
Topological Sort
(an application of DFS)

CSC263 Tutorial 9

Topological sort

• We have a set of tasks and a set of dependencies

(precedence constraints) of form “task A must be

done before task B”

• Topological sort: An ordering of the tasks that

conforms with the given dependencies

• Goal: Find a topological sort of the tasks or decide

that there is no such ordering

Examples

• Scheduling: When scheduling task graphs in

distributed systems, usually we first need to sort the

tasks topologically

...and then assign them to resources (the most

efficient scheduling is an NP-complete problem)

• Or during compilation to order modules/libraries

a

d c

g f

b

e

Examples

• Resolving dependencies: apt-get uses

topological sorting to obtain the admissible

sequence in which a set of Debian packages

can be installed/removed

Topological sort more formally

• Suppose that in a directed graph G = (V, E)
vertices V represent tasks, and each edge (u, v)∊E
means that task u must be done before task v

• What is an ordering of vertices 1, ..., |V| such
that for every edge (u, v), u appears before v in
the ordering?

• Such an ordering is called a topological sort of G

• Note: there can be multiple topological sorts of G

Topological sort more formally

• Is it possible to execute all the tasks in G in an order

that respects all the precedence requirements given

by the graph edges?

• The answer is "yes" if and only if the directed graph

G has no cycle!

(otherwise we have a deadlock)

• Such a G is called a Directed Acyclic Graph, or just a

DAG

Algorithm for TS

• TOPOLOGICAL-SORT(G):

1) call DFS(G) to compute finishing times f[v] for
each vertex v

2) as each vertex is finished, insert it onto the front
of a linked list

3) return the linked list of vertices

• Note that the result is just a list of vertices in
order of decreasing finish times f[]

Edge classification by DFS

Edge (u,v) of G is classified as a:

(1) Tree edge iff u discovers v during the DFS: P[v] = u

If (u,v) is NOT a tree edge then it is a:

(2) Forward edge iff u is an ancestor of v in the DFS tree

(3) Back edge iff u is a descendant of v in the DFS tree

(4) Cross edge iff u is neither an ancestor nor a

descendant of v

Edge classification by DFS

b

a

Tree edges

Forward edges

Back edges

Cross edges
c

c

The edge classification

depends on the particular

DFS tree!

Edge classification by DFS

b

a

Tree edges

Forward edges

Back edges

Cross edges

c

b

a

c

Both are valid

The edge classification

depends on the particular

DFS tree!

DAGs and back edges

• Can there be a back edge in a DFS on a DAG?

• NO! Back edges close a cycle!

• A graph G is a DAG <=> there is no back edge

classified by DFS(G)

Back to topological sort

• TOPOLOGICAL-SORT(G):

1) call DFS(G) to compute finishing times f[v] for

each vertex v

2) as each vertex is finished, insert it onto the front

of a linked list

3) return the linked list of vertices

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

Time = 1Time = 2

c
d = 1

f = ∞

Next we discover the vertex d

1) Call DFS(G) to compute the

finishing times f[v]

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

Time = 2Time = 3

c
d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = ∞

1) Call DFS(G) to compute the

finishing times f[v]

Topological sort

b

a

c

ed

f

1) Call DFS(G) to compute the

finishing times f[v]

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = 3

f = ∞

d = ∞

f = ∞

Time = 3Time = 4

c
d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = ∞

Next we discover the vertex f

fd = 3

f = 4

f is done, move back to d

2) as each vertex is finished,

insert it onto the front of a

linked list

f

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

Time = 4Time = 5

c
d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = 5

Next we discover the vertex f

fd = 3

f = 4

f is done, move back to d

d is done, move back to c

1) Call DFS(G) to compute the

finishing times f[v]

fd

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = ∞

f = ∞

Time = 5

c
d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = 5

Next we discover the vertex f

fd = 3

f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

Time = 6

1) Call DFS(G) to compute the

finishing times f[v]

fd

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = 6

f = ∞

Time = 6Time = 7

e

d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = 5

Next we discover the vertex f

fd = 3

f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

Both edges from e are

cross edges

e is done, move back to c

1) Call DFS(G) to compute the

finishing times f[v]

fde

Topological sort

b

a

c

ed

f

Let’s say we start the DFS

from the vertex c
d = ∞

f = ∞

d = ∞

f = ∞

d = 6

f = 7

Time = 7Time = 8

e

d = 1

f = ∞

Next we discover the vertex d

d
d = 2

f = 5

Next we discover the vertex f

fd = 3

f = 4

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

e is done, move back to c

1) Call DFS(G) to compute the

finishing times f[v]

fde c is done as wellc

Just a note: If there was (c,f)

edge in the graph, it would be

classified as a forward edge

(in this particular DFS run)

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from

the vertex a
d = ∞

f = ∞

d = ∞

f = ∞

d = 6

f = 7

Time = 9

e

d = 1

f = 8

d
d = 2

f = 5

fd = 3

f = 4

1) Call DFS(G) to compute the

finishing times f[v]

fdec

a
d = 9

f = ∞

Next we discover the vertex c,

but c was already processed

=> (a,c) is a cross edge

Time = 10

Next we discover the vertex b

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from

the vertex a

d = 10

f = ∞

d = 6

f = 7

Time = 10

e

d = 1

f = 8

d
d = 2

f = 5

fd = 3

f = 4

1) Call DFS(G) to compute the

finishing times f[v]

fdec

a
d = 9

f = ∞

Next we discover the vertex c,

but c was already processed

=> (a,c) is a cross edge

Time = 11

Next we discover the vertex b

b is done as (b,d) is a cross

edge => now move back to c

b
d = 10

f = 11

b

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from

the vertex a

d = 6

f = 7

Time = 11

e

d = 1

f = 8

d
d = 2

f = 5

fd = 3

f = 4

1) Call DFS(G) to compute the

finishing times f[v]

fdec

a
d = 9

f = ∞

Next we discover the vertex c,

but c was already processed

=> (a,c) is a cross edge

Time = 12

Next we discover the vertex b

b is done as (b,d) is a cross

edge => now move back to c

b
d = 10

f = 11

b

a is done as well

Topological sort

b

a

c

ed

f

Let’s now call DFS visit from

the vertex a

d = 6

f = 7

Time = 11

e

d = 1

f = 8

d
d = 2

f = 5

fd = 3

f = 4

1) Call DFS(G) to compute the

finishing times f[v]

fdec

a
d = 9

f = 12

Next we discover the vertex c,

but c was already processed

=> (a,c) is a cross edge

Time = 13

Next we discover the vertex b

b is done as (b,d) is a cross

edge => now move back to c

b
d = 10

f = 11

b

a is done as well

a

WE HAVE THE RESULT!

3) return the linked list of

vertices

Topological sort

b

a

c

ed

f

d = 6

f = 7

Time = 11

e

d = 1

f = 8

d
d = 2

f = 5

fd = 3

f = 4

fdec

a
d = 9

f = 12

Time = 13

b
d = 10

f = 11

ba

The linked list is sorted in

decreasing order of finishing

times f[]

Try yourself with different

vertex order for DFS visit

Note: If you redraw the graph

so that all vertices are in a line

ordered by a valid topological

sort, then all edges point

„from left to right“

Time complexity of TS(G)

• Running time of topological sort:

Θ(n + m)

where n=|V| and m=|E|

• Why? Depth first search takes Θ(n + m) time

in the worst case, and inserting into the front

of a linked list takes Θ(1) time

Proof of correctness

• Theorem: TOPOLOGICAL-SORT(G) produces a

topological sort of a DAG G

• The TOPOLOGICAL-SORT(G) algorithm does a DFS

on the DAG G, and it lists the nodes of G in order

of decreasing finish times f[]

• We must show that this list satisfies the

topological sort property, namely, that for every

edge (u,v) of G, u appears before v in the list

• Claim: For every edge (u,v) of G: f[v] < f[u] in DFS

Proof of correctness

“For every edge (u,v) of G, f[v] < f[u] in this DFS”

• The DFS classifies (u,v) as a tree edge, a

forward edge or a cross-edge (it cannot be a

back-edge since G has no cycles):

i. If (u,v) is a tree or a forward edge ⇒	v is a

descendant of u ⇒		f[v] < f[u]

ii. If (u,v) is a cross-edge

Proof of correctness

“For every edge (u,v) of G: f[v] < f[u] in this DFS”

ii. If (u,v) is a cross-edge:

• as (u,v) is a cross-edge, by definition, neither u

is a descendant of v nor v is a descendant of u:

d[u] < f[u] < d[v] < f[v]

or

d[v] < f[v] < d[u] < f[u]

since (u,v) is an edge, v is

surely discovered before

u's exploration completes

f[v] < f[u]

Q.E.D. of Claim

Proof of correctness

• TOPOLOGICAL-SORT(G) lists the nodes of G

from highest to lowest finishing times

• By the Claim, for every edge (u,v) of G:

f[v] < f[u]

⇒ u will be before v in the algorithm's list

• Q.E.D of Theorem

