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Abstract

In this paper, we describe a novel method for searching
and comparing 3D objects. The method encodes the geo-
metric and topological information in the form of a skele-
tal graph and uses graph matching techniques to match the
skeletons and to compare them. The skeletal graphs can
be manually annotated to refine or restructure the search.
This helps in choosing between a topological similarity and
a geometric (shape) similarity. A feature of skeletal match-
ing is the ability to perform part-matching, and its inher-
ent intuitiveness, which helps in defining the search and in
visualizing the results. Also, the matching results, which
are presented in a per-node basis can be used for driving a
number of registration algorithms, most of which require a
good initial guess to perform registration. In this paper, we
also describe a visualization tool to aid in the selection and
specification of the matched objects.

1 Introduction

With the development of advanced 3D scanning devices,
the ubiquity of VRML and the web, and the rise in computa-
tional processing power, the number of 3D models available
is increasing rapidly. The 3D models include both polygo-
nal datasets (such as VRML files, Autocad, etc.) and vol-
umetric files (3D datasets). Unfortunately, and very much
like image files, these 3D models are not easily searchable.
The problem of matching 3D shapes is a difficult one and
has been the recent focus of research efforts. Text descrip-
tors of 3D shapes can also be used for searching as is done
for images [16, 25]. However, in general this is not the case
and a matching algorithm would be useful to bothretrieve
and compare3D models from a database of models. It is
also useful in scientific applications where one may want to
compare and visualize similar models.

While the 3D matching problem is related to the shape
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matching problem in computer vision (detecting a 3D shape
from 2D images), there are some significant differences. 3D
models generally do not have any of the occlusion problems
associated with sensory images. Furthermore, image acqui-
sition effects, such as camera position/viewing angle, lights,
etc. are not a factor in 3D. However, many 3D models are
degenerate [24] and contain missing, intersecting or disjoint
polygons. Furthermore, because of the added dimension
and size, 3D models are difficult to compare and how they
may match is not necessarily obvious.

In general, matching consists of the problem of quickly
finding promising candidates from the database given a
query and the problem of checking each of these candidates
using a full-blown matching operation (verification). Com-
puting thebest matchis a combination of both steps, and is
a relative concept depending upon the application, i.e. it can
mean anything from classification into categories to actual
shape similarity. Our approach is to use a matching method-
ology based upon a “skeleton” of a 3D shape. The skeleton
used in this context is a graph-like representation of a 3D
object. Thisskeletal graphis computed directly from the
3D object and contains the topological information about
the 3D object in terms of the graph and local shape descrip-
tors, which are held at each node in the graph. These local
shape descriptors contain information to aid the matching
program. This information could include the mean, radius,
degrees of freedom about the joint (for topological match-
ing), or the degree of importance of a particular joint or
node. The skeleton is a nice shape descriptor because it
captures the notion of parts and components. It is also an
intuitive shape descriptor and so can be edited by the user
to help refine a particular search query and understand the
match.

In this paper, we present a methodology, that takes 3D
objects, both volumetric and polygonal, and stores the shape
information as an indexed database of skeletal graphs. We
store along with the graph, thetopological signature vector
of the graph, which is a low-dimensional index that cap-
tures both the local and global structural properties. The
database can then be queried to determine the best matches
for a given 3D shape. The search is fast as the graphs are
indexed. We follow this up by performing a graph match-



ing on the top responses from our query on the indexed
database. In the next section, a short literature review is
presented followed by an overview of the skeletonization,
indexing and matching algorithm. The results of the match-
ing algorithm and visualization of the results is presented in
Sections 6 and 7.

2 Previous Work

Shape matching is one of the fundamental problems in
computer vision and a full treatment of the subject is be-
yond the scope of this paper. Below, we concentrate on
research areas related to the efforts in this paper including
3D object matching, volumetric matching and 3D registra-
tion. In [24], a 3D shape matching algorithm and system
is presented which computes ashape signaturefor each
object and then matches an object into a database of sig-
natures. The shape functions are computed stochastically
by randomly sampling over the shape and then creating a
continuous probability distribution as a signature for the 3D
shape. Various shape functions were utilized, such as the
angle between 3 random points on the surface, the distance
between two random points, etc. The advantage of this
method is that no complex feature extraction is necessary,
and there are well-defined methods for computing the sim-
ilarity of two distributions. The resulting framework is an
effective technique for classifying objects, and is robust to
small perturbations on the object boundary. However, such
distributions do not capture where features are located and
can not deal with partial queries, missing features, or part
articulation.

In [13], an interactive algorithm is presented which em-
ploys a mechanism called “relevance feedback” to itera-
tively refine a search according to user preferences [11].
The notion of relevance feedback can be applied to any
database indexing scheme, provided that there is a map-
ping between user preferences and the components of the
distance function used to rank objects based on similarity.
This paper focuses more on the relevance feedback, adopt-
ing a simple object model using moments (which require
the object to be oriented and scaled canonically). Moments
are a global property, and hence cannot accommodate miss-
ing or partial information (in the query), nor can they ac-
commodate object part articulation. However, the notion of
relevance feedback is an important one in 3D.

In [18], a 3D matching algorithm is presented based
upon a multiresolution Reeb graph (MRG). The MRG is
computed for each 3D shape and then a graph matching
technique is used to match the MRG’s. The computed fea-
ture, in this case the geodesic distance to all other points,
is partitioned into intervals which, in turn, give rise to a
Reeb graph. For 3D objects, the geodesic distance is invari-
ant to part articulation, although not to missing or partial

data. Problems can arise in the mapping from the continu-
ous geodesic function to the discrete graph as the structure
or topology of the graph is entirely dependent on the choice
of interval size. The nodes in the graph have no intuitive
interpretation with respect to parts of the object. Geomet-
ric distortions of the parts relative to each other (or signifi-
cant within part distortions) could therefore have significant
impact on the graph structure. The matching algorithm is
coarse-to-fine, and resembles a number of other approaches
in the vision community [34].

In [4], results are presented to “match” volumes based
upon a set of points chosen within the volumes. This is
a specific technique used to orient two volumes. Also re-
lated is 3D registration using skeletons (See for example
[5, 20, 3, 10, 1]). These techniques are not general purpose
matching algorithms and assume the skeletons to be regis-
tered are approximately the same. However, the ideas of
super-imposition and co-registration can be used as part of
a general matching program that uses skeletonization. For
example, once a match is determined, it is very helpful to
see how the two volumes are matched and aligned, or if
a part-match was determined, which parts of the volume
matched. Furthermore, most registration algorithms need
an initial guess to begin with. The work described in this
paper provides that initial super-imposition as well as pro-
viding an indexing and retrieval methodology.

3 Overview of Skeleton Matching

An overview of the skeleton matching process is given
in Figure 1. The steps in this process include: obtaining
a volume, computing a set of skeletal nodes, connecting
the nodes into a graph, and then indexing into a database
and/or verification with one of more objects. The results of
the match are then visualized. In this paper, we focus on
the construction of the skeleton and preliminary results of
using the graph matching in conjunction with skeletoniza-
tion. The indexing is similar to that described in [34] and is
done by assigning to each non-terminal node a vector rep-
resenting the eigenvectors of the subgraph adjacency matrix
rooted at that node. This is used to query the database in a
fast way, before the actual matching is performed on a per-
node basis.

The skeleton is a nice shape descriptor because it can be
utilized in the following ways:

� Part/Component Matching: In contrast to a global
shape measure, skeleton-matching can accommodate
part-matching, i.e. whether the object to be matched
can be found as part of a larger object, or vice versa.
This feature can potentially give the user flexibility to-
wards the matching algorithm, allowing them to spec-
ify what part of the object they would like to match



Figure 1. Overview of the skeleton based
matching/comparison algorithm

or whether the matching algorithm should weight one
part of the object more than another.

� Visualization: The skeleton can be used to register one
object to another and visualize the result. This is very
important in scientific applications where one is inter-
ested in both finding a similar object and understand-
ing the extent of the similarity.

� Intuitiveness: The skeleton is an intuitive representa-
tion of shape and can be understood by the user, al-
lowing the user more control in the matching process.

� Articulation: The method presented here can be used
for articulated object matching, because the skeleton
topology does not change during articulated motion.

