
Minimum Cost Spanning Trees

CSC263 Tutorial 10

Minimum cost spanning tree (MCST)

• What is a minimum cost spanning tree?

– Tree

• No cycles; equivalently, for each pair of nodes u and v,

there is only one path from u to v

– Spanning

• Contains every node in the graph

– Minimum cost

• Smallest possible total weight of any spanning tree

Minimum cost spanning tree (MCST)

• Let’s think about simple MCSTs on this graph:

a b

c d

1

2
5

3

4

Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not spanning; d is not in T.

a b

c d

1

2
5

3

4

Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not a tree; has a cycle.

a b

c d

1

2
5

3

4

Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not minimum cost; can swap edges 4 and 2.

a b

c d

1

2
5

3

4

Minimum cost spanning tree (MCST)

• Which edges form a MCST?

a b

c d

1

4
3

3

2

a b

c d

1

4
3

3

2

Quick Quiz

• If we build a MCST from a graph G = (V, E),

how may edges does the MCST have?

• When can we find a MCST for a graph?

An application of MCSTs

• Electronic circuit designs (from Cormen et al.)

– Circuits often need to wire together the pins of

several components to make them electrically

equivalent.

– To connect n pins, we can use n - 1 wires, each

connecting two pins.

– Want to use the minimum amount of wire.

– Model problem with a graph where each pin is a

node, and every possible wire between a pair of

pins is an edge.

A few other applications of MCSTs

• Planning how to lay network cable to connect

several locations to the internet

• Planning how to efficiently bounce data from

router to router to reach its internet destination

• Creating a 2D maze (to print on cereal boxes, etc.)

Building a MCST

• Prim’s algorithm takes a graph G = (V, E)

and builds an MCST T

• PrimMCST(V, E)

– Pick an arbitrary node r from V

– Add r to T

– While T contains < |V| nodes

• Find a minimum weight edge (u, v)

where � ∈ � and � ∉ �

• Add node v to T

In the book’s

terminology, we find

a light edge crossing

the cut (T, V-T)

The book proves

that adding |V|-1

such edges will

create a MCST

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T

• Minimum

Cost: 47

a b

c d

1

2
5

3

4

g i

h j

9

11
9

6

7

f

e

9

6
10

8

14

7

12 h

Implementing Prim’s Algorithm

• Recall the high-level algorithm:

• PrimMCST(V, E)

– Pick an arbitrary node r from V

– Add r to T

– While T contains < |V| nodes

• Find a minimum weight edge (u, v)
where � ∈ � and � ∉ �

• Add node v to T

How can we do this

efficiently?

How can we do this

efficiently?

Finding lots of minimums?

Use a priority queue!

Adding a priority queue

• What should we store

in the priority queue?

– Edges

– From nodes in T

to nodes not in T

• What should we use

as the key of an edge?

– Weight of the edge

Prim’s Algorithm with a priority queue

• PrimMCST(V, E, r)

– Q := new priority queue

– For each u in V: inTree[u] = false, parent[u] = nil

– inTree[r] = true, parent[r] = r

– Add every edge that touches r to Q

– While Q is not empty

• Do Q.Extract-Min to get edge e = (u, v)

• If not inTree[v] then

– inTree[v] = true, parent[v] = u

– Add every edge that touches v to Q

where r is any arbitrary starting node

Small optimization

• PrimMCST(V, E, r)

– Q := new priority queue

– For each u in V: inTree[u] = false, parent[u] = nil

– inTree[r] = true, parent[r] = r

– Add every edge that touches r to Q

– While Q is not empty

• Do Q.Extract-Min to get edge e = (u, v)

• If not inTree[v] parent[v] = nil then

– inTree[v] = true, parent[v] = u

– Add every edge that touches v to Q

Analysis of running time

• O(|E| log |E|) = O(|E| log (|V|2))

• = O(|E| 2 log |V|)

• = O(|E| log |V|)

ϴ(|V|)

ϴ(|adj(r)| log |E|)

ϴ(log |E|)

ϴ(|adj(v)| log |E|)

ϴ(|E| log |E|)

Java Implementation - 1

Java Implementation - 2

An example input

4 5

8 9

1

2
5

3

4

2 3

6 7

9

11
9

6

7

0

1

9

6
10

8

14

7

12

Java Implementation - 3

Java Implementation - 4

• Outputting the answer:

• The answer:

• What does this look like?
Recall: the root is

its own parent.

Recall our earlier solution

by hand:

Drawing the answer

4 5

8 9

1

2
5

3

4

2 3

6 7

9

11
9

6

7

0

1

9

6
10

8

14

7

12

Fun example: generating 2D mazes

• Prim’s algorithm maze building video

• How can we use Prim’s algorithm to do this?

2. Set all edge weights

to random values!

3. Run Prim’s algorithm

starting from any node.

1. Create a graph that is

a regular m x n grid.

Fun example: generating 2D mazes

• After Prim’s, we end up with something like:

