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We present a family of distance measures for comparing activation patterns captured in fMRI images. We
model an fMRI image as a spatial object with varying density, and measure the distance between two
fMRI images using a novel fixed-radius, distribution-based Earth Mover’s Distance that is computable
in polynomial time. We also present two simplified formulations for the distance computation whose
complexity is better than linear programming. The algorithms are robust in the presence of noise, and
by varying the radius of the distance measures, can tolerate different degrees of within-class deforma-
tion. Empirical evaluation of the algorithms on a dataset of 430 fMRI images in a content-based image
retrieval application demonstrates the power and robustness of the distance measures.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) is a medical
imaging technique that captures brain functionality by measuring
the change in oxygen concentration in the blood that flows into
different parts of the brain as the subject performs some task. Sim-
ilar to other emerging imaging modalities, fMRI produces very
large datasets (.5 GB) describing a single patient or subject in a
time series of high resolution spatial images of the brain. As much
as 200 terabytes of data per year are generated in the brain imag-
ing aspects of cognitive studies. These are currently indexed only
by sparse meta-data, such as the experimental conditions, and
not by the actual content or brain activation patterns.

Indexing by these activation patterns enables the development
of content-based image retrieval systems. These systems will be
invaluable to scientists, who will be able to query the wealth of
fMRI data by content and not rely on the human specified meta-
data. Moreover, they could have profound impact on cognitive
science, as previously unknown patterns in brain functionality
are revealed. However, in order for these systems to be realized,
accurate measures of brain similarity must first be developed. In
this paper, we present a family of novel distance metrics for brain
ll rights reserved.

: +1 215 895 0545.
ufandeh).
images which may be leveraged to develop a comprehensive
framework for content-based brain retrieval.

Content-based image retrieval (CBIR) encompasses a broad array
of general purpose techniques, the most comprehensive survey of
which can be found in (Veltkamp and Tanase, 2000). Most CBIR
methods compute weak image abstractions, such as color or texture
histograms or appearance-based statistics (Niblack et al., 1993),
while some assume that query objects have been correctly seg-
mented and seek to encode their shape (Pentland et al., 1994). The
ultimate goal of content-based image retrieval systems is invariance
to within-class deformation or appearance changes, and while weak
image abstractions tend to be color- or texture-specific, they do tol-
erate within-class shape variation and changes in viewpoint. More-
over, many such features are computed globally, without requiring
figure-ground segmentation. But while such systems are designed
for less structured scenes, they are, in fact, inappropriate for our do-
main, for their representations are too abstract to capture the subtle
changes in brain activation between two conditions. For example,
two brain images with the same number of activated pixels may
yield similar abstract representations, e.g., histograms, despite the
fact that the locations of the activation in the two images may be
substantially different. Clearly, the problem of fMRI image retrieval
requires a method more tailored to the problem.

Indeed, there have been efforts supporting content-based
retrieval of specific fMRI data collections. In addition to
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content-based retrieval, there have been efforts to start collecting
fMRI experimentations (Van Horn and Gazzaniga, 2002; BRAin Im-
age Database, 2005). Currently, these only support keyword retrie-
val, and not content-based retrieval. Preliminary studies use a
collection of Alzheimer’s patients. Notable other efforts include
Megalooikonomou et al. (1999), Megalooikonomou et al. (2000),
Megalooikonomou et al. (2003), Lazarevic et al. (2001), Ford et al.
(2001, 2002, 2003), Wang et al. (2004), Kontos et al. (2004), Saykin
et al. (2002). In data mining efforts, databases of fMRI images are
mined to find relationships between brain lesions and functional
deficits (e.g., vision or speech deficits) (Megalooikonomou et al.,
1999), or to classify patients based on fMRI activation patterns
(Megalooikonomou et al., 2003; Ford et al., 2001, 2002, 2003). Also
related to the efforts presented here are 3D-based content retrieval
systems (such as the work of Osada et al., 2002). These are more
directed towards CAD-type applications, and do not retrieve the
type of 3D objects of variable density as we have here.

