
Chapter 1
The Role of Mid-Level Shape Priors
in Perceptual Grouping and Image Abstraction

Sven J. Dickinson, Alex Levinshtein, Pablo Sala, and Cristian Sminchisescu

1.1 Introduction

Have a look at the image in Fig. 1.1(a) (taken from [29]) and don’t read any fur-
ther until you recognize the object(s) in the scene. For most people, the image of
a horse and rider quickly emerges. This is remarkable considering that each indi-
vidual black fragment is practically meaningless in terms of its indexing power to
suggest a horse or rider (or any object, for that matter). Only when the fragments
are grouped together and abstracted to yield meaningful parts and relations do the
objects begin to emerge. Moreover, these grouping and abstraction processes are
primarily bottom-up, and do not require a priori knowledge of scene content. No-
body told you what object to look for, and you certainly didn’t run through tens of
thousands of category detectors to decide that it was a horse and rider and not a table
and chair. Somehow, your visual system grouped the fragments to form a set of ab-
stract parts, then grouped those parts into larger configurations, then “queried” your
visual memory for similar configurations, and only then used a priori knowledge of
a promising candidate to “detect”, i.e., verify, the object.

Perceptual grouping is a critical function in the human visual system, offering a
powerful heuristic for grouping together causally related image features in support
of both figure-ground segmentation and 3-D inference. In the mid-to-late 1990s,
perceptual grouping was a thriving subcommunity in computer vision, as illustrated
in Fig. 1.1(b). However, over the past 10 years, there’s been a steady decline in the
number of perceptual grouping papers appearing in the computer vision commu-
nity’s main conferences. The reason for this is the reformulation of object recogni-
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Fig. 1.1 (a) An illustration of the power of perceptual grouping. Individually, the black, amor-
phous blobs carry very little information. However, when grouped into parts, the emergent part
structure allows the scene (horse and rider) to be quickly interpreted without any a priori knowledge
of scene content (figure reproduced with kind permission from Teachers College Press, Columbia
University, New York: A gestalt completion test: a study of a cross section of intellect, 1931, Roy
F. Street, p. 55, Fig. 8); (b) The rise and fall of perceptual grouping. Tracking perceptual group-
ing papers in the computer vision community’s four main conferences indicates a growing interest
in perceptual grouping, peaking in the late 1990s. However, since then, interest in this critically
important problem has waned

tion, historically cast as the problem of recognizing an object from a large database,
as a detection problem, cast as the search for a particular target object.

The classical formulation of the object recognition problem, which defined the
mainstream from the mid-1960s through to the late-1990s, was the recognition of
an unexpected object from a database of objects. As illustrated in Fig. 1.2, the fea-
ture extraction process began by extracting categorical or generic features, as the
recognition community aspired to recognize categories, not exemplars. As far back
as the seminal work of Roberts [23] in the mid-1960s, the recognition community
understood that across the exemplars that belong to a category, shape is a more in-
variant property than appearance. As a result, the majority of recognition systems
from the mid-1960s to the late 1990s attempted to extract shape features, typically
beginning with the extraction of edges, for at occluding boundaries and surface dis-
continuities, edges capture shape information. However, unlike today’s distinctive
local image features, e.g., SIFT [20], a local edgel carries very little information
with which to index into a database of objects in an attempt to select a small number
of promising object models that might account for the edgels.

The need for perceptual grouping in these early systems was critical, for only
when the edgels were grouped into longer contours, perhaps parsed at high-
curvature points, and grouped with other causally related contours, did distinctive
indexing features emerge. Lowe’s thesis [21] was the first to introduce computa-
tional models of perceptual grouping processes, e.g., proximity, collinearity, and
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Fig. 1.2 In the classical recognition model, the desire to extract shape features, considered more
generic than appearance, began with edge detection. Because edgels were not discriminative, they
were perceptually grouped and abstracted to form distinctive indexing structures that could prune
a large database of objects down to a small number of promising candidates. (figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 4th Mexican Confer-
ence on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson,
A. Levinshtein, and C. Sminchisescu, p. 14, Fig. 1)

parallelism, derived from image statistics. By grouping contour features into more
distinctive groups (in Lowe’s case, proximity followed by collinearity followed
by parallelism), more discriminating indexing (using parallel lines instead of, say,
triples of corners [11]) was possible. The more that features were grouped, per-
haps first into parts and then into multipart groups [8, 9], the more powerful the
resulting indexing structure and the fewer candidates that ultimately needed to be
verified. Each candidate was verified, yielding a score (typically reflecting the de-
gree to which a model could be aligned with image features), and the top-scoring
candidate, if sufficiently strong, gave the final interpretation.

