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Abstract

We describe a robot vision system that achieves complex object recognition with two layers of behaviors,
performing the tasks of planning and object recognition, respectively. The recognition layer is a pipeline in which
successive stages take in images from a stereo head, recover relevant features, build intermediate representations,
and deposit 3-D objects into a world model. Each stage is an independent process that reacts automatically to
output from the previous stage. This reactive system operates continuously and autonomously to construct the
robot’s 3-D model of the environment. Sitting above the recognition pipeline is the planner which is responsible
for populating the world model with objects that satisfy the high-level goals of the system. For example, upon
examination of the world model, the planner can decide to direct the head to another location, gating new images
into the recognition pipeline, causing new objects to be deposited into the world model. Alternatively, the planner
can alter the recognition behavior of the pipeline so that objects of a certain type or at a certain location appear
in the world model.

1 Introduction

A subsumption architecture within a reactive control paradigm (Brooks [Bro86, Bro91b, Bro91a]) has been proposed
as an effective method for achieving simplicity, modularization, and information hiding in the design of an autonomous
agent’s interaction with the environment. The approach is guided by the belief that machines constructed out of
simple modules with simple communication will exhibit intelligent behavior as an emergent property; the behavior is
not directed by a single homunculus nor is it explicitly specified in the machine in any way. Briefly, the subsumption
architecture can be described as follows: control layers define a total order on a robot’s behaviors; the dominance of
layers follows a hypothesized evolutionary sequence; and, a layer may spy on layers at lower levels and inject signals
into them. Furthermore, each layer is a reactive component that connects directly to sensors (input) and actuators
(output). The mapping from perception to action is achieved solely through the communication of simple messages
among independent modules within the layer. Brooks argues strongly against the sense-model-plan-act framework



for robot control, the representation of intermediate or hierarchical computations, the explicit representation of goals,
and CAD-like models of the world.

This approach has been successfully demonstrated on simple behaviors such as obstacle avoidance and direction
following (Brooks [Bro86]), and on tasks requiring limited object recognition (Connell [Con89]). However, as shown
by Tsotsos [Ts089, Ts090, Ts092b, Ts092a], such a simple strategy cannot scale up to more complex recognition
abilities without employing hierarchical representations and data abstraction. Thus, the subsumption framework
must be further developed in order to support more complex object recognition behaviors. For a mobile robot to
intelligently interact with its environment, it must understand a richer vocabulary of objects in the world, which are
the stimuli which elicit behavior. This requires an advanced object recognition system, which can recover objects
in an undirected, bottom-up mode, or can focus its attention on particular objects or locations. The robot must be
able to direct these recognition tasks, as well as dictate their performance characteristics.

Our motivation for further developing the above framework comes from the domain of handicapped robotics. In
a system called PLAYBOT, we are attempting to build a robot vision system that will allow handicapped children
to play with toys placed on a table through the aid of a vision-guided robot arm. A mobile platform equipped with
a stereo head and a manipulator will be controlled from a touch-screen video panel mounted on the child’s interface.
Through the interface, the child will instruct the robot vision system to identify, locate, and manipulate the objects
on the table. The recognition system must support a number of complex object recognition behaviors. For example,
it must be able to search for certain toys that may or may not be visible in the field of view. In addition, it must be
able to direct its sensors to particular areas of the table and verify the position and orientation of objects that it has
previously encountered. Finally, when the child is not interacting with the system, it should be able to autonomously
recover a complete representation of the world for later use.

In this paper, we describe a vision system that achieves this level of object recognition with two layers of behaviors,
performing the tasks of planning and object recognition, respectively. The recognition layer is a pipeline in which
successive stages take in images from a stereo head, recover relevant features, build intermediate representations,
and deposit 3-D objects into a world model. Each stage is an independent process that reacts automatically to
output from the previous stage. In addition, each stage of the pipeline can guide earlier stages, allowing the goals for
recovery and recognition of higher-level features to govern the segmentation and recovery of lower-level features. A
set of state variables for each stage defines a limited interface by which higher-level stages can intervene in lower-level
processing. This reactive system operates continuously and autonomously to construct the robot’s 3-D model of the
environment.