� Indexing: We can index the skeletal graph for restrict-
ing the search space for the graph matching process.

3.1 3D Skeletonization

The first step in the skeleton-based 3D matching is com-
puting the skeleton.The termskeletonhas many meanings.
It generally refers to a “central-spine” or “stick-figure” like
representation of an object. The line is centered within the
3D/2D object. For 2D objects, the skeleton is related to
the medial-axis [7] of the 2D picture. For 3D objects a
medial surface is computed (see [21, 9]). To use graph
matching [31] what is needed is a medial core/skeleton
[1, 6, 14, 17, 28, 19] also known as a curve-skeleton [36]

which can be represented as a graph. The method we uti-
lize here is a parameter-based thinning algorithm described
in [14]. (A full survey of skeletal methods is also presented
in [14]). It is similar in principle to [9, 28] but thresholds
on the average of the skeletal voxels instead of computing
the gradient first. All of the methods must be further thresh-
olded and clustered to reduced the surfaces to a manageable
graph. The advantage of using the method in [14] is that
a graph-like skeleton of desired thickness can be computed
very quickly for large 3D datasets.

This algorithm thins the volumes to a desired threshold
based upon a parameter given by the user. A family of dif-
ferent point sets results, each one thinner than its parent.
This point set, termedskeletal voxelsis unconnected, and
must be connected to form an appropriate stick-figure rep-
resentation. In what follows, we describe the various steps
necessary to compute the skeleton/graph representation.

3.2 Volumetric Thinning

To thin the volume, the distance field of each voxel in
the object is computed. In the discussion which follows, we
use a volumetric object which has been segmented from the
background. For any matching applications object bound-
aries tend to be well defined. For polygonal models, a vox-
elizer program [12] is first used to convert the polygonal
model to a volume model.

The distance transform [26] at an object voxel is the min-
imum distance from the voxel to the boundary of the vol-
umetric object. Various metrics can be used to compute
the distance transform, such as a quasi-Euclidean [8] or a
true Euclidean metric [27]. In the discussion which fol-
lows, the Euclidean metric is used. The distance field or
distance transform value (DT) of a voxel is the radius of a
sphere centered at that voxel. Such a sphere will be tangen-
tial to the boundary of the object. If we fill in the sphere,
we can reconstruct a part of the object touching the bound-
ary. For 2D images, Niblack, et al [22] have described an
algorithm which identifies the set of pixels, the distance
transform of which is sufficient to completely reconstruct
the object by constructing discrete disks around those pix-
els. Nilsson and Danielsson [23] present an algorithm to
compute the minimal set of such pixels. In general, for ob-
jects with complex boundaries, these methods yield far too
many disks if complete coverage is desired. This problem
is compounded for volumetric objects. The number of vox-
els whose spheres will exactly cover every boundary voxel,
while much smaller than the original number of voxels, is
too large for interactive manipulation.

In [14], we described a thinning technique using a thin-
ness parameter. This method classifies voxels based on
their importance for boundary coverage. We use a heuris-
tic which compares the distance transform at a voxel with



that of its 26-neighbors. If the distance transform at a voxel
is much greater than those of its 26-neighbors, the sphere
centered at that voxel is likely to include most or all of the
spheres centered at its neighboring voxels. A thinness pa-
rameter determines how much larger such a sphere should
be for its center voxel to be considered important for bound-
ary coverage. For every voxelp, we computeMNTp, the
mean of the distance transform of its 26-neighbors. The
thinness parameterTP is then the difference ofDTp, the
distance transform at voxelp andMNTp, the mean dis-
tance transform of its neighbors. It is summarized in the
equation below.

Equation 1 TP = DTp�MNTp, for every voxelp in the
object, where

MNTp =

P
26

i=1
DTqi

26 ; p; qi 2 object� voxels; qi is a 26-
neighbor ofp.

A low value of TP indicates thatp is important for
boundary coverage if its distance transform is slightly
greater than that of its neighbors. A high value ofTP

means thatp must have a distance transform that is much
greater than that of its neighbors. Consequently, asTP is
decreased from infinity, the number of spheres covering the
object increase. A more theoretical description for the thin-
ness parameter can be found in [14]. The thinness param-
eter allows us to represent a volumetric object at several
levels of detail. For some value of the thinness parameter,
we can rapidly extract voxels whose distance transform is
greater than those of their neighbors by at leastTP . Con-
struction of the spheres centered at those voxels yields a
representation of the boundary of the object. We call the set
of these spheres thereconstruction-spheres, because they
can be used to reconstruct the boundary of the object (at
that thinness value) [15].

Using different levels of the thinness parameter inEqua-
tion 1 allows us to create bounding volumes at different
levels of detail. With a higher thinness parameter, we get
a larger bounding volume but fewer spheres, while a lower
thinness parameter yields a tighter bounding volume with
more spheres. We computeDT � MNT , the difference
between the distance transform and the mean of the neigh-
bors’ distance transform for every voxel. Voxels are sorted
in decreasing order ofDT �MNT . For a desired number
of voxels,n, at some level of description, we extract the first
n voxels from this sorted list.

Each point in the volume is classified based upon how
much its distance-field value is larger than its neighbors.
Varying this value results in a family of skeletons. An ex-
ample is shown in Figure 2 below. Note when a low TP is
used (i.e. those voxels that are not much greater than their
neighbors), the points lie on the medial surface planes. As
the TP is increased, the points left are those that lie along

the medial axis of the individual planes. The advantage of
computing the skeleton using this methodology is its sim-
plicity and speed.

Figure 2. Thinning a volumetric cube into a
skeletal-graph. The left image shows a vol-
umetric cube. The middle image is thinned
into a set of points lying on the medial-axis
planes. The rightmost image contains the
line-like figure along the medial axis of the
planes.

3.3 Clustering

The above thinning process was mainly developed for
reconstruct-ability and to support volume animation [15].
Since that is not a criterion here, we can utilize a clustering
algorithm to further cluster the thinned voxels, this helps
lessen the effect of many small perturbations on the sur-
face and reduces the number of nodes necessary for skeletal
graph construction. However, the original skeletal values
are saved and used during the graph matching process for
shape calculation (see below). The clustering algorithm is
distance based. We add a pointp(x; y; z) to a clusterCa if

dist(p(x; y; z); p(i; j; k)) < Dthreshold & NP (p(x; y; z); p(i; j; k))

for all p(i; j; k) 2 Ca, wheredist(p1; p2) is the distance be-
tween two points andNP (p1; p2) determines whether the
surface is pierced since it is generally not desirable to clus-
ter across surface boundaries even if the points are close
(e.g. points at the fingertip of a hand should not be clus-
tered together).

3.4 Generation of the Skeletal Graph

After thinning and clustering, the skeletal points are un-
connected. To utilize the shape graph matching [31] the
points have to be converted to a directed acyclic graph
(DAG). We also have to ensure that the shape information is
preserved during this process and that the method is toler-
ant enough so that minor changes in the position of skeletal
points do not produce drastically different shape graphs.

We first generate an undirected acyclic shape graph out
of the skeletal points, by applying theMinimum Spanning



Tree(MST) algorithm, with all the edges weighted propor-
tional to their length (and or distance transform see [14]).
Edges are restricted to be within the boundaries of the ob-
ject. A directed graph is created by directing edges from
the voxel with the higher distance transform to the one with
lower distance transform. In principle, it is similar to the
shock graphconcept in [31] where larger features are di-
rected towards smaller ones. The MST is sensitive to dis-
tance variation at the joints which could result in incorrect
connectivity structure. The tolerance of the matching pro-
cess accommodates these perturbations. In Section 8, we
briefly describe a newer skeletonization method that does
not use the MST to compute the skeleton.