The formulation of object recognition as the detection of a specific target object
has dominated the recognition community over the past 10 years. As illustrated in
Fig. 1.3(top) and working backwards from the verification module, instead of having
to verify a number of candidate object hypotheses, the detection problem identifies
only a single hypothesis that needs to be verified (or detected). This, in turn, means
that the indexing step, in which a large database of candidate objects is pruned down
to a small set of candidates for verification, is superfluous, as the database effectively
has a single object (target). Continuing to work our way backwards, as illustrated
in Fig. 1.3(middle), if discriminative indexing features are not required to select
promising candidates, the perceptual grouping stage is also superfluous. Instead, as
illustrated in Fig. 1.3(bottom), the detector, i.e., verification, can be applied directly
to the edgels, e.g., [6], to give the final score, thereby short-circuiting the entire
perceptual grouping process.

The existence of an object detector, representing a strong shape prior, eliminates
the need for perceptual grouping, representing a much weaker, domain-independent
shape prior. However, as the categorization community moves from single object
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Fig. 1.3 The classical
formulation of object
recognition from a large
database has given way to a
more recent formulation of
object recognition as target
detection: (top) rather than
verifying a number of
candidates, the target
candidate is known, rendering
the process of indexing (or
model selection) obsolete.
(Middle) Without the need for
domain-independent
recovery, grouping, and
abstraction of structure in
order to prune a large
database down to a small
number of promising
candidates, perceptual
grouping is unnecessary.
(Bottom) As a result,
verification (detection) can be
applied directly to the
ungrouped, low-level edge
features. (Figure reproduced
with kind permission from
Springer Science+Business
Media: Proceedings, 4th
Mexican Conference on
Pattern Recognition (MCPR),
Perceptual Grouping using
Superpixels, 2012, S.
Dickinson, A. Levinshtein,
and C. Sminchisescu, p. 14,
Fig. 1)
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detection back to recognition from large databases, detection methods, typically for-
mulated as template matching (or “sliding windows”), simply won’t scale, and a lin-
ear search through thousands of templates is intractable, especially when an object
can be viewed arbitrarily, it can articulate, and it can undergo significant within-class
shape deformation. Verification (or detection) must be highly sublinear in the size of
the database, demanding that discriminative indexing features be recovered without
knowledge of which object is being imaged. Such domain-independent, bottom-up
perceptual grouping is essential in the absence of an object prior.

In this chapter, we briefly review our recent progress on three classical prob-
lems in perceptual grouping using three mid-level shape priors: symmetry, closure,
and parts. We begin by describing a framework that first groups superpixels into
symmetric parts, and then groups the symmetric parts into multipart structures [13].
Symmetry has played a prominent role in shape modeling for object recognition
since the 2-D medial axis transform (MAT) of Blum [2] and the 3-D generalized
cylinder (GC) of Binford [1]. By detecting a set of symmetric parts and their attach-
ments from a cluttered image of real objects, we recover a powerful shape index that
can serve to prune a large database of objects down to a small number of promising
candidates. Next, we address the classical problem of contour closure, i.e., finding a
cycle of edgels in the image that separates figure from ground. We describe a frame-
work that looks for groups of superpixels whose collective boundary has strong
edgel support in the image [14, 15]. The resulting shape boundary, or silhouette,
can yield a structured, parts-based representation, e.g., [27], that can also be used to
prune a large database down to a small number of promising candidates. Finally, we
use a vocabulary of simple shape parts (which, in turn, can be used to construct an
infinite number of objects) to not only guide the perceptual grouping of superpixels
into regions representing parts, but use the part vocabulary to regularize, or abstract,
the shapes of the regions.

1.2 Symmetric Part Detection and Grouping

In [13], we introduced a novel approach to recovering the symmetric part structure
of an object from a cluttered image, as outlined in Fig. 1.4. Drawing on the prin-
ciple that a skeleton is defined as the locus of medial points, i.e., centers of maxi-
mally inscribed disks, we first hypothesize a sparse set of medial points at multiple
scales by segmenting the image (Fig. 1.4(a)) into compact superpixels at differ-
ent superpixel resolutions [17] (Fig. 1.4(b)). Superpixels are adequate for this task,
balancing a data-driven component that’s attracted to shape boundaries while main-
taining a high degree of compactness. The superpixels (medial point hypotheses) at
each scale are linked into a graph, with edges adjoining adjacent superpixels. Each
edge is assigned an affinity that reflects the degree to which two adjacent superpix-
els represent medial points belonging to the same symmetric part (medial branch)
(Fig. 1.4(c)). The affinities are learned from a set of training images whose sym-
metric parts have been manually identified. A standard graph-based segmentation
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Fig. 1.4 Overview of our approach for multiscale symmetric part detection and grouping: (a) orig-
inal image; (b) set of multiscale superpixel segmentations (different superpixel resolutions); (c) the
graph of affinities shown for one scale (superpixel resolution); (d) the set of regularized symmet-
ric parts extracted from all scales through a standard graph-based segmentation algorithm; (e) the
graph of affinities between nearby symmetric parts (all scales); (f) the most prominent part clus-
ters extracted from a standard graph-based segmentation algorithm, with abstracted symmetry axes
overlaid onto the abstracted parts; (g) in contrast, a Laplacian-based multiscale blob and ridge de-
composition, such as that computed by [19], shown, yields many false positive and false negative
parts; (h) in contrast, classical skeletonization algorithms require a closed contour which, for real
images, must be approximated by a region boundary. In this case, the parameters of the N-cuts al-
gorithm [26] were tuned to give the best region (maximal size without region undersegmentation)
for the swimmer. A standard medial axis extraction algorithm applied to the smoothed silhouette
produces a skeleton (shown in blue) that contains spurious branches, branch instability, and poor
part delineation. (Figure reproduced with kind permission from Springer Science+Business Me-
dia: Proceedings, 4th Mexican Conference on Pattern Recognition (MCPR), Perceptual Grouping
using Superpixels, 2012, S. Dickinson, A. Levinshtein, and C. Sminchisescu, p. 17, Fig. 2)

algorithm applied to each scale yields a set of superpixel clusters which, in turn,
yield a set of regularized symmetric parts (Fig. 1.4(d)).

In the second phase of our approach, we address the problem of perceptually
grouping symmetric parts arising in the first phase. Like in any grouping problem,
our goal is to identify sets of parts that are causally related, i.e., unlikely to co-occur
by accident. Again, we adopt a graph-based approach in which the set of symmetric
parts across all scales are connected in a graph, with edges adjoining parts in close
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spatial proximity (Fig. 1.4(e)). Each edge is assigned an affinity, this time reflecting
the degree to which two nearby parts are believed to be physically attached. Like
in the first phase, the associated, higher granularity affinities are learned from the
regularities of attached symmetric parts identified in training data. A graph segmen-
tation yields a set of part clusters, each representing a set of regularized symmetric
elements and their hypothesized attachments (Fig. 1.4(f)).

Our approach offers clear advantages over competing approaches. For example,
classical multiscale blob and ridge detectors, such as [19] (Fig. 1.4(g)), yield many
spurious parts, a challenging form of noise for any graph-based indexing or match-
ing strategy. And even if an opportunistic setting of a region segmenter’s parameters
yields a decent object silhouette (Fig. 1.4(h)), the resulting skeleton may exhibit
spurious branches and may fail to clearly delineate the part structure. From a clut-
tered image, our two-phase approach recovers, abstracts, and groups a set of medial
branches into an approximation to an object’s skeletal part structure, enabling the
application of skeleton-based categorization systems to more realistic imagery. De-
tails of the approach can be found in [13].

Some qualitative results are shown in Fig. 1.5. Proceeding left to right, top to
bottom, we see excellent part recovery and grouping for the starfish, the plane, the
windmill, and the runner, respectively. In the case of the windmill, a second, sin-
gleton cluster, representing the entire body of the human, is recovered; however, the
distant windmills are not recovered, for their scale is smaller than the smallest super-
pixel scale. The final two figures represent failure modes. In the case of the lizard,
the curved symmetric tail is oversegmented into piecewise linear symmetric parts.
In the case of the lake scene, the symmetric parts making up the horizon tree line
are incorrectly grouped with the dock structure due to a lack of apparent occlusion
boundary between the dock structure and the tree line parts.

1.3 Contour Closure

In this section, we review our framework for efficiently searching for optimal con-
tour closure; details can be found in [14, 15]. Figure 1.6 illustrates an overview of
our approach to computing contour closure. Given an image of extracted contours
(Fig. 1.6(a)), we begin by restricting contour closures to pass along boundaries of
superpixels computed over the contour image (Fig. 1.6(b)). In this way, our first
contribution is to reformulate the problem of searching for cycles of contours as
the problem of searching for a subset of superpixels whose collective boundary has
strong contour support in the contour image; the assumption we make is that those
salient contours that define the boundary of the object (our target closure) will align
well with superpixel boundaries. However, while a cycle of contours represents a
single contour closure, our reformulation requires a mechanism to encourage super-
pixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes the
ratio of perimeter to area. We modify the ratio cost function of Stahl and Wang [28]
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Fig. 1.5 Detected medial parts and their clusters. Parts with the same color axis have been grouped
together (through high attachment affinities) and are hypothesized to belong to the same object.
(Figure reproduced with kind permission from Springer Science+Business Media: Proceedings,
4th Mexican Conference on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels,
2012, S. Dickinson, A. Levinshtein, and C. Sminchisescu, p. 18, Fig. 3)

to operate on superpixels rather than contours, and extend it to yield a cost func-
tion that: (1) promotes spatially coherent selections of superpixels; (2) favors larger
closures over smaller closures; and (3) introduces a novel, learned gap function that
accounts for how much agreement there is between the boundary of the selection
and the contours in the image. The third property adds cost as the number and sizes
of gaps between contours increase. Given a superpixel boundary fragment (e.g., a
side of a superpixel) representing a hypothesized closure component, we assign a
gap cost that’s a function of the proximity of nearby image contours, their strength,
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Fig. 1.6 Overview of our approach for image closure: (a) contour image: while we take as input
only this contour image, we will overlay the original image in the subsequent figures to ease visu-
alization; (b) superpixel segmentation of contour image, in which superpixel resolution is chosen
to ensure that target boundaries are reasonably well approximated by superpixel boundaries; (c) a
novel, learned measure of gap reflects the extent to which the superpixel boundary is supported
by evidence of a real image contour (line thickness corresponds to the amount of agreement be-
tween superpixel boundaries and image contours); (d) our cost function can be globally optimized
to yield the largest set of superpixels bounded by contours that have the least gaps. In this case the
solutions, in increasing cost (decreasing quality), are organized left to right. (Figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 4th Mexican Confer-
ence on Pattern Recognition (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson,
A. Levinshtein, and C. Sminchisescu, p. 19, Fig. 4)

and their orientation (Fig. 1.6(c)). It is in this third property that our superpixel re-
formulation plays a second important role—by providing an appropriate scope of
contour over which our gap analysis can be conducted.

In our third contribution, the two components of our cost function, i.e., area and
gap, are combined in a simple ratio that can be efficiently optimized using para-
metric maxflow [12] to yield the global optimum. The optimal solution yields the
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Fig. 1.7 Example results of superpixel closure. (Figure reproduced with kind permission from
Springer Science+Business Media: Proceedings, 4th Mexican Conference on Pattern Recogni-
tion (MCPR), Perceptual Grouping using Superpixels, 2012, S. Dickinson, A. Levinshtein, and
C. Sminchisescu, p. 20, Fig. 5)

largest set of superpixels bounded by contours that have the least gaps (Fig. 1.6(d)).
Moreover, parametric maxflow can be used to yield the top k solutions (see [4], for
example). In an object recognition setting, generating a small set of such solutions
can be thought of as generating a small set of promising shape hypotheses which,
through an indexing process, could invoke candidate models that could be verified
(detected). The use of such multiscale hypotheses was shown to facilitate state-of-
the-art object recognition in images [18].

In Fig. 1.7, we illustrate results of our superpixel closure (SC) method. In the
case of the carriage, swimmer, plane, golfer, baseball player, plane, and spider, we
see that the algorithm nearly correctly segments figure from background, and is able
to capture the deep concavities of the object, which is particularly visible with the
spider. In the case of the horse, elephant, and giraffe, we see evidence of underseg-
mentation due to the properties of the objective function that we’re optimizing. In
each case, there are false boundaries (e.g., horizon) that can increase the area of the
figure without introducing additional gap. In other words, if the algorithm can fol-
low a gap-free contour that yields a larger area, e.g., following the contour between
ground and sky in the giraffe image, it will do so, yielding a bias towards compact
objects.
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Fig. 1.8 Overview of our approach for spatiotemporal closure. (a) Spatiotemporal volume;
(b) spatiotemporal superpixels; (c) superpixel graph with edges encoding appearance and motion
affinity; (d) optimizing our spatiotemporal closure corresponds to finding a closed surface cutting
low affinity graph edges; (e) our optimization framework results in multiple multiscale hypotheses,
corresponding to objects, objects with their context, and object parts. (Figure reproduced with kind
permission from Springer Science+Business Media: Proceedings, 10th Asian Conference on Com-
puter Vision (ACCV), 4th Mexican Conference on Pattern Recognition (MCPR), Spatiotemporal
Closure, 2010, A. Levinshtein, C. Sminchisescu, and S. Dickinson, p. 370, Fig. 1)

We have extended this framework to detect spatiotemporal closure [15, 16].
Similar to detecting contour closure in images, we formulate spatiotemporal clo-
sure detection inside a spatiotemporal volume (Fig. 1.8(a)) as selecting a subset of
spatiotemporal superpixels whose collective boundary falls on such discontinuities
(Fig. 1.8(b)). Our spatiotemporal superpixels, extending our superpixel framework
in [17], provide good spatiotemporal support regions for the extraction of appear-
ance and motion features, while limiting the undersegmentation effects exhibited by
other superpixel extraction techniques due to their lack of compactness and temporal
stability.

We proceed by forming a superpixel graph whose edges encode appearance and
motion similarity of adjacent superpixels (Fig. 1.8(c)). Next, we formulate spa-
tiotemporal closure. The notion of contour gap from image closure detection is
generalized to the cost of a cut of a set of spatiotemporal superpixels from the rest
of the spatiotemporal volume, where the cut cost is low for superpixel boundaries
that cross appearance and motion boundaries. Similarly, instead of normalization
by area, we choose to normalize by a measure of internal motion and appearance
homogeneity of the selection, which is more appropriate for video segmentation.
The cost is again minimized using parametric maxflow [12] which is not only able
to efficiently find a globally optimal closure solution, but returns multiple closure
hypotheses (Fig. 1.8(e)). This not only eliminates the need for estimating the num-
ber of objects in a video sequence, as all objects with the best closure are extracted,
but can result in hypotheses that oversegment objects into parts or merge adjacent
objects. Multiple spatiotemporal segmentation hypotheses can serve tasks such as
action recognition, video synopsis, and indexing [22].
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Fig. 1.9 Recovering abstract shape parts from an image: (a) input image of two exemplars that
show considerable within-class variation; (b) extracted contours: note that corresponding con-
tour-based features are seldom in one-to-one correspondence; (c) a simple example vocabulary
of 2-D part models that will drive the perceptual grouping and shape abstraction processes; (d) the
resulting abstract surfaces recovered by our framework; contour correspondence exists not at the
level of individual contours, but at a much higher level of abstraction. (Figure reproduced with kind
permission from Springer Science+Business Media: Proceedings, 11th European Conference on
Computer Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Models, 2010,
P. Sala and S. Dickinson, p. 604, Fig. 1)

