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Abstract. In previous work, singular points (or top points) in the scale
space representation of generic images have proven valuable for image
matching. In this paper, we propose a construction that encodes the scale
space description of top points in the form of a directed acyclic graph.
This representation allows us to utilize graph matching algorithms for
comparing images represented in terms of top point configurations in-
stead of using solely the top points and their features in a point match-
ing algorithm, as was done previously. The nodes of the graph represent
the critical paths together with their top points. The edge set will cap-
ture the neighborhood distribution of vertices in scale space, and is con-
structed through a Delaunay triangulation scheme. We also will present
a many-to-many matching algorithm for comparing such graph-based
representations. This algorithm is based on a metric-tree representation
of labelled graphs and their low-distortion embeddings into normed vec-
tor spaces via spherical encoding. This is a two-step transformation that
reduces the matching problem to that of computing a distribution-based
distance measure between two such embeddings. To evaluate the quality
of our representation, two sets of experiments are considered. First, the
stability of this representation under Gaussian noise of increasing magni-
tude is examined. In the second set of experiments, a series of recognition
experiments is run on a small face database.

1 Introduction

Previous research has shown that top points (singular points in the scale space
representation of generic images) have proven to be valuable sparse image de-
scriptors that can be used for image reconstruction [6, 12] and image matching
[7, 14]. In our previous work, images were compared using a point matching
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scheme which took into account the positions, scales, and differential proper-
ties of corresponding top points [7, 6]. The underlying matching framework was
based on the Earth Mover’s Distance, a powerful, many-to-many point match-
ing framework. However, treating the points as an unstructured collection ig-
nores the salient group structure that may exist within a given scale or across
scales. Grouping certain top points together explicitly encodes the neighborhood
structure of a point, effectively enriching the information encoded at a point –
information that can be exploited during both indexing [16] and matching [17].

In this paper, we take an unstructured set of top points and impose a neigh-
borhood structure on them. Inspired by the work of Lifshitz and Pizer [10], we
will encode the scale space structure of a set of top points in a directed acyclic
graph (DAG). Specifically, we combine the position-based grouping of the top
points provided by a Delaunay triangulation with the scale space ordering of the
top points to yield a directed acyclic graph. This new representation allows us
to utilize powerful graph matching algorithms to compare images represented in
terms of top point configurations, rather than using point matching algorithms
to compare sets of isolated top points. Specifically, we draw on our recent work
in many-to-many graph matching [9, 2, 3], which reduces the matching problem
to that of computing a distribution-based distance measure between embeddings
of labelled graphs.

We describe our new construction by first elaborating on those basics of catas-
trophe theory required to introduce the concept of a top point. Next, we formally
define a top point, and introduce a measure for its stability that will be used
to prune unstable top points. Section 4 describes the construction of the DAG
through a Delaunay triangulation scheme. Section 5 reviews our many-to-many
DAG matching algorithm, which will be used to evaluate the construction. In
the first experiment, we examine the stability of the construction under Gaus-
sian noise of increasing magnitude applied to the original images. In the second
experiment, we examine the invariance of the graph structure to within-class im-
age deformation, which may include minor displacements of points both within
and across scales.

2 Catastrophe Theory

Critical points are points at any fixed scale in which the gradient vanishes, i.e.,
∇u = 0. The study of how these critical points change as certain control param-
eters change is called catastrophe theory. A Morse critical point will move along
a critical path when a control parameter is continuously varied. In principle,
the single control parameter in the models of this article can be identified as
the scale of the blurring filter. The only generic morsifications in Gaussian scale
space are creations and annihilations of pairs of Morse hypersaddles of opposite
Hessian signature1 [1, 4]. An example of this is given in Fig. 1.

1 The Hessian signature is the sign of the determinant evaluated at the location of the
critical point.
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Fig. 1. The generic catastrophes in isotropic scale space. Left: an annihilation event.
Right: a creation event. A positive charge ⊕ denotes an extremum, a negative charge
� denotes a saddle, � indicates the singular point

The movement of critical points through scale, together with their annihila-
tions and creations, forms critical paths in scale space. In this article, we will
restrict ourselves to generic (non-symmetrical) 2D images, but the theory is
easily adapted to higher dimensions. In the 2D case, the only generic morsifica-
tion is an annihilation or creation where a saddle point and an extremum point
meet. Critical paths in 2D therefore consist of an extremum branch, that de-
scribes the movement of an extremum through scale, and a saddle branch, that
describes the movement of the saddle with which the extremum annihilates.
Note that there is always one extremum branch continuing up to infinite scale
[11]. In Fig. 2, the critical paths and their top points are shown for a picture
of a face.

Fig. 2. Critical paths and top points of a face
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3 Top Points

The points at which creation and annihilation events take place are often referred
to as top points2. A top point is a critical point at which the determinant of the
Hessian degenerates: {∇u = 0

det(H) = 0.
(1)

An easy way to find these top points is by means of zero-crossings in scale space.
This involves derivatives up to second order and yields sub-pixel results. Other,
more elaborate methods, can be used to find or refine the top point positions.
For details, the reader is referred to [4].

It is obvious that the positions of extrema at very fine scales are sensitive to
noise. This, in most cases, is not a problem. Most of these extrema are blurred
away at fine scales and won’t affect our matching scheme at slightly coarser
scales. However, problems do arise in areas in the image that consist of almost
constant intensity. One can imagine that the positions of the extrema (and thus
the critical paths and top points) are very sensitive to small perturbations in
these areas. These unstable critical paths and top points can continue up to
very high scales since there is no structure in the vicinity to interact with. To
account for these instable top points, we need to have a measure of stability, so
that we can either give unstable points a low weight in our matching scheme, or
disregard them completely.

A top point is more stable in an area with a lot of structure. The amount
of structure contained in a spatial area around a top point can be quantified by
the total (quadratic) variation (TV) norm over that area:

TV (Ω) def=
σ2

∫
Ω

‖∇u(x)‖2dV∫
Ω

dV
(2)

We calculate the TV norm in a circular area with radius λσ around a top point
at position (xc, tc). Note that the size of the circle depends on the scale σ. The
integration area of the TV norm Ω is defined by:

Ω : ‖x − xc‖2 ≤ λ2σ2. (3)

By using a spatial Taylor series around the considered top point, and taking
into account that the first order spatial derivatives in this point are zero, we can
simplify the TV-norm Eqn. (2) to what we refer to as the differential TV-norm
by the following limiting procedure[14]:

tv
def= lim

λ→0

4
π

1
λ4 TV (λ) = σ4Tr(H2) (4)

The proportionality factor 4
π is irrelevant for our purposes. The normalization

factor 1
λ4 is needed prior to evaluation of the limit since TV (λ) = O(λ4). Eqn. (4)

2 The terminology is reminiscent of the 1D case, in which only annihilations occur
generically.
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(a) Stable paths (b) Unstable paths

Fig. 3. Spatial projection of critical paths of a MR brain scan image. The paths are
filtered by thresholding the stability norm of their top points. Most instabilities occur
in flat regions, as expected

has been referred to by Koenderink as deviation from flatness, which can indeed
be seen to be the differential counterpart of Eqn. (2). It enables us to calculate a
stability measure for a top point locally by using only its second order derivatives.
This stability norm can be used to weigh the importance of top points in our
matching scheme, or to remove any unstable top points by thresholding them
on their stability value. The latter is demonstrated in Fig. 3.

4 Construction of the Graph

The goal of our construction is two-fold. First, we want to encode the neighbor-
hood structure of a set of points, explicitly relating nearby points to each other
in a way that is invariant to minor perturbations in point location. Moreover,
when local neighborhood structure does indeed change, it is essential that such
changes will not affect the encoded structure elsewhere in the graph (image). The
Delaunay triangulation imposes a position-based neighborhood structure with
exactly these properties [15]. It represents a triangulation of the points which is
equivalent to the nerve of the cells in a Voronoi tessellation, i.e., that triangula-
tion of the convex hull of the points in the diagram in which every circumcircle
of a triangle is an empty circle [13]. The edge set of our resulting graph will be
based on the edges of the triangulation. Our second goal is to capture the scale
space ordering of the points to yield a directed acyclic graph, with coarser scale
top points directed to nearby finer scale top points.

The first step in constructing our graph G is the detection of top points
and critical paths using ScaleSpaceViz [5]. The root of G, denoted as v1, will
correspond to the single critical path that continues up to infinity; note that
there is no top point associated with this critical path, but simply its position at
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the coarsest scale. All other nodes in G, denoted as v2, ..., vn, correspond to the
detected top points and their corresponding critical paths. v2, ..., vn are ordered
in decreasing order of the scale at which they are detected, e.g., v2 is detected at
a coarser scale than vn. As we build the Delaunay triangulation of the points, we
will simultaneously construct the DAG. Beginning with the root, v1, we have a
singleton point in our Delaunay triangulation, and a corresponding single node
in G. Next, at the scale corresponding to v2, we project v1’s position down
to v2’s level, and recompute the triangulation. In this case, the triangulation

Fig. 4. Visualization of the DAG construction algorithm. Left: the Delaunay trian-
gulations at the scales of the nodes. Right: the resulting DAG (edge directions not
shown)

Fig. 5. The DAG obtained from applying Algorithm 1 to the critical paths and top
points of the face in Fig. 2
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yields an edge between v1 and v2. Each new edge in the triangulation yields
a new edge in G, directed from coarser top points to finer top points; in this
case, we add a directed edge in G from v1 to v2. We continue this process with
each new top point, first projecting all previous top points to the new point’s
level, recomputing the triangulation, and using the triangulation to define new
directed edges in G. A summary of this procedure is presented in Algorithm 1.

The construction is illustrated for a simple image in Fig. 4. In the top two
frames in the left figure, we show the transition in the triangulation from v2
(point 2) to v3 (point 3); the root is shown as point 1. In the upper right frame,
the triangulation consists of three edges; correspondingly, G has three edges:
(1, 2), (1, 3), (2, 3), where (x, y) denotes an edge directed from node x to node y.
In the lower left figure, point 4 is added to the triangulation, and the triangu-
lation recomputed; correspondingly, we add edges (1, 4), (2, 4), (3, 4) to G (note
that (1, 2) is no longer in the triangulation, but remains in G). Finally, in the
lower right frame, point 5 is added, and the triangulation recomputed. The new
edges in the triangulation yield new edges in G: (2,5),(4,5),(1,5). The right side
of Fig. 4 illustrates the resulting graph (note that the directions of the edges
are not shown). Fig. 5 is the result of applying this construction to the face of
Fig. 2.

Algorithm 1 Top point graph construction procedure
1: Detect the critical paths.
2: Extract the top points from the critical paths.
3: Label the extremum path continuing up to infinity as v1.
4: Label the rest of the nodes (critical paths, together with their top points) according

to the scale of their top points from high scale to low as v2, ..., vn.
5: For i = 2 to n evaluate node vi:
6: Project the previous extrema into the scale of the considered node vi.
7: Calculate the 2D Delaunay triangulation of all the extrema at that scale.
8: All connections to vi in the Delaunay triangulation are stored as directed edges

in G.

5 Experiments

To evaluate our construction, we explore the invariance of the construction to two
types of perturbations. The first is the sensitivity of the construction to noise in
the image, while the second is within-class deformation resulting in displacements
of top points both within and across scales. We conduct our experiments using a
subset of the Olivetti Research Laboratory face database. The database consists
of faces of 20 people with 10 faces per person, for a total of 200 images; each
image in the database is 112×92 pixels. The face images are in frontal view and
differ by various factors such as gender, facial expression, hair style, and presence
or absence of glasses. A representative view of each face is shown in Fig. 6.
Invariance of a graph to noise or within-class deformation requires a measure of
graph distance, so that the distance between the original and perturbed graphs
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Fig. 6. Sample faces from 20 people

can be computed. For the experiments reported in this paper, we compute this
distance using our many-to-many graph matching algorithm, which we briefly
describe in the next subsection. Note that we have developed a general algorithm
that is in no way specifically designed for face recognition. Therefore we have
not compared our method to state-of-the-art face recognition algorithms. We
present this experiment only as a proof of concept.

5.1 Overview of Matching Algorithm

The matching algorithm is based on the metric-tree representation of labelled
graphs and their low-distortion embeddings into normed vector spaces via spher-
ical coding [3, 9]. The advantage of this embedding technique is that it prescribes
a single vector space into which both graphs are embedded. This two-step trans-
formation reduces the many-to-many matching problem to that of computing a
distribution-based distance measure between two such embeddings. To compute
the distance between two sets of weighted vectors, we use a variation of Earth
Mover’s Distance under transformation sets. For two given graphs, the algorithm
provides an overall similarity (distance) measure.