Once a graph is produced it can be further simplified
by collapsing straight edges. Example skeletal graphs are
shown in Figure 3 and Figure 5. The complexity of the
shape determines the size of the skeleton, and the size can
be modified by the user by setting the appropriate thinness-
parameter (TP). The skeletons in Figure 3 were all gener-
ated automatically using a middle TP value. For a range of
TP values, a hierarchical set of graphs results [14], each one
more dense than the next. Each node in the skeletal graph
represents a segment in the original skeleton. This node car-
ries information about the local shape of the segment in the
form of a cloud of points, obtained from the volume thin-
ning, and associated with that segment. Each edge in the
skeletal graph corresponds to a joint in the original skeleton.
Thus, each edge can potentially store information about the
flexibility of a joint/junction in the 3D shape. Similarly a
flexibility metric can be attached to the segments by having
an extra parameter for each node. Each node in the graph
also contains the TSV(topological signature vector), which
is used for indexing.

If we have a DAG,T , whose maximum branching factor
is�T , and let the subgraphs of its root beT1; T2; :::; TÆ(T ).
For each subgraph,Ti, whose root degree isÆ(Ti), we com-
pute the magnitudes of the eigenvalues ofT i’s submatrix,
sort them in decreasing order by absolute value, and letS i

be the sum of theÆ(Ti) � 1 largest absolute values. The
sortedSi’s become the components of a�(T )-dimensional
vector assigned to the DAG’s root. If the number ofS i’s
is less than�(T ), then the vector is padded with zeroes.
We can recursively repeat this procedure, assigning a vector
to each non-terminal node in the DAG, computed over the
subgraph rooted at that node. This vector is the TSV.

4 Matching the Shape Graphs

In [34, 33, 30, 31], a matching algorithm is given which
matches 2D shock graphs (rooted trees). At each node in
the graph, a structural “signature” is defined, which charac-
terizes the node’s underlying subgraph structure. This sig-
nature is a low-dimensional vector whose components are

Figure 3. Sample skeletal graphs:In the left
column, different volumes are shown. In the
right are the resulting skeletal graphs.

based on the eigenvalues of the subgraph’s(0; 1) adjacency
matrix. The eigenvalues of a graph (spectral graph theory)
carry important structural information about the graph and
possess important stability properties. Specifically, small
perturbations in graph structure due to noise or minor shape
perturbation will have a correspondingly small effect on the
eigenvalues.

Matching two graphs is typically formulated as a largest
isomorphic subgraph problem, whose complexity is pro-
hibitive. Since contextual graph structure is effectively en-
coded in a node’s signature vector, we could throw away all
the edges in the graph and reformulate the problem as find-
ing the maximum cardinality, minimum weight matching in
a bipartite graph. In such a formulation, there is an edge
between each node in one graph and each node in the other,
whose edge weight represents the distance between the two
nodes’ structural signature vectors. Solving for a maximum
cardinality, minimum weight matching involves choosing a
subset of the edges in the bipartite graph which provide a
one-to-one mapping, whose sum edge weights (distance) is
small, and whose cardinality (matching size) is high.

Unfortunately, the above formulation does not yield a so-
lution that is guaranteed to obey the hierarchical structure
of the two graphs. Specifically, there’s nothing to prevent
nodesn11 andn12 in one graph, withn11 an ancestor of



n12, matching nodesn21 andn22, respectively, in the sec-
ond graph, withn22 an ancestor ofn21. To preserve the
hierarchical (ancestral) relationships in the graph, we have
combined a greedy form of the above bipartite formulation
with a recursive, depth-first search. The approach can be
thought of as a coarse to fine strategy, in which matching
at higher levels of the tree is used to constrain matching
at lower levels. The technique’s complexity is better than
O(n3), and its efficacy has been demonstrated in the pres-
ence of noise and occlusion (for 2D). Details can be found
in [30, 33, 34, 31], which is inspired by the algorithm for
matching graphs by Siddiqi et al [34]. The algorithm recur-
sively finds matches between the trees, starting at the root
of the tree, and proceeding down through the subtrees in a
depth-first fashion. The algorithm has the ability to match
two trees in the presence of noise (random insertions and
deletions of nodes in the subtrees).

Two factors determine whether two nodes of the trees get
matched: the first is a measure of the topological similarity
of the subtrees rooted at the nodes, while the second is a
measure of the local shape information at that node (about
the edges in the skeletal graph). Although each skeleton
only has a limited number of nodes, the radial distribution
about each edge is preserved for matching. The radial dis-
tribution is represented by a more dense graph with the dis-
tance field values at each node. The dense graph is used
to test for the radial distribution but not for the topological
graph matching. For matching, either averages, max and
min, or the actual distribution can be used depending upon
the type of match desired. The values can also be normal-
ized to account for scaling. This feature can be turned off if
only topological similarities are desired.

The graph matching algorithm outputs a number of pa-
rameters that can be used to determine the “goodness” of the
match. These include: the number of nodes matched (or the
percentage of nodes matched from the target and from the
key), the sizes of the clusters of nodes matched, and a de-
tailed specification of which nodes were matched to which
other nodes. A goodness measure is given for each node
that is matched as well stating how accurate the match was.
This is a factor of the various parameters given above. Be-
cause part matching is supported the percentage of nodes
matched will indicate whether a part match has been found
(and model nodes can be penalized if part matching is not
desired). Note that the number of nodes in a graph is model
dependent and is a function of the complexity of the object.
Recent efforts [32] have also characterized ways in which
geometric relations between the nodes in a graph can play
a role in the matcher, parameterizing things like articula-
tion, relative size, relative orientation, etc. of the parts on a
node-by-node basis.

5 Interface

The interface to the matching program was written in
Vtk. It consists of a key window, which can compute and
display the skeleton at different resolutions, and options for
computing a match with a particular set of skeletons. Re-
sults are displayed quantifying the match (or matches)using
the parameters described previously. A snapshot of the in-
terface is displayed in Figure 4. The skeleton can be auto-
matically computed, or the user can modify the resolution
of the skeleton using the slider bar. The automated skeletal
computation computes the skeleton using a 50% TP value.

Figure 4. Matcher Interface and Visualizer

6 Results and Visualization

For the initial testing, a database of 100 different vol-
umetric models was used (plus parts and articulations of
models). Some of the models were originally polygonal
datasets which were voxelized, while others were volumet-
ric. We used the database to retrieve close matches based on
the shape index, and also to quantify the difference based on
the shape graphs.

To visualize the resulting match, either the skeletons or
models can be visualized separately, or the results can be su-
perimposed using the skeletons as a guide. Since the graph-
matching algorithm outputs node-to-node correspondences,
this information can be used to align the skeletons and the
models. In Figure 5, an example of node-to-node corre-
spondence is shown using two fish from the database (the
best match for each from the database). In the left part of
the image, the two models are shown aligned, and in the



right the skeletal graphs are shown. The node-to-node cor-
respondence of the graphs are indicated by the colored ver-
tices in the graphs (the red fish is the graph with red edges,
the blue fish is the one with blue edges.) The first couple of
nodes are used to align the skeletons (working down from
the root). In the left window, the polygonal models are su-
perimposed based upon the transformations applied to the
skeletons. While aligning along a couple of nodes will most
likely result in a good fit, a more accurate alignment can be
calculated using a least squares approximation or other reg-
istration techniques.

An example of part matching is shown in Figure 6. The
hand and the foot were matched to the entire body. Both the
hand and foot were skeletonized separately and resulted in
different skeletal-graph resolutions. In Figure 6 the match-
ing nodes were used to align the graphs correctly. On the
entire database match, the left hand also matched to the
right hand, as did the corresponding feet. (Note the vol-
umetric model of the foot had fused toes resulting in the
fused skeleton.)

In Figure 7, two matches are shown. Both were the high-
est match computed in the database for that object. The
associated skeletons are also shown with the node-to-node
correspondence based upon both the topology and radial
distance about the edge. Note how the tail of the dragon is
unmatched. In Figure 8, an example of articulated matching
is shown. Three different skeletons in a running sequence
are shown with node-to-node correspondence.

Figure 5. Visualizing the resulting matches.
The left image shows the original polygo-
nal models superimposed. The right image
shows the skeletons. The nodes that are
matched are color coded.

Figure 6. Part Matching. The skeletons of
the Visible Man Dataset, and a foot and hand
are shown. (The foot and hand were skele-
tonized separately.) The hand and the foot
were matched to the entire body and the
nodes which matched are shown with the two
graphs superimposed (red graph belongs to
the part).



Figure 7. Individual matches in the database.
The top images contains two different ani-
mals. The bottom a man and an animal. The
node-to-node matches of the skeletons are
also shown.

Figure 8. Articulated matching. The skeletons
of an animated figure are matched.

7 Discussion

Our goal in this paper was to show the feasibility of us-
ing skeletons for shape matching and shape retrieval. While
a skeleton is not a good descriptor of shape for all 3D ob-
jects (e.g. a bookcase), for many it does provide an accu-
rate representation. While skeletal representations are good
for part matching, one difficulty is that simple objects will
match with smaller regions of complex objects. For in-
stance, a small cylinder will match with other small cylin-
ders and other models with cylindrical features. The trade-
off between part matching and skeletal complexity is task
dependent and the algorithm can be modified based upon
user preference. A hierarchical skeleton at different resolu-
tion would also allow the user more freedom in the type of
shape desired.

We also note that the skeletal graph can be affected
by the voxelization resolution and technique. For detailed
polygonal objects, the fidelity of the resulting volume is
clearly a factor of the resolution used for voxelization. Care
must be exercised to avoid fusing finer features and thereby
changing the topology of the graph. On the other hand, vox-
elization can also smooth out surface details, resulting in
smoother skeletons. In this implementation, the resolution
of the voxelization was related to the size of the polygo-
nal model and the number of polygons. None of this is
of concern if original voxel models are used (as in Fig-
ure 6). There is ongoing research investigating the com-
putation of medial-axis and skeletal-graphs from polygonal



models [21, 1, 19]. These could then be used directly with-
out the need to voxelize the models.

While any skeletonization process is generally sensitive
to noise on the boundary (slight movements of voxels, or the
addition of bumps and breaks) [37, 29], the overall impact
of noise is reduced because of the clustering and thinness
parameter. This can be seen in Figure 9 where noise was
added to about 15% of the voxels on the boundary. Since
the graph matching algorithm can match in the presence of
noise (random insertions and deletions), small perturbations
in the skeleton will not change the results. The skeletoniza-
tion process is not sensitive to blurring [37], since only the
distance field values along the spine will change and these
are normalized before matching. The addition of small parts
to an object will change the full skeleton, but not the cen-
tral spine. Since the matching process accommodates part
matching, adding limbs to the skeleton will not have an ef-
fect on the matching process.

Figure 9. Adding noise: Skeleton of a cow
without noise (top image) and with noise (bot-
tom image).

8 Conclusion and Future Work

In this paper, we have demonstrated the feasibility of
a 3D shape matching, retrieval and comparison methodol-
ogy based upon using the “skeleton” of a 3D object and
have presented initial results. A skeletal graph is computed
directly from the volumetric object and is a 1D approxi-
mation of the Medial Surface. We have also presented an
improved algorithm for computing a skeletal graph, an en-
hanced matching algorithm, and a method to visualize the
result.

Certainly, the problem of matching is somewhat subjec-
tive, and using skeletal graphs is one method to retrieve a
possible match. Further testing on a larger database with
indexing [31] needs to be done to determine the ideal ef-
fectiveness of the matcher. This would be combined with a
fully interactive user interface which would allow the user
to refine the matching process. Other enhancements include

improving the combined visualization, utilizing better reg-
istration methodologies, and incorporating an object mor-
pher which after matching would compute the best morph
from one object to the other based upon the skeletons. The
question of computing the “best” skeletal graph from a 3D
object is also still and open area of investigation [9, 1].

In addition, we have been investigating other, more ex-
act, skeletonization algorithms and preliminary results are
available on the web site [35]. The skeletons are computed
using the potential field [2] (a continuous approach) and are
smoother and more robust to noise. Furthermore, the new
method does not use the minimum spanning tree so connec-
tivity errors are avoided. In addition, important topological
quantities, (such as joints, etc) are identified correctly by the
method. This should improve the matching process signifi-
cantly.

The computation of the skeleton is fast and is propor-
tional to the number of voxels in the model. The bene-
fits of the skeletonization matching are in its ability to do
part matching, articulated matching, to compute orientation
differences for registration, and the intuitive nature of the
skeleton which can be understood by the user. The skeleton
is a qualitative tool for matching and analyzing 3D volumet-
ric objects.
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