Minimum Cost Spanning Trees

CSC263 Tutorial 10

- What is a minimum cost spanning tree?
 - Tree
 - No cycles; equivalently, for each pair of nodes u and v, there is only one path from u to v
 - Spanning
 - Contains every node in the graph
 - Minimum cost
 - Smallest possible total weight of any spanning tree

• Let's think about simple MCSTs on this graph:

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

• Not spanning; d is not in T.

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

• Not a tree; has a cycle.

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

• Not minimum cost; can swap edges 4 and 2.

• Which edges form a MCST?

Quick Quiz

- If we build a MCST from a graph G = (V, E), how may edges does the MCST have?
- When can we find a MCST for a graph?

An application of MCSTs

- Electronic circuit designs (from Cormen et al.)
 - Circuits often need to wire together the pins of several components to make them electrically equivalent.
 - To connect *n* pins, we can use *n* 1 wires, each connecting two pins.
 - Want to use the minimum amount of wire.
 - Model problem with a graph where each pin is a node, and every possible wire between a pair of pins is an edge.

A few other applications of MCSTs

- Planning how to lay network cable to connect several locations to the internet
- Planning how to efficiently bounce data from router to router to reach its internet destination
- Creating a 2D maze (to print on cereal boxes, etc.)

Building a MCST

- Prim's algorithm takes a graph G = (V, E) and builds an MCST T
- PrimMCST(V, E)
 - Pick an arbitrary node r from V
 - Add **r** to *T*
 - While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v) where u ∈ T and v ∉ T
 - Add node v to T

In the book's terminology, we find a **light edge crossing** the cut (T, V-T)

The book proves that adding |V|-1 such edges will create a MCST

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from nodes ∈ T to nodes ∉ T Black: in T
 - $\frac{\sqrt{2}}{10} = 1$

14

9

• Start at an arbitrary node, say, h.

С

- Blue: not visited yet
- f • Red: edges from 14 9 nodes $\in T$ to 8 9 e g nodes $\notin T$ 10 7 6 9 • Black: in T 11 1 b а 12 h 5 6 2 4

3

d

7

• Start at an arbitrary node, say, h.

С

- Blue: not visited yet
- f • Red: edges from 14 9 nodes $\in T$ to 8 9 e g nodes $\notin T$ 10 7 6 9 • Black: in T 11 1 b а 12 h 5 2 6 4

3

d

7

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from nodes $\in T$ to nodes $\notin T$ e 10
 - Black: in T

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from 14 9 nodes $\in T$ to 8 9 e g nodes $\notin T$ 10 6 9 • Black: in T 11 7 1 b а 12 5 h 2 6 4 d С 3

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from 9 nodes $\in T$ to e nodes $\notin T$ 10
 - Black: in T

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from 14 9 nodes $\in T$ to 8 9 e g nodes $\notin T$ 10 6 9 • Black: in T 11 7 1 b а 12 h 5 6 2 4 d С 3

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from 14 9 nodes $\in T$ to 8 9 e g nodes $\notin T$ 10 6 9 • Black: in T 11 7 1 b а 12 h 5 6 2 4

3

d

14

11

h

12

9

9

6

7

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- Red: edges from nodes $\in T$ to nodes $\notin T$ $_{6}$ e $_{10}$ $_{7}$ $_{7}$

а

С

2

1

5

3

b

4

d

• Black: in T

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- **Red:** edges from nodes $\in T$ to nodes $\notin T$
- Black: in T

- Start at an arbitrary node, say, h.
- Blue: not visited yet
- **Red:** edges from nodes $\in T$ to nodes $\notin T$
- Black: in T
- Minimum
 Cost: 47

Implementing Prim's Algorithm

- Recall the high-level algorithm:
- PrimMCST(V, E)
 - Pick an arbitrary node r from V
 - $\operatorname{Add} \mathbf{r} \operatorname{to} T$
 - While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v) How can we do this where $u \in T$ and $v \notin T$ efficiently?
 - Add node v to T

Finding lots of minimums? Use a priority queue!

Adding a priority queue

- What should we store in the priority queue?
 - Edges
 - From nodes in T
 to nodes not in T
- What should we use as the key of an edge?
 Weight of the edge

PrimMCST(V, E)

- Pick an arbitrary node r from V
- Add **r** to *T*
- While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v) where $\mathbf{u} \in T$ and $\mathbf{v} \notin T$
 - Add node v to T

Prim's Algorithm with a priority queue

- PrimMCST(V, E, r) where r is any arbitrary starting node
 - Q := new priority queue
 - For each u in V: inTree[u] = false, parent[u] = nil
 - inTree[r] = true, parent[r] = r
 - Add every edge that touches r to Q
 - While Q is not empty
 - Do Q.Extract-Min to get edge e = (u, v)
 - If not inTree[v] then
 - inTree[v] = true, parent[v] = u
 - Add every edge that touches v to Q

Small optimization

- PrimMCST(V, E, r)
 - Q := new priority queue
 - For each u in V: inTree[u] = false, parent[u] = nil
 - -- inTree[r] = true, parent[r] = r
 - Add every edge that touches r to Q
 - While Q is not empty
 - Do Q.Extract-Min to get edge e = (u, v)
 - If not inTree[v] parent[v] = nil then
 - inTree[v] = true, parent[v] = u
 - Add every edge that touches v to Q

Analysis of running time

- $O(|E| \log |E|) = O(|E| \log (|V|^2))$
- = O(|E| 2 log |V|)
- = O(|E| log |V|)

55	<pre>static int[] prim(int n, ArrayList<arraylist<edge>> adj, int start) {</arraylist<edge></pre>
56	<pre>TreeSet<edge> q = new TreeSet<>();</edge></pre>
57	<pre>int[] parent = new int[n];</pre>
58	<pre>for (int i=0;i<parent.length;++i) parent[i]="-1;</pre"></parent.length;++i)></pre>
59	
60	<pre>parent[start] = start;</pre>
61	<pre>for (int i=0;i<adj.get(start).size();++i) pre="" {<=""></adj.get(start).size();++i)></pre>
62	<pre>q.add(adj.get(start).get(i));</pre>
63	}
64	
65	<pre>while (!q.isEmpty()) {</pre>
66	<pre>Edge e = q.pollFirst();</pre>
67	if $(parent[e.b] == -1)$ {
68	<pre>parent[e.b] = e.a;</pre>
69	<pre>for (int i=0;i<adj.get(e.b).size();++i) pre="" {<=""></adj.get(e.b).size();++i)></pre>
70	<pre>q.add(adj.get(e.b).get(i));</pre>
71	}
72	}
73	}
74	return parent;
75	L }

```
static class Edge implements Comparable<Edge> {
49 🖃
50
              int a, b, w;
51 -
              Edge(final int a, final int b, final int w) {
52
                  this.a = a; this.b = b; this.w = w;
53
              3
\odot
              public int compareTo(Edge o) {
55
                  if (w < o.w) return -1;
56
                  if (w > o.w) return 1;
57
                  if (a < o.a) return -1;
58
                  if (a > 0.a) return 1;
59
                  if (b < o.b) return -1;
60
                  if (b > 0.b) return 1;
61
                  return 0;
62
              3
\odot
              public String toString() {
                  return "(" + a + ", " + b + ", " +
64
65
              }
66
          ł
```



```
13 -
         public static void main(String[] args) {
14
              int n = 10:
15
              String edges =
16
                         "0 1 9 " + "0 2 8 " + "0 3 14 "
17
                      + "1
                           - 0
                              9 "
                                    "1
                                          6
                                            .
                                                11
18
                                    "2
                                          9 "
                              8 " +
                                        з
                                                    5
                                                      7
                                                       " + "2
                                                               6 11 "
19
                              14 "
                                                 "3
                                                      9 " + "3 7
                                   + "3
                                         2
                                           9
                                            .
                                                                  7 "
20
                            1 6 " + "4
                                       5
                                          1
                                            .
                                                - "4
                                                      2
21
                             10 " + "5 2
                                                 "5
                                                         " + "5 6 12 "
                      + "5 1
                                           7
                                            22
                                     "5 8 5 " + "5 9
23
                                            " + "6 5 12 " + "6
                        "6 2
                              11 " + "6
                                         з
                                          9
24
                            з
                              7
                               .
                                    17
25
                                          5 " + "8 9 3 "
                                    "8
                                        5
26
                      + "9 5 4 " + "9 8 3":
27
             ArrayList<ArrayList<Edge>> adj = new ArrayList<>();
28
              for (int i=0;i<n;++i) adj.add(new ArrayList<Edge>());
29
              Scanner in = new Scanner(edges);
30
             while (in.hasNext()) {
31
                  int a = in.nextInt();
32
                  int b = in.nextInt();
33
                  int w = in.nextInt();
34
                  adj.get(a).add(new Edge(a, b, w));
35
36
              int[] tree = prim(n, adj, 6);
```

• Outputting the answer:

```
36 int[] tree = prim(n, adj, 6);
37 for (int i=0;i<tree.length;++i) {
38 System.out.print((i>0?", ":"") + "(" + i + ", " + tree[i] + ")");
39 }
40 System.out.println();
41 }
```

• The answer:

run: (0, 2), (1, 4), (2, 3), (3, 7), (4, 5), (5, 2), (6	5, 6), (7, 6), (8, 4), (9, 8)
BUILD SUCCESSFUL (total time: 0 seconds)	
	Recall: the root is
 What does this look like? 	its own parent.

Drawing the answer

Fun example: generating 2D mazes

- Prim's algorithm maze building video
- How can we use Prim's algorithm to do this?

Fun example: generating 2D mazes

• After Prim's, we end up with something like:

