
Homework remarking requests

• BEFORE submitting a remarking request:
a) read and understand our solution set (which is

posted on the course web site)

b) read the marking guide of the homework (also posted
on the course web page)

c) read our remarking policy (also posted in in the
course web page)

• Note: remarking requests of the type
“yes it is wrong but I think that marking guide is
too strict and too many points were deducted for
this”
are seldom if ever accepted

Homework remarking requests

• If after doing (a), (b), and (c), you still want to

submit a request:

– fill the required form with a clear explanation

– staple it to your homework copy and give it to one

of us (ideally directly to Sam, everything goes to

him after all)

Disjoint sets

Disjoint set ADT

• Maintains a collection � = {S1, ... ,Sk} of disjoint sets

• Each set is identified by a representative, which is

an element of the set

• Operations:

– MAKE-SET(x): creates a new set containing only x,

and makes x the representative

– FIND-SET(x): returns the representative of x’s set

– UNION(x, y): merges the sets containing x and y,

and chooses a new representative

• Note: No duplicate elements are allowed!

Disjoint set application

• Example: Determine whether two nodes are

in the same connected component of an

undirected graph

• Connected component: a maximal subgraph

such that any two vertices are connected to

each other by a path

Disjoint sets for connected components

• How do you use disjoint sets to solve this problem?

a

c

db f

h

g

e i

Connected-Components(G):

for each vertex v ∊ V[G] do

MAKE-SET(v)

for each edge (u,v) ∊ E[G] do

if FIND-SET(u) � FIND_SET(v) then

UNION(u,v)

Disjoint sets for connected components

Disjoint sets for connected components

a

c

db f

h

g

e i

Process the edges:

(a, b) (f, g) (g, i) (d, e) (c, b) (a, c) (f, h) (h, g)

Connected components:

Same-Component(u,v):

if FIND-SET(u) = FIND-SET(v) then

return True

else

return False

Disjoint sets for connected components

Linked list implementation of

Disjoint Sets

Implementing a single set

• The representative of the set = the first element

in the list

• Other elements may appear in any order in the

list

c h e

head

tail

nil

Implementing a single set

• A node contains pointers to:

– The next element

– Its representative

• + each set has pointer to head and tail of its list

c h e

head

tail

nil

Implementing the data structure

• Collection of several sets, each a linked list

• How do we do FIND-SET(h)?

– Do we have to search through every list?

c h e

head

tail

nil

i g f

head

tail

nil

a d b

head

tail

nil

Implementing the data structure

• In practice, we rename the elements to 1..n, and
maintain an array A where A[i] points to the list
element that represents i.

• Now, how do we do FIND-SET(3)?

3 (c) 1 (h) 4 (e)

head

tail

nil

1

2 (i)

head

tail

3 42
A

Implementing the data structure

• Harder question: how about FIND-SET(e)?
– When you rename h->1, i->2, c->3, e->4 you store these

mappings in a dictionary D.

– Later, you can call D.get(e) to retrieve the value 4.

– So, you call FIND-SET(D(e)), which becomes FIND-SET(4).

3 (c) 1 (h) 4 (e)

head

tail

nil

1

2 (i)

head

tail

3 42
A

Naïve implementation of Union(u,v)

• Append v’s list onto the end of u’s list:

– Change u’s tail pointer to the tail of v’s list = �(1)

– Update representative pointers for all elements in

the v’s list = �(|v’s list|)

• Can be a long time if |v’s list| is large!

• In fact, n-1 Unions can take �(n2)

c h e

head

tail

nil

i g f

head

tail

nil

u’s list v’s list

Weighted-union heuristic for

Union(u,v)

• Similar to the naïve Union but uses the following
rule/heuristic for joining lists:

• Append the smaller list onto the longer one (and
break ties arbitrarily)

• Does this help us do better than O(n2)?

• Worst-case time for a single Union(u,v) – NO

• Worst-case time for a sequence of n Union
operations – YES

Weighted-union running time analysis

• We will analyze the running times of disjoint-

set data structures in terms of two

parameters:

– n = the number UNION operations

– m = the number of FIND-SET operations

Weighted-union running time analysis

• Theorem:

– Suppose a disjoint set implemented using linked-
lists and the weighted-union heuristic initially
contains n singleton sets.

– Performing a sequence of n UNIONs and m FIND-
SETs takes O(m + n lg n) time.

• Compare: for the naïve Union
implementation, n UNIONs and m FIND-SETs
takes O(m + n2) time.

Weighted-union running time analysis

• Let’s prove the easy part first

• FIND-SET operations:

– each FIND-SET operations takes O(1) time

– so m FIND-SET operations takes O(m) time

Weighted-union running time analysis

• Now the harder part – UNION operations:

• What takes time in a UNION operation?

– Update head and tail pointers, a single next

pointer, and a bunch of representative pointers.

– Representative pointers take time.

– Everything else is O(1).

• How many times can an element's

representative pointer be updated?

Weighted-union running time analysis

• Fix an element x.

• If x is in a set S and its representative pointer
changes, then S is being attached to another set
with size at least |S|.

• After the union, x’s set contains at least 2|S|
elements.
– Initially, x’s set contains 1 element (itself).

– After x’s set is UNIONed once, it has size at least 2.

– After x’s set is UNIONed twice, it has size at least 4.

– After x’s set is UNIONed thrice, it has size at least 8.

– …

– After x’s set is UNIONed k times, it has size at least 2k.

Weighted-union running time analysis

• After x's representative pointer has been

updated k times the new set has at least 2k

members

• Since the largest set has at most n members,

we have 2k ≤ n

2k ≤ n

k ≤ ⌈lg n⌉

• ⇒ ⇒ ⇒ ⇒ x's representative is updated at most

k = ⌈lg n⌉ times

apply log2

⇨

�

⇨ The total update time for all n elements is

O(n lg n)

*Updating the head and tail pointers takes �(1) per

operation, thus total time to update the pointers

over at most n UNION operations is �(n)

Weighted-union running time analysis

• Summary:

– m FIND-SET operations take O(m)

– n UNION operations take O(n lg n)

⇒ ⇒ ⇒ ⇒ The total time of n UNIONs and m FIND-SET

operations is O(m + n log n)