Fig. 7 presents an overview of the approach. For a given face, we first create its
DAG according to Section 4 (Transition 1), and embed each vertex of the DAG
into a vector space of prescribed dimensionality using a deterministic spherical
coding (Transition 2). Finally (Transition 3), we compute the distance between
the two distributions by the modified Earth Mover’s Distance under transfor-
mation. The dimension of the target space in Transition 1 has a direct effect on
the quality of the embedding. Specifically, as the dimensionality of the target
space increases, the quality of the embedding will improve. Still, there exists
an asymptotic bound beyond which increasing the dimensionality will no longer
improve the quality of the embedding. Details on the many-to-many matching
algorithm can be found in [3].

5.2 Graph Stability Under Additive Noise

To test the robustness of our graph construction, we first examine the stability
of our graphs under additive Gaussian noise at different signal levels applied
to the original face images. For this experiment, the database consists of the
original 200 unperturbed images, while the query set consists of noise-perturbed
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Fig. 7. Computing similarity between two given faces. (Matched point clusters are
shaded with the same color.) See text

versions of the database images. Specifically, for each of the 200 images in the
database, we create a set of query image by adding 1%, 2%, 4%, 8%, and 16% of
Gaussian noise. Next, we compute the similarity between each query (perturbed
database image) and each image in the database, and score the trial as correct
if its distance to the face from which it was perturbed is minimal across all
database images. This amounts to 40,000 similarity measurements for each noise
level, for a total of 200,000 similarity measurements. Our results show that the
recognition rate decreases down to 96.5%, 93%, 87%, 83.5%, and 74% for 1%,
2%, 4%, 8%, and 16% of Gaussian noise, respectively. These results indicate a
graceful degradation of graph structure with increasing noise.

5.3 Graph Stability Under Within-Class Variation

To test the stability of the graph construction to within-class variation (e.g.,
different views of the same face), we first group the faces in the database by
individual; these will represent our categories. Next, we remove the first image
(face) from each group and compare it (the query) to all remaining database
images. The image is then put back in the database, and the procedure is re-
peated with the second image from each group, etc., until all 10 face images of
each of the 20 individuals have been used as a query. If the graph representa-
tion is invariant to within-class deformation, resulting from different viewpoints,
illumination conditions, presence/absence of glasses, etc., then a query from
one individual should match closest to another image from the same individual,
rather than an image from another individual. The results are summarized in
Table 1, Fig. 8.

The magnitudes of the distances are denoted by shades of gray, with black
and white representing the smallest and largest distances, respectively. Due to
symmetry, only the lower half of distance matrix is presented. Intra-object dis-
tances, shown along the main diagonal, are very close to zero.
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Fig. 8. Table 1: Matching results of 20 people. The rows represent the queries and the
columns represent the database faces (query and database sets are non-intersecting).
Each row represents the matching results for the set of 10 query faces corresponding to
a single individual matched against the entire database. The intensity of the table en-
tries indicates matching results, with black representing maximum similarity between
two faces and white representing minimum similarity. Table 2: Subset of the match-
ing results with the pairwise distances shown. Table 3: Effect of presence or absence of
glasses in the matching for the same person. The results clearly indicate that the graph
perturbation due to within-class deformation, including facial expression changes, illu-
mination change, and the presence/absence of glasses is small compared to the graph
distance between different classes

To better understand the differences in the recognition rates for different
people, we randomly selected a subset of the matching results among three people
in the database, as shown in Table 2, Fig. 8. Here, the (i, j)-th entry shows the
actual distance between face i and face j. It is important to note that the distance
between two faces of the same person is smaller than that of different people,
as is the case for all query faces. In our experiments, one of our objectives was
to see how various factors, such as the presence or absence of glasses, affects
the matching results for a single person. Accordingly, we took a set of images
from the database of one person, half with the same factor, and computed the
distances between each image pair. Our results show that images with the same
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factors are more similar to each other than to others. Table 3 of Fig. 8 presents
a subset of our results. As can be seen from the table, images of the same person
with glasses are more similar than those of the same person with and without
glasses. Still, in terms of categorical matching, the closest face always belongs
to the same person. Although these results are encouraging, further evaluation
on a larger database needs to be investigated to be more conclusive.

6 Conclusions

Imposing neighborhood structure on a set of points yields a graph, for which
powerful indexing and matching algorithms exist. In this paper, we present a
method for imposing neighborhood structure on a set of scale space top points.
Drawing on the Delaunay triangulation of a set of points, we generate a graph
whose edges are directed from top points at coarser scales to nearby top points
at finer scales. The resulting construction is stable to noise, and within-class
variability, as reflected in a set of directed acyclic graph matching experiments.
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