .
It remains to eliminate any waiting for itime and dtime

values to be set. The lock-free DCSS implementation guar-
antees progress by using helping. Before performing a DCSS,
a process first creates a descriptor object, which contains
all of the arguments to the DCSS operation. If a process is
prevented from making progress by some DCSS operation
O , then the process will use the information in the descriptor
for O to perform O , on behalf of the process that started O .

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

Wemake a straightforwardmodification: we add a payload
to each descriptor when it is created. The payload contains
pointers to all nodes that the DCSS would insert/delete if it
succeeds. We also have each process announce its descriptor
at the beginning of each DCSS, so that all processes can see
what it is doing.

In TryAdd, whenever a process encounters a node with an
itime or dtime field that is not set, it inspects the announced
descriptors (and their payloads) to find the process that is
currently trying to insert/delete the node. It then uses the
information in the descriptor to help the DCSS complete
(using the basic DCSS helping mechanism). In the process
of helping the DCSS complete, it learns whether the DCSS
was successful. When it finds the DCSS that successfully
inserted/deleted the node, it learns the correct time itime or
dtime value from the descriptor. (Recall that the arguments
to the DCSS are stored in the descriptor, and one of these
arguments is the value of TS when the DCSS took place.)
We briefly explain the progress guarantees for the RQ

Provider’s operations. Note that UpdateCAS is not wait-free,
because it invokes DCSS, which is only lock-free. However,
we argue that the other RQ Provider operations are all wait-
free. TraversalStart is straightline code, so it is wait-free.
TryAdd does not wait for itime/dtime values to be set, but
it helps up to n DCSS operations, where n is the number of
processes. The helping procedure in Harris’ DCSS imple-
mentation has no loops, jumps or recursion, and is wait-free.
Thus, TryAdd is wait-free (and, hence, so is Visit).

Since TraversalEnd traverses the limbo lists, its progress
guarantee depends on the implementation of EBR. Suppose
deleted nodes are inserted at the head of each limbo list. Then,
when TraversalEnd collects pointers to the (head nodes of
the) limbo lists of other processes at line 33, it fixes a fi-
nite number of nodes that it will traverse at the next line.
Therefore, under this assumption (which is satisfied by DE-
BRA [9]), TraversalEnd is wait-free. (Note that an RQ built
from TraversalStart, Visit and TraversalEnd will be wait-free
only if its traversal procedure is also wait-free.)

5 Experiments
Our experiments were run on a 2-socket Intel E7-4830 v3
with 12 cores per socket and 2 hyperthreads (HTs) per core,
for a total of 48 threads, and 128GB of RAM. In all of our
experiments, we pinned threads to alternating sockets, and
equally distributed threads between cores on each socket.
(So, hyperthreading is only used with more than 24 threads.)

The machine runs Ubuntu 14.04 LTS. All code was com-
piled with the GNU C++ compiler (G++) 6.3.0 with com-
pilation options -std=c++11 -mcx16 -O3. We used the
scalable allocator jemalloc 5.0.1, which greatly improved
performance.

We applied our lock-based RQ algorithm (Lock), our HTM-
based algorithm (HTM), and our lock-free algorithm (Lock-
free) to a variety of state-of-the-art data structures. Figure 4

Name Type Sync. Log. del.
LFList Linked-list [19] Lock-free Yes
LazyList Linked-list [19] Locks Yes
SkipList Skip-list [19] Locks Yes
LFBST External BST [11] Lock-free No
Citrus Internal BST [3] Locks & RCU No
ABTree Ext. (a,b)-tree [10] Lock-free No
Figure 4. Data structures studied in our experiments.

gives an overview. This is in stark contrast to previous ap-
proaches, which have only been demonstrated to work only
with a very limited set of data structures.