A robust measure of similarity between brain images plays a
fundamental role in a content-based image retrieval system.
Fig. 1 shows an example of such a system. First, fMRI images are
processed using standard techniques to extract an activation
map. Next, we apply a distance measure appropriate for matching
objects of variable density, to quantify their similarity. The result is
a distance measure between any two brain images, shown as a hit
map in Fig. 1, that can be directly exploited in a content-based
image retrieval system. The quality of the distance metric plays a
pivotal role in this system, as it should support accurate discrimi-
nation between activation patterns.

The problem of matching brain images has a number of unique
characteristics that affect the design of our distance metrics. First,
brain images are normalized in post-processing, so that the repre-
sentation of brain activation in each of the subjects occurs in
roughly the same spatial location. Therefore, a metric for determin-
ing the similarity between two brains must be designed to match
activation patterns which are spatially consistent. Second, fMRI
images are subject to noise introduced by inaccuracies in the phys-
ical processes, the sensors or the post-processing. A metric must be
robust in the presence of this noise. In order to account for both of
these requirements, we have developed a novel family of brain im-
age distance metrics. These metrics allow for the spatial localiza-
tion that is critical for accurate retrieval of brain images, and
they are robust in the presence of noise. Another key issue is the
large amount of processing that is normally applied to fMRI
Fig. 1. A content-based image retrieval system that exploits our family of distance metri
Secondly, the similarity between all brain images is computed using our novel family o
representing how each dataset maps to the other datasets in the repository. Each row (
against the rest of the database. The intensity of each cell denotes the magnitude of s
similarities, and blue represents low similarities (color map shown below the similarit
activation patterns. (For interpretation of the references in colour in this figure legend,
images. The processing converts the 3D + time images to one 3D
statistically significant dataset, representing the areas of the brain
which are relevant in the scan. If the preprocessing tools and pro-
cedures used to create a query image are not identical to those
used to create a database image (the two may have been created
in different laboratories, for example), then additional discrepan-
cies between two conditions may result. It is essential that the con-
tent-based image retrieval system be able to tolerate such forms of
within-class image deformation.

The format for this paper is as follows: first, a general formula-
tion of brain matching is presented that leads to a number of effi-
cient and robust algorithms for computing brain similarity. These
algorithms can be seen as more constrained versions of algorithms
previously studied in the context of graph matching and network
flow. Next, in order to test the effectiveness of these algorithms,
we gathered a varied set of fMRI images from cooperating labora-
tories. Through a comprehensive set of computational experiments
we show increased performance of content-based image retrieval
using our distance metrics as compared to the metrics that have
been previously proposed.

2. Representation model

As stated in the introduction, fMRI images generally undergo an
extensive amount of processing before analysis begins. In order to
obtain a robust map of active voxels, the raw fMRI images are first
preprocessed. (Note: a raw fMRI image consists of a sequence of 3D
brain scans typically conducted at 2-s intervals during a cognitive
experiment. Experiments can sometimes last up to 30 min or more.
This results in a 4D dataset (3D + time).) The preprocessing step
eliminates structurally irrelevant components, such as the skull,
from the images, while correcting some of the image acquisition
noise. We start our processing by applying motion correction to
align all the 3D images in a time series to the same position, cor-
recting the effects caused by small movements of the subject dur-
ing the experimental run. This step is followed by the removal of
voxels representing the skull and applying a temporal high pass fil-
ter to remove low frequency trends over time due, for example, to
the increasing temperature of the device. The preprocessing is
sometimes concluded with an optional step of applying spatial
smoothing filters to control spatial noise, which we do not do.
Due to differences in the shapes and sizes of individual brain
images, the preprocessing is followed by a mapping of the 3D
cs. First, raw fMRI images are processed and thresholded to extract activation maps.
f distance metrics. This similarity measure is visualized as a color-coded hit matrix
and column) of this matrix corresponds to the similarity obtained of a fMRI image
imilarity among corresponding fMRI images, i.e., yellow is used to represent high
y matrix). The hit matrix can be leveraged to determine fMRI images with similar
the reader is referred to the web version of this article.)