1.4 Abstract Part Recovery

In the previous two sections, we reviewed approaches based on traditional Gestalt
grouping principles such as symmetry and closure. But consider Fig. 1.9(a), which
shows images of two object exemplars belonging to the same class (bowl). If we ex-
amine their extracted contours, shown in Fig. 1.9(b), we notice that corresponding
contour-based features are seldom in one-to-one correspondence. Despite this lack
of contour correspondence, the two objects are perceived as having similar shape
without any a priori knowledge of object class, i.e., you did not run a successful
bowl detector on both images. Somehow, you not only grouped this plethora of con-
tours into surfaces, but abstracted the groups to yield emergent shapes that were
common to both images. While cues such as symmetry and closure are indeed pow-
erful mid-level regularities that could drive perceptual grouping of these contours,
the complexity of the contours begs the question: Is there some sort of higher-level
regularity, lying somewhere between low-level perceptual grouping and knowledge
of the target object, that can be used to not only group the contours but recover their
abstract shape?

In this third and final section of this chapter, we review our approach to the per-
ceptual grouping and abstraction of image contours using a set of 2-D part models;
details can be found in [24]. We assume no object-level prior knowledge and, like
the perceptual grouping community, assume only a mid-level shape prior. However,
our shape prior is slightly stronger than such classical Gestalt features as symmetry,
parallelism, proximity, collinearity, etc. Specifically, our mid-level shape prior takes
the form of a user-defined vocabulary of simple 2-D shape models, representing a
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Fig. 1.10 Problem formulation: (a) input image; (b) region oversegmentation; (c) region bound-
ary graph; (d) example vocabulary of shape models (used in our experiments); (e) example paths
through the region boundary graph that are consistent (green) and inconsistent (red); (f) example
detected cycles that are consistent with some model in the vocabulary; (g) abstractions of cycles
consistent with some model; (h) example cycles inconsistent with all models. (Figure reproduced
with kind permission from Springer Science+Business Media: Proceedings, 11th European Con-
ference on Computer Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Mod-
els, 2010, P. Sala and S. Dickinson, p. 606, Fig. 2)

fixed set of parts from which a large database of object models can be constructed.
In that sense, our vocabulary can be seen as a high-level nonaccidental regularity—a
common denominator set of part shapes that can be used to model a large collection
of objects in the world [7–9]. But since different domains may demand different
vocabularies of parts, it’s essential that our framework be independent of the part
vocabulary; therefore, the vocabulary is an input to our framework.

Returning to our illustrative example, in Fig. 1.9(c), we show sample instances
from a simple, example vocabulary of 2-D shapes that will be used to group and
abstract the contours in Fig. 1.9(b). In Fig. 1.9(d), we overlay the abstract shapes
recovered by our algorithm. It is at this level, i.e., the abstracted parts and their rela-
tions, that commonality exists between the two images. Moreover, the boundaries of
these abstract parts may not correspond to explicit image boundaries in the image.
Rather, they can be viewed as hallucinations of the actual image boundaries, after
they’re appropriately selected and grouped.

Our approach begins by computing a region oversegmentation (Fig. 1.10(b)) of
the input image (Fig. 1.10(a)). The resulting region boundaries yield a region bound-
ary graph (Fig. 1.10(c)), in which nodes represent region boundary junctions where
three or more regions meet, and edges represent the region boundaries between
nodes; the region boundary graph is a multigraph, since there may be multiple edges
between two nodes. Our approach can be formulated as finding simple cycles in the
region boundary graph whose shape is consistent with one of the model shapes in
the input vocabulary (Fig. 1.10(d)); these are called consistent cycles. There is an
exponential number of simple cycles in a planar graph [3], and simply enumerating
all cycles (e.g., [30]) and comparing their shapes to the model shapes is intractable.
Instead, we start from an initial set of starting edges and extend these paths, called
consistent paths (or CPs), as long as their shapes are consistent with a part of some
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model. To determine whether a given path is consistent (and therefore extendable),
we approximate the path at multiple scales with a set of polylines (piecewise linear
approximations), and classify each polyline using a one-class classifier trained on
the set of training shapes (Fig. 1.10(e)). When a consistent path is also a simple
cycle, it is added to the set of output consistent cycles (Fig. 1.10(f)).