LazyList and SkipList use optimistic concurrency control
techniques to avoid locking during searches. Citrus uses
RCU to avoid locking during searches, and to enable fast
concurrent updates. ABTree is a concurrency-friendly gen-
eralization of a B-tree. It is a balanced tree in which nodes
contain between a and b keys.
We compare our RQ algorithms with the Snap-collector,

RLU, and a non-linearizable RQ algorithm (Unsafe) that sim-
ply traverses the data structure and returns the keys that it
sees (in the desired range). Unsafe serves as an upper bound
on the performance of any RQ algorithm. Note that the Snap-
collector cannot be used with LFBST, Citrus or ABTree, since
they do not perform logical deletion (separately from physi-
cal deletion). We implemented RQs using the Snap-collector
for LFList, LazyList and SkipList. Since RLU requires com-
pletely redesigning the data structure, we only applied it
to two data structures: Citrus and LazyList. The reason we
chose Citrus is that it synchronizes using locks and RCU,
which is quite similar to RLU. Note that we did not use de-
ferred synchronization in RLU, since it is not linearizable.
All data structures reclaimed memory using DEBRA [9].

Our experiments were implemented in C++, which does not
have automatic garbage collection. Thus, we also used DE-
BRA to reclaim objects created by the Snap-collector. DEBRA
has extremely low overhead, so the Snap-collector is not pe-
nalized for allocating many objects. Our experiments are,
thus, quite charitable towards the Snap-collector.
We optimized our lock-free RQ Provider by using the

technique of Arbel-Raviv and Brown [4] to allow DCSS oper-
ations to efficiently reuse a single descriptor object, instead
of allocating a new descriptor for each operation.

Experiment 1: one thread performing RQs. We start by
running a simple microbenchmark to compare the perfor-
mance of the different RQ algorithms. For each data structure
and RQ algorithm, we run five 3-second trials for several
thread counts n. In each trial, n − 1 threads perform 50%
insertions and 50% deletions on keys drawn uniformly from
[0,K) (where K = 106 for ABTree, K = 105 for LFBST, Citrus
and SkipList, and K = 104 for LFList and LazyList), and one
thread performs RQs on range [low, low + 100), where low
is uniform in [0,K − 100). Data structures are prefilled with

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

Lock HTM Lock-free RLU Snap-collector Unsafe
Figure 5. Experiment 1: one thread performs RQs. Total
operations per µs (y-axis) are plotted versus the number of
threads performing insertions and deletions (x-axis).

approximately K/2 keys before each trial (and were found
to contain approximately K/2 keys at the end of each trial).
Results appear in Figure 5. The results demonstrate that

Lock-free and HTM are almost as fast as Unsafe. The Snap-
collector is sometimes slower than Lock-free and HTM, and
sometimes performs similarly.
In some cases, Lock is considerably slower than Lock-

free and HTM. This is because of high contention on the
lock L. This contention is greatly improved by the use of
transactions in HTM. It could also be improved by using a
scalable NUMA-aware cohort r/w-lock [12], instead of the
simplistic single-word fetch-and-add r/w-lock that we used.
Additionally, Lock-free and HTM are significantly faster

than RLU in Citrus, and in LazyList with 100% updates. This
is because each update in RLU must synchronize with all
other operations, regardless of whether they access the same
data. This effect is not as noticeable in LazyList with 20%
updates, because of the low update rate.
To study the overhead of traversing limbo lists in our

algorithms, we also measured (a) how many nodes were
visited in limbo lists by the first 10,000 RQs, and (b) the total
size of limbo lists at the end of each trial. For example, in
LFBST, 99.7% of these RQs only visited between 128 and
1,024 nodes in limbo lists, whereas the limbo lists contained
up to 780,000 nodes. This suggests that the optimizations
described in §4.3 are highly effective. Additionally, we found
that the size of the data structure did not significantly change
how many nodes are visited in limbo bags.
It turns out that we can use our timestamps to validate

the correctness of iteration operations (RQs over the entire
data structure). Due to lack of space, we defer a description
of our validation technique to the full version of this paper.

Experiment 2: overhead caused by RQs. We are also in-
terested in understanding how much overhead is added by
RQs in Experiment 1. Figure 6 shows the results of a similar
experiment in which 42 threads performed 100% updates,
and the number of threads that perform 100% RQs varies.
The results show that the impact of adding more RQ threads

Lock HTM Lock-free RLU Snap-collector Unsafe
Figure 6. Experiment 2: overhead caused by RQs. Total op-
erations per µs (y-axis) are plotted versus the number of
threads performing range queries (x-axis).

Lock HTM Lock-free RLU Snap-collector Unsafe
Figure 7. Experiment 3: varying RQ size. [Left] RQs per µs
(logarithmic y-axis) versus size of range (x-axis). [Right]
Updates per µs (y-axis) versus size of range (x-axis).

is relatively small. The trees are more affected than the lists.
This is because RQs in a list are no slower than updates (since
both must traverse the list), so the loss in update throughput
is obscured by increased RQ throughput.

Experiment 3: varying RQ size. We also wanted to study
how RQ size affects the performance of RQs and updates.
Figure 7 shows results for a workload in which 47 threads
performed 20% updates and 80% searches, and one thread
performed 100% RQs, where the size of the range varies. We
provide two graphs each for SkipList and Citrus showing
RQ throughput (left) and update throughput (right). We use a
logarithmic y-axis for the RQ throughput graphs, since the
larger RQs have much lower absolute throughputs.

We first compare our techniques with the Snap-collector.
As the left SkipList graph shows, the Snap-collector is orders
of magnitude slower, even for RQs over the entire data struc-
ture (i.e., for iteration). This demonstrates that our techniques
are dramatically faster, not simply because they can avoid
taking a full snapshot of the data structure, but also because

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

Lock HTM Lock-free RLU Snap.
ABTree 12.00 29.46 32.94 - -
Lock-free BST 12.81 27.19 26.28 - -
Citrus 14.07 31.78 32.26 22.26 -
SkipList 13.74 27.95 29.18 - 0.05
LazyList 1.20 1.10 1.10 1.01 0.45
Lock-free List 0.77 0.77 0.68 - 0.46

Figure 8. Experiment 4: mixed workload (operations per µs).

Lock HTM Lock-free RLU Unsafe
ABTree 0.92 0.92 0.92 - 0.97
Lock-free BST 0.70 0.70 0.71 - 0.73
Citrus 0.77 0.78 0.77 0.68 0.80
SkipList 0.62 0.63 0.62 - 0.65

Figure 9. TPC-C benchmark (database transactions per µs).

they incur lower overhead per visited node. (Although we
did not compare with the extended Snap-collector of Chatter-
jee [13], these results suggest that our techniques would be
faster, since [13] only improves the performance of the Snap-
collector by eliminating the need to take full snapshots, and
actually adds substantial overhead.) The right graph shows
that our techniques also impose less overhead on updates.
Next, we compare our techniques with RLU and Unsafe.

The left Citrus graph shows that Unsafe provides much faster
RQs than our techniques. Interestingly, RLU’s RQs are as fast
as Unsafe’s RQs. However, as the right graph shows, RLU
heavily prioritizes RQs over updates, to the point of crippling
update throughput. This is not a reasonable trade-off for
many applications.

Experiment 4: mixed workload. Figure 8 shows results for
a more realistic microbenchmark in which 48 threads each
perform 10% insertions, 10% deletions, 78% searches, and 2%
RQs (over ranges of size 100). In this workload, Snap-collector
(Snap.) was up to several orders of magnitude slower than
the other algorithms (although the effect was much smaller
in the lists, since traversing the entire data structure is only
twice as expensive searching for a key, on average).

Application benchmark: TPC-C. Figure 9 shows the re-
sults of running the TPC-C database workload, with 48
threads and 48 warehouses, on a simple database manage-
ment system called DBx (as in [27]). TPC-C features com-
plex transactions over nine tables with widely varying row
types and population sizes, and with varying degrees of non-
uniformity in the data. Transactions perform a large number
of searches, updates and RQs. Each table is indexed by up to
three different indexes on different key fields. We replaced
the database indexes with each of our data structure imple-
mentations. (Note that DBx originally used hash tables for
its indexes, so it did not support arbitrary range queries. We
implemented true range query support in DBx with our in-
dexes. Because of this, it does not make sense to compare
our algorithms with the original DBx implementation.)

We only show results for the trees and skip-list. (The other
data structures are linked lists, which would have taken days
to simply initialize, due to their linear traversals.) The results
show that our algorithms perform almost as well as Unsafe.
When RLU is used, performance is much lower than when
the other algorithms are used, although the difference is
smaller than in our other experiments. This is because index
accesses make up a relatively small part of the total runtime.
The Snap-collector is not shown, because it was 1000x

slower than the other algorithms. This is a consequence of
the fact that TPC-C has a large dataset (occupying up to
40GB of memory), and some of the indexes are very large.
Since the Snap-collector must take a snapshot of an entire
index to compute a RQ, it is simply not practical.

6 Conclusion
In this work, we presented three new algorithms for adding
RQ support to existing concurrent set implementations, us-
ing locks, HTM and lock-free techniques. Our new algo-
rithms can be used with many more data structures than
previous approaches. We demonstrated the use of our algo-
rithms by applying them to six different data structures (in-
cluding three that cannot be used with previous approaches).
We have also used our algorithms to add RQ support to
a lock-free relaxed B-slack tree, a space-efficient balanced
tree [10] (not shown in our experiments).

Our experiments showed that our algorithms are extremely
fast, often matching the performance of an unsafe (non-
linearizable) RQ algorithm that simply traverses the data
structure once and collects keys. Moreover, our algorithms
significantly outperformed previous approaches in a variety
of workloads, including a realistic database application.
Finally, we addressed a hole in the theoretical underpin-

ning of two previous approaches [13, 24]. Each of these ap-
proaches assumed the existence of a traversal procedure that
collects nodes in the data structure, but did not consider what
kind of property such a procedure must satisfy to be useful
for constructing RQs. We defined the COLLECT property,
proved that it holds for a large class of data structures, and
proved that it can be used to construct linearizable RQs.

Acknowledgments
This work was supported by the Israel Science Foundation,
grant no. 1749/14. Maya Arbel-Raviv was supported in part
by Global Affairs Canada and the Technion Hasso Platner In-
stitute Research School. Trevor Brown was funded in part by
PhD and post-doctoral fellowships from the Natural Sciences
and Engineering Research Council of Canada, and grant no.
RGPIN-2015-05080.

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

A Artifact description
A.1 Abstract
This artifact includes C++ code for all data structures, range
query techniques and benchmarks studied in the paper, as
well as bash scripts for running the experiments shown in
the paper, and Python scripts for producing graphs. It is
intended to be run on a large scale machine with support for
Intel’s transactional synchronization extensions (TSX). We
suggest a machine with at least 16 threads, although a 48-
thread 2-socket machine will make it easiest to reproduce the
experiments in the paper. The artifact will run on machines
without TSX support, but it will not produce data for the
transactional memory based algorithms that we studied. One
should be able to replicate the experiments, and see that
the relative performance relationships between algorithms
reflect what we present in our experiments.

A.2 Description
A.2.1 Check-list (artifact meta information)

• Algorithm:
We implement the following data structures:
1. External binary search tree - lock-free
2. Internal binary search tree - fine-grained locks and

read-copy-update (RCU)
3. Internal binary search tree - read-lock-update (RLU)
4. Relaxed b-slack tree - lock-free
5. Relaxed (a,b)-tree - lock-free
6. Skip list - fine-grained locks
7. Linked list - lock-free
8. Linked list - fine-grained locks and optimistic validation
9. Linked list - read-log-update (RLU)
We implement several methods for adding range queries to
these data structures:
(a) Our lock-based technique
(b) Our HTM and lock-based technique
(c) Our lock-free technique
(d) A non-linearizable single-collect technique
(e) The snap collector of Petrank and Timnat [24]
(f) RLU snapshots (can only be used with RLU-based data

structures)
Table 1 present the pairs of data structures and range

query techniques that can be used.
The epoch-based memory reclamation for our range

query techniques is a slightlymodified version of DEBRA [9].
• Program: Two benchmarks are included. Microbench is a

simple set/dictionary benchmark.Macrobench is a modified
version of the DBx1000 TPC-C database benchmark. We
replaced the original DBx1000 database indexes with our
data structure implementations.

• Compilation: Using gcc version 4.8 or higher.
• Binary: We include the following libraries, which were

compiled for x86/64 on Ubuntu 14.04 LTS.
1. jemallocmemory allocator version 5.0.1 (libjemalloc.so)
2. papi performance counters, optional use (libpapi.a)

• Run-time environment: Recent Linux (tested on Ubuntu
14.04 LTS). Software dependencies: GCC 4.8+,Make, Python

Data Structure
1 2 3 4 5 6 7 8

RQ

a x x x x x x x
b x x x x x x x
c x x x x x x x
d x x x x x x x (non-linearizable)
e x x x
f x x

Table 1. Pairs of data structures and range query techniques
that can be used. Note that RLU (used in data structures 3 and
9) is a complete synchronization methodology that dictates
how all queries and updates are implemented. Conceptually,
data structures 2 and 3 are the same (and 8 and 9 are the
same).

2.7+ (NOT 3.x) with libraries: numpy 1.12+, matplotlib 2.1+,
pandas 0.13.1+. If software is up to date then no root access
is required (otherwise, root access may be needed to install
these dependencies).

• Hardware: Multicore system (preferably with at least 16
hardware threads). Memory model: total store order (stan-
dard on modern Intel/AMD/Oracle processors) For HTM
results, an Intel system with TSX support is mandatory. (On
other systems, the benchmarks will run, but data will not
be produced for the HTM-based algorithms.)

• Execution: Our benchmarks should be the only userspace
application running on the machine.

• Output: For the microbenchmark, a human readable text
file is produced for each trial, in each experiment. Relevant
parts of this output are parsed and stored in an SQLite data-
base (microbench/results.db). The macrobenchmark
also produces a human readable text file for each trial, in
each experiment. It parses relevant parts of this output and
stores them in a CSV file. A Python script for producing
graphs from the experimental results is also provided.

• Experiment workflow: Edit one configuration file, spec-
ifying the number of threads and speed of the experimen-
tal machine, then compile, run experiments and produce
graphs via a set of bash and Python scripts.

• Experiment customization: Experiment customization
is possible; see instructions below.

• Publicly available?: Yes, the artifact is publicly available
via a Git repository.

A.2.2 How the artifact is delivered
The artifact is available at: http://implementations.tbrown.
pro (path to this artifact: /cpp/range_queries).

A.2.3 Hardware dependencies
Minimum requirements: multicore system with 16+ hard-
ware threads and total store order (TSO) memory model
(standard on modern Intel/AMD/Oracle processors). The
macrobenchmark requires up to 2GB of RAM per hardware
thread. (Otherwise, the working set might not fit in memory).

http://implementations.tbrown.pro
http://implementations.tbrown.pro

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

Recommended requirements: Intel system with n ≥ 32
hardware threads and support for transactional synchroniza-
tion extensions (TSX), with 2n GB of RAM.
An Intel system with TSX support is mandatory for al-

gorithms that use hardware transactional memory (HTM).
On other systems, the benchmarks will run, but data will not
be produced for HTM-based algorithms.

A.2.4 Software dependencies
Recent Linux distribution (tested on Ubuntu 14.04 LTS). GCC
4.8+ (we used 6.3.0). Make. Python 2.7+ (NOT 3.x) with li-
braries: numpy 1.12+, matplotlib 2.1+, pandas 0.13.1+.

A.3 Installation
1. Install software dependencies. The list above contains

links to installation instructions available online.
2. Clone the GIT repository by executing:

git clone https://bitbucket.org/trbot86/implementations.git

This clones the repository into a new directory.
3. Navigate to this directory by executing:

cd implementations/cpp/range_queries/

A.4 Experiment workflow
1. Edit config.mk, following the instructions therein.
2. Run: find . -type f -print0 | xargs -0 dos2unix

3. Microbench:
cd microbench

make -j

chmod +x *.sh

./runscript.sh

python graphs.py

4. Macrobench:
cd macrobench (or cd ../macrobench)
chmod +x *.sh

./compile.sh

./runscript.sh

./makecsv.sh > dbx.csv

python graph.py

A.5 Evaluation and expected result
After following the experiment workflow for themicrobench-
mark and macrobenchmark, one should analyze the graphs
produced (which are located in microbench/graphs and
macrobench/graphs).