Sitting above the recognition pipeline is the planner, which is responsible for populating the world model with
objects that satisfy the high-level goals of the system—in the case of PLAYBOT, objects that the child wishes to
interact with. Upon examination of the world model, the planner can decide to direct the head to another location,
gating new images into the recognition pipeline and resulting in new objects being deposited into the world model.
Alternatively, the planner can alter the recognition behavior of the pipeline so that objects of a certain type or at
a certain location appear in the world model. The planner is integrated with the recognition system in a modular
fashion, by restricting the planner’s knowledge of the recognition pipeline to the same set of state variables needed
for intercommunication within the recognition system itself. Instead of directly controlling the recognition system,
the planner simply directs the automatic recognition process by setting its state variables to reflect task-directed
recognition goals.

In Brooks’ approach, reactive behaviors are triggered by specific sensor signals and, in turn, affect the external
world directly through a set of actuators. In contrast, our reactive behaviors (recognition pipeline stages) are triggered
by changes not only in the sensor signals themselves, but also by changes in the abstract representation of sensor
signals. Furthermore, the actions may not affect the world directly, but may affect an abstract representation of the
world (world model). In order to create this world model, the internal structure of the recognition pipeline layer is
more complex than in the traditional subsumption approach. The individual modules create complex intermediate
representations that are communicated through shared memory. While we’ve added structure to the pipeline layer,
we maintain the advantages of the subsumption architecture, i.e., modularization and information hiding, both within
the recognition pipeline layer, as well as between the planner and the recognition pipeline.

The paper is organized as follows. Following the Introduction, we briefly describe the stages of the recognition
pipeline, including its control strategy. Next, we present the planner and describe its interaction with both the
object recognition pipeline and the user interface. The paper concludes with some early experimental results and a
discussion of the approach.



2 Object Recognition

The object recognition system must support the following four recognition behaviors:

¢ Unconstrained Bottom-Up Recognition. In this case, the system must be able to identify as well as locate
in space all objects within the field of view. In the PLAYBOT system, this behavior would be invoked as a
background behavior when the child is not executing a specific task.

¢ Constrained Bottom-Up Recognition. In this case, the system must be able to identify as well as locate
in space the object(s) at a particular location within the field of view. In the PLAYBOT system, this behavior
would be invoked when the child points to some object in the image with the mouse instructing the system to,
for example, “pick that up.”

¢ Unconstrained Top-Down Recognition. In this case, the system must be able to search the image for
a particular object. In the PLAYBOT system, this behavior would be invoked when the child instructs the
system to, for example, “pick up the truck.”

¢ Constrained Top-Down Recognition. In this case, the system must be able to search a particular location
in the image for a particular object. In the PLAYBOT system, this behavior would be invoked when the the
child executes the command “pick up the truck” and the system believes it already knows where the truck is.
In this case, the system will direct its sensors towards the expected location of the truck and verify its existence
at a particular image location.

In designing a recognition system to accommodate the above behaviors, we propose an autonomous pipeline that
continually takes in images at one end and outputs 3-D objects at the other. The behavior of the pipeline, i.e., the
nature of the objects that are output, is entirely governed by a set of state variables. Thus, by externally tuning the
state variables, the pipeline can be made to exhibit the above four behaviors. The state variables are also tunable
from within the pipeline. For example, the state variables at earlier stages of the pipeline are accessible by later
stages allowing interpretation to affect segmentation.

The object recognition pipeline defines a process that first recovers the coarse shape of an object in terms of a set
of qualitatively-defined volumetric primitives (Dickinson et al. [DPR90, DPR92b, DPR92a]). Next, the coarse shape
of the object is used to constrain a deformable model fitting process. This process not only recovers the quantitative
shape of the object (Dickinson and Metaxas [DM92]), but also localizes the object in depth (Metaxas and Dickinson
[MD93]) so that it can be manipulated by the robot arm. In the following subsections, we briefly review the shape
representation and recovery techniques, and follow with a description of the pipeline control strategy.

2.1 Qualitative Shape Representation

The goal of the object recognition system is to match assemblies of recovered volumes to models in the object
database. Given a database of object models representing the domain of a recognition task, we seek a set of three-
dimensional volumetric modeling primitives that, when assembled together, can be used to construct the object
models. To demonstrate our approach to object recognition, we have selected an object representation similar to
that used by Biederman [Bie85], in which the Cartesian product of contrastive shape properties gives rise to a set
of volumetric primitives called geons. For our investigation, we have chosen three properties including cross-section
shape, axis shape, and cross-section size variation (Dickinson et al. [DPR90]). The values of these properties give
rise to a set of ten volumes (a subset of Biederman’s geons), modeled using Pentland’s SuperSketch 3-D modeling
tool [Pen86], and illustrated in Figure 1(a). To construct objects, the volumes are attached to one another with the
restriction that any junction of two volumes involves exactly one distinct surface from each volume.

To recover the volumetric primitives from an image, we need some way of modeling their appearance in the
image. Traditional aspect graph representations of 3-D objects model an entire object with a set of aspects, each
defining a topologically distinct view of an object in terms of its visible surfaces [KvD79]. Our approach differs
in that we use aspects to represent a (typically small) set of volumetric primitives from which each object in our
database 1s constructed, rather than representing an entire object directly. Consequently, our goal is to use aspects
to recover the 3-D volumes that make up the object in order to carry out a recognition-by-parts procedure, rather
than attempting to use aspects to recognize entire objects. The advantage of this approach is that since the number
of qualitatively different volumes is generally small, the number of possible aspects is limited and, more important,
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Figure 1: (a) The Ten Volumetric Modeling Primitives, (b) The Aspect Hierarchy

independent of the number of objects in the database. The disadvantage is that if a volume is occluded from a given
3-D viewpoint, its projected aspect in the image will also be occluded. Thus we must accommodate the matching of
occluded aspects, which we accomplish by use of a hierarchical representation we call the aspect hierarchy.

The aspect hierarchy consists of three levels, consisting of the set of aspects that model the chosen volumes, the
set of component faces of the aspects, and the set of boundary groups representing all subsets of contours bounding
the faces. Figure 1(b) illustrates a portion of the aspect hierarchy. The ambiguous mappings between the levels of
the aspect hierarchy are captured in a set of conditional probabilities (Dickinson [Dic91]), mapping boundary groups
to faces, faces to aspects, and aspects to volumes. These conditional probabilities result from a statistical analysis
of a set of images approximating the set of all views of all the volumes.

2.2 Qualitative Shape Recovery

Qualitative shape recovery is a process that takes as input a single image and generates a viewer-centered representa-
tion of the image called the image model. The image model is a repository or database that maps pixels in the image
to recovered qualitative volumes. In addition, the image model maps volume classes to recovered volume instances
in the image. The image model thus supports queries of the form: “What recovered volumes occupy the pixel (x,y)
in the image?” And: “Get me all volumes in the image of type <type>.”

The qualitative shape recovery pipeline is depicted in Figure 2; each of the left and right channels from the stereo
head has its own dedicated pipeline, resulting in the maintenance of a left and a right image model. The process has
two major components. First, the image is preprocessed to extract a face topology graph, in which nodes represent
segmented image regions and arcs specify region adjacency. Each node (region) contains a list of face hypotheses or
shape interpretations of the region in terms of the faces in the aspect hierarchy. Details of the region segmentation
and face labeling processes can be found in [DPR92b].

Given a face topology graph representation of the input region, the next step in the qualitative shape recovery
process 1s the grouping of faces into part-based aspects. Shape recovery may proceed in a bottom-up or top-down
manner. In a bottom-up shape recovery mode, the system has no prior expectation of image content. Faces enter the
bottom of the aspect hierarchy and, through an inference process that exploits the conditional probabilities linking
together the levels of the aspect hierarchy, qualitative volumes come out the top. In a top-down shape recovery
mode, the system is searching for a particular object or component volume. Target volumes enter the top of the
aspect hierarchy and, through an attention process that also exploits the conditional probabilities, a constrained
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volume recovery process is focused at key points in the image. Details of the qualitative shape recovery process can

be found in Dickinson et al. [DPR92b, DPR92a, DP92].

2.3 Quantitative Shape Representation

The left and right image models represent a coarse or qualitative interpretation of the left and right images, respec-
tively, in terms of a set of qualitatively-defined volumetric parts. As mentioned earlier, the image models support
image-based queries such as “what object am I pointing to?” or “show me the blocks in the image.” Although this
representation may be sufficient for labeling the image in terms of 3-D qualitative volumes, actual manipulation of the
objects (if necessary) requires a more explicit representation capturing quantitative shape as well as pose (position
and orientation). The final stage of the recognition pipeline, as shown in Figure 3, uses corresponding qualitative
volumes from the left and right image models to constrain the fitting of a deformable model to the image data. The
resulting quantitative model captures the fine shape and pose of the object supporting manipulation.

Based on the vocabulary of shapes we want to recover, we quantitatively model our volumetric parts using



superquadric ellipsoids [Bar81], which are given by the following formula:
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where —7/2 < u < 7/2 and —7 < v < 7, and where S,,© = sgn(sinw)|sinw|, and C\,° = sgn(cos w)| cosw|®. Here,
a > 0 1s a scale parameter, 0 < a1, a3,a3 < 1 are aspect ratio parameters, and €1, e5 > 0 are “squareness” parameters.

We then combine linear tapering along principal axes 1 and 2, and bending along principal axis 3 of the su-
perquadric e! into a single parameterized deformation T, and express the reference shape as:
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where —1 < #1,¢3 < 1 are the tapering parameters in principal axes 1 and 2, respectively; by defines the magnitude
of the bending and can be positive or negative; —1 < by < 1 defines the location on axis 3 where bending is applied;
and 0 < b3 < 1 defines the region of influence of bending. Our method for incorporating global deformations is not
restricted to only tapering and bending deformations. Any other deformation that can be expressed as a continuous
parameterized function can be incorporated as our global deformation in a similar way.

We collect the parameters in s into the parameter vector:

qs = (a7a17a27a37617627t17t27b17b27bS)T- (3)

The above global deformation parameters are adequate for quantitatively describing the ten volumetric modeling
primitives shown in Figure 1(a).

2.4 Quantitative Shape Recovery

In this section, we briefly review the quantitative shape recovery process; further details can be found in [DM92,
MD93]. The first step in recovering the quantitative shape corresponding to a qualitative volume is to identify
corresponding volumes in the left and right image models. A pair of volumes represents a correspondence if: (i) the
volumes have the same label, (ii) their aspects have the same label, and (iii) the ratio of the vertical intersection of
the bounding rectangles of the two volumes to the vertical size of each bounding rectangle exceeds some threshold
(epipolar constraint). Intuitively, volumes from the left and right image are said to correspond if they are of the
same type, they are viewed in roughly the same orientation, and their vertical disparity is small.

Given a pair of corresponding volumes, a superquadric ellipsoid is independently fitted to the contours of each
volume. When fitting the model to visual data, our goal is to recover q, the vector of degrees of freedom of the model.
The components g, (position of model center) and qg (orientation of model) are the global rigid motion coordinates,
and q, are the global deformation coordinates. Qur approach carries out the coordinate fitting procedure in a
physically-based way. We make our model dynamic in q by introducing mass, damping, and a deformation strain
energy. This allows us, through the apparatus of Lagrangian dynamics, to arrive at a set of equations of motion
governing the behavior of our model under the action of externally applied forces.

The Lagrange equations of motion take the form [TM91]:

Mg+ Dq+ Kq =1, (4)

where M, D, and K are the mass, damping, and stiffness matrices, respectively, and where fy(u, ¢) are the generalized
external forces associated with the degrees of freedom of the model.

In the dynamic model fitting process, the contour data belonging to a recovered qualitative volume are transformed
into an externally applied force distribution f(u,t). We convert the external forces to generalized forces f; which act
on the generalized coordinates of the model [TM91]. We apply forces to the model based on differences between the
model’s projection in the image and the image data. Each of these forces corresponds to the appropriate generalized
coordinate that has to be adapted so that the model fits the data. Given that our vocabulary of volumetric primitives

IThese coincide with the model frame axes @,y and z respectively



1s limited, we devise a systematic way of computing the generalized forces for each volume. The computation depends
on the influence of particular parts of the projected image on the model degrees of freedom. Such parts correspond
to the image faces (grouped to form an aspect) provided by the qualitative shape extraction. In the case of occluded
volumes, resulting in both occluded aspects and occluded faces, only those portions (boundary groups) of the faces
that were used to define the faces exert external forces on the models.

When fitting models independently to the left and right qualitative volumes, the depth of the model must be
chosen arbitrarily. The final step solves specifically for the depth and scale of the model and allows both qualitative
volumes to simultaneously affect the shape of a single quantitative model. Specifically, given two quantitative model
instances, mp and mg, one per image, and having the same scale, choose one of the images, say R, and project
the locations of the left and right model centers, mr, and mpg_, into R. Let the locations of these projected model
centers be c¢r, and cg respectively. We then map the difference in the 2 coordinates? of ¢z and cg into a force that
modifies my and mg in the direction of my and mg, respectively, according to the following formula:

. mp
my = s|¢Le — CRe|7T— (5)
| |
where k = Lork =R, s = 1if ¢gr < ¢ge, and s = —1 otherwise. Once ¢ = cg, we first sum the forces that

the left and right image data exert on the model. From their sum, we then compute the generalized force f,, that
corresponds to the scaling parameter ¢ in equation (1), and using equation (4), we modify a.

2.5 Recognition Control

Each component of the recognition pipeline is implemented as an independent process that reacts to outputs at its
previous stage. There are identical processes for the left and right channels of the initial sections of the pipeline;
the final quantitative fitting stage is a single process that reacts to the final outputs from both the left and right
channels. Images are acquired at video rates from the camera and are fed directly to a Datacube MaxVideo 20 system
where successive images are compared at video rates. Image content may change due to motion in the image or due
to egomotion of the head. If image content changes significantly between successive frames, then the preprocessing
stage of the recognition pipeline reacts automatically by computing a new face topology graph based on the current
image. The next stage in the pipeline, the qualitative volume extraction stage, senses the new face topology graph
and responds by creating a new image model. Qualitative volumes are extracted from the new face topology graph
and deposited into the new image model. Addition of a new qualitative volume in one (e.g., left) image model triggers
the quantitative volume recovery stage to search for a corresponding volume in the other (in this case, right) image
model. When it discovers a correspondence, it initiates the fitting procedure to recover the quantitative shape of the
pair of volumes. Each qualitative volume is assigned the same 3-D parameters following the fitting step. The fitted
3-D volume is then deposited into the world model. Note that objects put in the world model are persistent, while
image model objects are lost when new images are required.

The behavior of each stage in the recognition pipeline is controlled by a set of state variables. For example, in the
qualitative volume extraction stage, state variables control whether the system is recovering volumes in a bottom-up
or a top-down fashion, and whether the search spans the entire image or is focused at a particular location. In this
way, we can support the four recognition behaviors outlined earlier. In addition, there are state variables that control
the quality of the recovered volumes. For example, the system can be constrained to recover only high probability
aspects in order to provide sufficient fitting constraints on quantitative shape recovery. Alternatively, if no such
aspects are found, the constraints can be weakened so that less likely aspects can be found; these can then be used
to drive an active scheme which will move the head to find better aspects (Dickinson, Olofsson, and Christensen
[DOC93]). In the same manner, there are state variables that control the behavior of the preprocessing stage (to
affect segmentation performance) and the quantitative shape recovery stage (to affect fitting performance).

It is important to once again note that the pipeline is completely autonomous, i.e., it reacts to changes in its field
of view by attempting to recognize objects in the image according to one of the four behaviors it has been instructed
to exhibit. At any time, the behavior may be externally changed, affecting the objects that come out the end of the
pipeline. In addition, the pipeline has no idea why an image may be changing and hence triggering the pipeline to
recognize objects. It may be due to motion in the image or it may be due to some higher-level process moving the
head around.

2Since the two cameras are parallel, the projections of the two model frame centers differ only in the & direction.



3 The Planner

The planner is another process whose main function, as shown in Figure 4, is to map high level recognition goals
into pipeline control strategies that will successfully meet these goals. The planner can be autonomous or, in the
case of PLAYBOT, can take high-level goals from the user. Even in the PLAYBOT system, the recognition behavior
responsible for identifying and localizing all the objects in the world is a completely autonomous process which is
pre-empted only by requests by the child. It is important to note that the planner does not have knowledge of the
recognition pipeline internals nor is it responsible for executing its stages. Rather, it knows only how a particular set
of state variables can be tuned to increase the probability of recognizing a given set of objects. To the planner, the
recognition pipeline is a black box with images coming in one end, objects coming out the other, and a few switches
on the side which govern what comes out. The planner controls the behavior of the recognition pipeline, affecting
the images that enter the pipeline by having direct control over head movement, and controlling the objects that
come out of the back end of the pipeline by setting the state variables that govern the recognition behaviors.

For example, if the user wants an instance of a particular class of object and none have been deposited into the
image (2-D) or world (3-D) models, then the planner can change the state of the recognition pipeline, effectively
“buning” it to search for a particular class of object. Alternatively, if the system is already tuned to find that object,
it can relax some of the quality constraints (in the form of state variables) to find weaker instances of the object
from which it can direct the head to improve their interpretation. Finally, if the planner is convinced that the object
1s not in the field of view, it can direct the head to some other location in the world, gating new images into the
pipeline, and observing which objects come out the other end (world model).

4 Experiments

We are in the process of building a prototype of the architecture to support the PLAYBOT application described
earlier. The system runs on a SGI IRIS (4 processor) computer with a separate processor for each channel of
the recognition pipeline, one for the quantitative shape recovery stage, and one for the planner and user interface.
Each stage of the recognition pipeline, along with the planner and user interface are implemented as separate UNIX
processes. At this time, only two of the four high-level recognition behaviors are supported, namely the unconstrained
top-down and constrained bottom-up behaviors. Furthermore, the initial prototype does not not support feedback
within the recognition pipeline. Finally, the planner has no control over the head at the present time, although it
does control image acquisition.

The user interface to the PLAYBOT system is shown in Figure 5. At the top, separate panes show the images
from the left and right cameras (in this case, images of an example configuration of the PLAYBOT tabletop). At the
bottom left is the rendered contents of the world model. The user can move through the world model under mouse
control, allowing the user to view recovered objects from any viewing position. Next to the world model display
are two panes of icons. The upper pane specifies all the objects the system is able to recover and recognize. In the
prototype system, these objects correspond to the ten volumes shown in Figure 1(a). Below the object icons are the
command icons specifying the various actions that can be requested by the user. This initial set of commands, which
does not support any object manipulation, can be divided into two groups: the Find commands and the Identify
commands.

The Find commands take an object name or icon, and trigger a search for an object of that type in the world. If
the object is found in the world model, it is highlighted in the world model display. If the object is found in the image
model, i.e., it is visible in one of the image panes, it is highlighted in the image. In either case, if the highlighted
object is not the object the user intended the system to find, then the user can execute the “Redo Last Command”
which will look for the next best instance of the object in the world (or image). In Figure 5, each of the left and right
image panes have a highlighted block resulting from a sequence of two “Find block” commands. The first block the
system found was contained in the left image while the second instance was found in the right image. (Searching for
an object will result in queries sent to both image models.) The world model display shows the results of the fitting
process applied to the two corresponding volumes.

The Find commands represent the only way the user can reference an object that is not in the field of view.
However, if the object is in the field of view (contained in one of the images), or if it has been previously recovered
and appears in the world model, then the user interface supports a more direct interface. The Identify commands
allow the user to point to either image pane or to the world model display pane and have the system identify the object
at the mouse location and highlight it. As with a Find command, if the identified object is not the interpretation
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the user is looking for, then “Redo Last Command” can be invoked to enumerate any other interpretations of a
particular region in the image. In Figure 6, the mouse was clicked on the tall block in the right image. The block is
highlighted and its type is indicated in a message to the user.

5 Conclusions

For a mobile robot to move through its environment, recognizing and manipulating a variety of objects, it must
be equipped with an object recognition system that supports a variety of object recognition behaviors. In this
paper, we have proposed an architecture consisting of an autonomous recognition pipeline which can support four
different behaviors. Choosing which behavior the pipeline should exhibit is the responsibility of the planner whose
responsibility is to satisfy the high-level recognition goals. The recognition pipeline has no concept of a moving
head or high-level recognition goals; it simply tries to recognize objects in its field of view. It is the responsibility
of the planner to intelligently move the head around and dictate the recognition behavior exhibited by the pipeline.
The two-layer architecture we propose extends Brooks’ subsumption scheme, overcoming the scaling problem and
addressing a much more complex recognition task.
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Figure 6: Identifying an Object
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