Figure 1.10(d) shows the input vocabulary used in our experiments: four part
classes (superellipses plus sheared, tapered, and bent rectangles, representing the
rows) along with a few examples of their many within-class deformations (repre-
senting the columns). Each shape model is allowed to anisotropically scale in the
horizontal and vertical directions as well as rotate in the image plane. Since we
employ scale-, rotation-, and translation-invariant features to train the classifiers,
we need to generate only (approximately) 1,500 instances (by varying the aspect
ratio and deformation parameters) belonging to these four shape classes. A single
classifier is trained on all the component polylines (computed at multiple scales)
of length (i.e., number of piecewise linear segments) k spanning the complete set
of shape models and their deformations. Therefore, if K is the upper bound on the
length of a polyline approximating a shape in the vocabulary, then K classifiers are
trained. An ideal vocabulary defines a small set of “building blocks” common to a
large database of objects. As such, the complexity of the vocabulary shapes is low,
and even at the finest scale of polyline partitioning of a vocabulary shape’s contour,
K remains low; for our vocabulary, K is 13.

The algorithm outputs cycles of contours that are consistent with one of the
model (training) shapes. A cycle consists of actual contours (edges in the region
boundary graph) in the image, and therefore does not explicitly capture the abstract
shape of the contours. Moreover, the cycle has not yet been categorized accord-
ing to the shapes in the vocabulary. To abstract (or regularize) the shape of a cycle
and to categorize it, we employ an active shape model (ASM) [5] trained on about
600,000 model instances (generated by varying their aspect ratio, orientation, and a
finer sweeping of the deformation parameters than the one used to train the polyline
classifiers). We iterate over the classical two-step ASM procedure, consecutively
aligning and deforming the mean training shape with the cycle until convergence.
However, we depart from a standard ASM framework in two key ways.

In a standard ASM framework, the training shapes belong to a single shape class,
and the allowable, often limited, deformations are typically captured (using PCA)
in a low-dimensional shape space that can be approximated by a multidimensional
Gaussian distribution. Moreover, at run time, the model must be properly initial-
ized, for if the model is grossly misaligned, the deformations required to warp the
model into the image may fall outside the space of allowable deformations. In our
case, given a consistent cycle, we don’t know which category of vocabulary shape
it belongs to, and hence which ASM model to apply (if we assumed one model per
category in the vocabulary). Moreover, even if we knew its category, we assume no
correct or near-correct initial landmark correspondence. We overcome the first prob-
lem by having a single ASM that’s trained on all instances of all the shapes in the
vocabulary, and overcome the second problem by training on all possible landmark
correspondences (alignments) across these shapes.
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After ASM convergence, the training shape closest to the deformed model iden-
tifies the category of the cycle. In the previous step, the consistent cycle classifier’s
precision rate is never 100 % at reasonable recall rates, and some of the recov-
ered consistent cycles (of contours) may yield shapes that are qualitatively differ-
ent from those in the vocabulary. Therefore, following ASM convergence, shapes
that are still significantly different from the training shapes are discarded. Fig-
ure 1.10(g) illustrates the vocabulary shapes abstracted from the consistent cycles
in Fig. 1.10(f); for each detected shape, the algorithm also yields its shape category.
Finally, Fig. 1.10(h) illustrates some of the false positives discarded by the shape
abstraction process.

In order to evaluate our framework, we created an annotated dataset with 67 im-
ages containing object exemplars whose 3-D shape can be qualitatively described
by cylinders and bent or tapered cubic prisms. The abstract visible surfaces of each
3-D shape were hand-labeled using 2-D models drawn from our vocabulary. Fig-
ure 1.11 illustrates the output of our system on a number of examples in the dataset:
column (a) shows the input image; column (b) shows the region oversegmentation
used as input to our algorithm, computed using the local variation approach by
Felzenszwalb and Huttenlocher [10] with a fixed parameterization on all images;
column (c) shows the consistent cycles from which the shapes in column (d) were
abstracted, representing the recovered parts closest to the ground truth in column (e).
The numbers inside recovered abstract parts in column (d) indicate the rank of the
part among all recovered parts in that image, computed as a function of the distance
to the contours of the cycles that they are abstracting. The target regions can some-
times rank low if their degree of abstraction is high compared to non-target regions
in the image (whether real or segmentation artifacts) that require less abstraction.
Note that in some cases, e.g., the blender body in row 8, the ideal ground truth part
(e.g., corresponding to the projection of the body of a tapered cylinder) did not exist
in the vocabulary.