Broadly speaking, one should be able to confirm that these
graphs reproduce the results shown in the experiments sec-
tion of this paper. In other words, one should see that the
relative performance relationships between algorithms stud-
ied in our experiments hold (even if the absolute perfor-
mance measured differs from what we presented in our ex-
periments).
In the graphs for Experiment 1, one should see that our

HTM and Lock-free algorithms match or exceed the perfor-
mance of the other algorithms. Depending on the system

architecture, one might see that our lock based algorithm
is just as fast as, or is considerably slower than, the other
algorithms. (We have noticed that our lock-based implemen-
tation, which favors threads acquiring the lock in shared
mode, performs poorly on some AMD systems. This is a
performance problem affecting the lock implementation, not
our range query technique.) One should see that RLU is sub-
stantially slower than the other algorithms when there are
many updates, and in the skiplist (since it is a logarithmic
data structure).

In the graphs for Experiment 2, one should see that Unsafe
is slightly faster than the other algorithms. One might see
that Lock is substantially slower than the other algorithms
in the logarithmic data structures (ABTree, Lock-free BST,
Citrus and SkipList). One should see that RCU is much slower
than the other algorithms, with the possible exception of
the Lock-based algorithm in Citrus. One should see that
the curves are fairly flat, meaning that performance does
not degrade severely as the number of range query threads
increases.
In the graphs for Experiment 3, one should see that the

update throughput in SkipList does not substantially de-
grade as the size of range queries increases. Additionally,
all algorithms should have similar update throughputs in
SkipList, with the possible exception of Lock, which might
have a somewhat smaller update throughput. One should
see that Lock, HTM and Lock-free have similar range query
throughput in SkipList, and that Snap-collector’s range query
throughput is orders of magnitude smaller. In Citrus, the per-
formance of updates should not substantially degrade for all
algorithms, except RLU, which should see severe degradation.
One should see that RLU’s updates are substantially slower
than Lock, HTM and Lock-free for Citrus. However, RLU’s
range queries should be faster than the other techniques’. In
both data structures, for all algorithms, one should see that
range query throughput approximately degrades by a factor
of 10 with each increase in range query size.
In the results for Experiment 4, one should see that the

Snap-collector is substantially slower than HTM and Lock-
free in the Lock-free List. One might also see that the Snap-
collector is much slower than Lock in the Lock-free List. In
the SkipList, one should see that the Snap-collector is orders
of magnitude slower than the other algorithms.
In the results for the macrobenchmark, one should see

that HTM and Lock-are slightly slower than Unsafe. One
should see that RLU is substantially slower than the other
algorithms (with the possible exception of Lock).

A.6 Experiment customization
Experiment customization is available by changing the ar-
guments to the microbench and macrobench binaries. A full
description of the run-time arguments and command line
examples are available in the README file.

https://gcc.gnu.org/install/
https://gcc.gnu.org/install/
https://www.gnu.org/software/make/
https://www.python.org/downloads/
https://www.scipy.org/install.html

Harnessing Epoch-based Reclamation for Efficient RangeQueries PPoPP ’18, February 24–28, 2018, Vienna, Austria

References
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, Sept. 1993. ISSN
0004-5411. doi: 10.1145/153724.153741. URL http://doi.acm.org/10.
1145/153724.153741.

[2] A. Agarwal, Z. Liu, E. Rosenthal, and V. Saraph. Linearizable iterators
for concurrent data structures. CoRR, abs/1705.08885, 2017. URL
http://arxiv.org/abs/1705.08885.

[3] M. Arbel and H. Attiya. Concurrent updates with RCU: Search tree as
an example. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing, PODC ’14, pages 196–205, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2944-6. doi: 10.1145/2611462.2611471.
URL http://doi.acm.org/10.1145/2611462.2611471.