Exploring the results in more detail, we see that Fig. 1.11(d) shows the ability
of our approach to abstract object surfaces that are locally highly irregular due to
noise or within-class variation, but capture a model shape at a higher level of ab-
straction. In some cases (e.g., rows 5, 6, and 8), we see misalignment with a neigh-
boring shape. This can be due to two reasons: (1) the vocabulary may not contain
the appropriate shape to model the surface; and (2) the shapes are recovered in-
dependently, with no alignment constraints exploited; such constraints, as well as
other constraints, will play an aggressive role in pruning/aligning hypotheses in our
future work. In all the examples, we can see that the model abstraction process is
able to cope with region undersegmentation when it is restricted to a relatively small
section of the contour.

Our ability to abstract the shape of a cycle of contours with high local irreg-
ularity (shape “noise”) means that many false positive parts will be recovered. In
[25], we addressed this precision problem by moving the camera and exploiting spa-
tiotemporal constraints in the grouping process. We introduced a novel probabilistic,
graph-theoretic formulation of the problem of spatiotemporal contour grouping, in
which the spatiotemporal consistency of a perceptual group under camera motion is
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Fig. 1.11 Abstract part recovery (see text for discussion). (Figure reproduced with kind permis-
sion from Springer Science+Business Media: Proceedings, 11th European Conference on Com-
puter Vision (ECCVC), Contour Grouping and Abstraction using Simple Part Models, 2010, P. Sala
and S. Dickinson, p. 613, Fig. 4)
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learned from a set of training sequences. In future work, we plan to explore powerful
contextual relations, including proximity, alignment, and 3-D shape information to
prune many of these false positives. For example, if the surfaces in our images can
indeed be the projections of volumetric parts, such as cylinders or prisms, then there
are strong constraints on the shapes and relations of the component faces (parts) of
their aspects. Other constraints are also possible, such as pruning smaller surfaces
that are subsumed by larger surfaces.

1.5 Conclusions

The perceptual grouping of contours has long been a problem of interest to hu-
man and computer vision researchers alike. In computer vision, classical approaches
have addressed the problem by first extracting contours and then grouping the con-
tours, leading to prohibitive combinatorial complexity. We have explored this prob-
lem from the dual standpoint of region-based grouping, where regions are super-
pixels that minimize undersegmentation. In the case of symmetry-based grouping,
the superpixels represent deformable, maximally inscribed disks (medial points),
and we learn to group them when they belong to the same symmetric part. In the
case of closure-based grouping, the superpixels represent “chunks” of boundary, and
when the right subset of superpixels is found, those chunks of boundary will form
a closure with minimal gap. Finally, in the case of part-based grouping and abstrac-
tion, the superpixels define an intractable space of contour cycles from which those
whose coarse shape matches a model part are efficiently found. In each case, over-
segmented regions, or superpixels, not only help manage the combinatorial com-
plexity of traditional contour grouping, but support the inclusion of appearance in-
formation.

As the community moves from single category detection to recognition from very
large databases, the strong priors provided by object detectors will have to give way
to domain-independent intermediate shape priors that can yield discriminative shape
structures that, in turn, are required for efficient indexing. These mid-level shape
priors represent a return to perceptual grouping, and we expect research activity in
this area of critical importance to rise again. Shape is clearly the most powerful
and the most invariant feature of most categories, but a single shape part, unlike
a SIFT feature, carries very little distinctiveness. Only when shape primitives are
nonaccidentally grouped together do the resulting higher-order structures possess
the indexing power required to prune a large database down to a few promising can-
didates. In each of the frameworks reviewed in this chapter, the perceptual grouping
of superpixels yields a rich shape structure (in the case of a closed contour, a set
of parts and relations can be easily extracted [27]) that will support powerful shape
indexing and categorization.
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