[4] M. Arbel-Raviv and T. Brown. Reuse, don’t recycle: Transforming
lock-free algorithms that throw away descriptors. In Proceedings of
the 31st International Symposium on Distributed Computing, DISC 2017,
2017.

[5] H. Attiya, R. Guerraoui, and E. Ruppert. Partial snapshot objects.
In Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’08, pages 336–343, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-973-9. doi: 10.1145/1378533.
1378591. URL http://doi.acm.org/10.1145/1378533.1378591.

[6] H. Avni, N. Shavit, and A. Suissa. Leaplist: Lessons learned in designing
tm-supported range queries. In Proceedings of the 2013 ACM Sympo-
sium on Principles of Distributed Computing, PODC ’13, pages 299–308,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2065-8. doi: 10.1145/
2484239.2484254. URL http://doi.acm.org/10.1145/2484239.2484254.

[7] D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E. Hillel, I. Keidar,
and M. Sulamy. Kiwi: A key-value map for scalable real-time analytics.
In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’17, pages 357–369, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4493-7. doi: 10.1145/3018743.
3018761. URL http://doi.acm.org/10.1145/3018743.3018761.

[8] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’10, pages 257–268, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
877-3. doi: 10.1145/1693453.1693488. URL http://doi.acm.org/10.1145/
1693453.1693488.

[9] T. Brown. Reclaiming memory for lock-free data structures: There
has to be a better way. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC ’15, pages 261–270, 2015.

[10] T. Brown. Techniques for Constructing Efficient Data Structures. PhD
thesis, University of Toronto, 2017.

[11] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-
blocking trees. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, pages
329–342, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2656-
8. doi: 10.1145/2555243.2555267. URL http://doi.acm.org/10.1145/
2555243.2555267.

[12] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
Numa-aware reader-writer locks. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’13, pages 157–166, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1922-5. doi: 10.1145/2442516.2442532. URL http:
//doi.acm.org/10.1145/2442516.2442532.

[13] B. Chatterjee. Lock-free linearizable 1-dimensional range queries. In
Proceedings of the 18th International Conference on Distributed Comput-
ing and Networking, ICDCN ’17, pages 9:1–9:10, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4839-3. doi: 10.1145/3007748.3007771.
URL http://doi.acm.org/10.1145/3007748.3007771.

[14] L. Dalessandro, M. F. Spear, andM. L. Scott. Norec: Streamlining stm by
abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP

’10, pages 67–78, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
877-3. doi: 10.1145/1693453.1693464. URL http://doi.acm.org/10.1145/
1693453.1693464.

[15] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency:
The secret to scaling concurrent search data structures. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages
631–644, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2835-
7. doi: 10.1145/2694344.2694359. URL http://doi.acm.org/10.1145/
2694344.2694359.

[16] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Pro-
ceedings of the 20th International Conference on Distributed Computing,
DISC’06, pages 194–208, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-44624-9, 978-3-540-44624-8. doi: 10.1007/11864219_14.
URL http://dx.doi.org/10.1007/11864219_14.

[17] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages
131–140, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-888-
9. doi: 10.1145/1835698.1835736. URL http://doi.acm.org/10.1145/
1835698.1835736.

[18] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-
and-swap operation. In Proceedings of the 16th International Conference
on Distributed Computing, DISC ’02, pages 265–279, 2002.

[19] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
ISBN 0123705916, 9780123705914.

[20] P. Jayanti. An optimal multi-writer snapshot algorithm. In Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 723–732, New York, NY, USA, 2005. ACM. ISBN
1-58113-960-8. doi: 10.1145/1060590.1060697. URL http://doi.acm.org/
10.1145/1060590.1060697.

[21] A. Matveev, N. Shavit, P. Felber, and P. Marlier. Read-log-update: A
lightweight synchronization mechanism for concurrent programming.
In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 168–183, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3834-9. doi: 10.1145/2815400.2815406. URL http://doi.acm.org/
10.1145/2815400.2815406.

[22] P. E. McKenney and J. D. Slingwine. Read-copy update: Using execu-
tion history to solve concurrency problems. In Parallel and Distributed
Computing and Systems, pages 509–518, 1998.

[23] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search
trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 317–328, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2656-8. doi: 10.1145/
2555243.2555256. URL http://doi.acm.org/10.1145/2555243.2555256.

[24] E. Petrank and S. Timnat. Lock-free data-structure iterators. In
Proceedings of the 27th International Symposium on Distributed Com-
puting - Volume 8205, DISC 2013, pages 224–238, New York, NY,
USA, 2013. Springer-Verlag New York, Inc. ISBN 978-3-642-41526-
5. doi: 10.1007/978-3-642-41527-2_16. URL http://dx.doi.org/10.1007/
978-3-642-41527-2_16.

[25] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent
tries with efficient non-blocking snapshots. SIGPLAN Not., 47(8):151–
160, Feb. 2012. ISSN 0362-1340. doi: 10.1145/2370036.2145836. URL
http://doi.acm.org/10.1145/2370036.2145836.

[26] K. Sagonas and K. Winblad. Efficient support for range queries and
range updates using contention adapting search trees. In Revised
Selected Papers of the 28th International Workshop on Languages and
Compilers for Parallel Computing - Volume 9519, LCPC 2015, pages
37–53, New York, NY, USA, 2016. Springer-Verlag New York, Inc. ISBN
978-3-319-29777-4. doi: 10.1007/978-3-319-29778-1_3. URL http://dx.
doi.org/10.1007/978-3-319-29778-1_3.

[27] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Star-
ing into the abyss: An evaluation of concurrency control with one

http://doi.acm.org/10.1145/153724.153741
http://doi.acm.org/10.1145/153724.153741
http://arxiv.org/abs/1705.08885
http://doi.acm.org/10.1145/2611462.2611471
http://doi.acm.org/10.1145/1378533.1378591
http://doi.acm.org/10.1145/2484239.2484254
http://doi.acm.org/10.1145/3018743.3018761
http://doi.acm.org/10.1145/1693453.1693488
http://doi.acm.org/10.1145/1693453.1693488
http://doi.acm.org/10.1145/2555243.2555267
http://doi.acm.org/10.1145/2555243.2555267
http://doi.acm.org/10.1145/2442516.2442532
http://doi.acm.org/10.1145/2442516.2442532
http://doi.acm.org/10.1145/3007748.3007771
http://doi.acm.org/10.1145/1693453.1693464
http://doi.acm.org/10.1145/1693453.1693464
http://doi.acm.org/10.1145/2694344.2694359
http://doi.acm.org/10.1145/2694344.2694359
http://dx.doi.org/10.1007/11864219_14
http://doi.acm.org/10.1145/1835698.1835736
http://doi.acm.org/10.1145/1835698.1835736
http://doi.acm.org/10.1145/1060590.1060697
http://doi.acm.org/10.1145/1060590.1060697
http://doi.acm.org/10.1145/2815400.2815406
http://doi.acm.org/10.1145/2815400.2815406
http://doi.acm.org/10.1145/2555243.2555256
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://doi.acm.org/10.1145/2370036.2145836
http://dx.doi.org/10.1007/978-3-319-29778-1_3
http://dx.doi.org/10.1007/978-3-319-29778-1_3

PPoPP ’18, February 24–28, 2018, Vienna, Austria Maya Arbel-Raviv and Trevor Brown

thousand cores. Proc. VLDB Endow., 8(3):209–220, Nov. 2014. ISSN
2150-8097. doi: 10.14778/2735508.2735511. URL http://dx.doi.org/10.
14778/2735508.2735511.

http://dx.doi.org/10.14778/2735508.2735511
http://dx.doi.org/10.14778/2735508.2735511

	Abstract
	1 Introduction
	2 Related work
	3 Defining correct traversals
	3.1 Depth-first search (DFS) satisfies COLLECT for many trees

	4 Algorithm
	4.1 RQ Provider ADT
	4.2 Epoch-based reclamation ADT
	4.3 Lock-based implementation
	4.4 HTM-based implementation
	4.5 Lock-free implementation

	5 Experiments
	6 Conclusion
	Acknowledgments
	A Artifact description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization

	References