Fig. 2. A 2D view of two fMRI brain images. The raw fMRI data has been preprocessed and thresholded so that the resulting images contain only the most significant voxels.
The significant voxels are shown as red (left) or blue (right) spheres. Both of these datasets are part of the Study–recall experiment. The dataset on the left represents the
Study-face (SFace) condition of subject 4 (SUBJ4), and the dataset on the right represents the same condition (SFace) for subject 8 (SUBJ8). (For interpretation of the references
in colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of 430 t-maps used in this paper

Experiment Number of
conditions

Number of
t-maps

Number of
subjects

Citation

Event perception 2 53 28 Zaimi et al. (2004)
Oddball 2 8 4 N/A
Morality 3 150 22 Greene et al. (2001)
Recall 9 189 9 Polyn et al. (2004)
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images to a standard brain template. This step allows for a compar-
ison between individuals that is robust to differences in the sizes of
the subjects’ brains.

In order to estimate the activation level, or significance, of each
voxel in the activation map, we use the general linear model
(GLM). In the standard GLM approach, each stimulating condition,
such pictures of one’s beloved, is presented on a controlled time
schedule. The blood flow to each voxel (actually, smoothed with
a 5 mm averaging function) is then compared, by regression anal-
ysis with the stimulus, which is first convolved with a standard
‘hemodynamic response function’ representing a typical delay of
a few seconds in refresh blood. The standardized coefficient of
the response is then converted to a statistical measures using a
t-statistic or an F-statistic. Finally, the voxels are ranked in decreas-
ing order of the value of this statistic. Since approximately the
same number of voxels are selected from each image, the selection
will not be representable as a single uniform cutoff in the value of
the statistic. This unusual approach appears to compensate for
variations in human brain response, at least for the populations
studied here. An explanatory variable originates in a hypothesized
response to a certain type of stimulus, such as the picture of one’s
beloved. Due to a lag in the arrival of new oxygen to active regions
of the brain, each explanatory variable is generated by convolving
the stimulus time series with a Hemodynamic Response Function
(HRF). In our experiments, the HRF is modeled as a mixture of
two gamma distributions, which is the default HRF model provided
by the FSL software environment (Smith et al., 2004).

The mean and variance of the weight for each explanatory var-
iable is calculated by linear regression. By comparing each weight
with its estimated variance, the (Fisher) t-statistic can be esti-
mated, which will be referred to as the t-value of the weight. The
t-value is a measure of the degree to which the level of activation
is correlated with the corresponding stimulus. The entire regres-
sion analysis is performed separately for each voxel v with coordi-
nates ðxv; yv; zvÞ, and a brain t-map is formed, showing the
corresponding t-value sv at each voxel v. The activation or t-map
is a scalar 3D dataset. Therefore, after GLM processing, the 4D
raw images from an experiment result in one 3D dataset. The acti-
vation map is then thresholded to include only the voxels with the
most significant t-values, as voxels with low t-values are more
likely to be noise than to be causally related to the stimulus.1 Of
course, time and space costs increase as more voxels are included.
Fig. 2 shows an example 2D view of two fMRI brain images after pre-
1 Specifically, we choose the threshold which ‘activates’ 1% of the voxels,
accounting for the fixed scale of the brain and the difference in absolute activation
levels across subjects.
processing and thresholding to retain the most significant voxels.
There are other types of processing that can be performed on fMRI
datasets that do not include hypothesis testing. In this paper, we fo-
cus our efforts on GLM processed data, although our methodology
may be extended to other types of processing as well.

We have collected data from various cognitive experiments for
our preliminary content-based brain image retrieval tests. Each
experiment involves a condition (which is the cognitive process
under investigation), and a number of different subjects who
underwent the experiment. The experiments in this collection in-
clude: oddball (recognition of an out-of-place image or sound),
event perception (in either cartoon movie or a real film) (Zaimi
et al., 2004), morality problems (in which subjects make decisions
about problem situations having or lacking combinations of moral
and emotional content) (Greene et al., 2001), and study–recall
(study and recall, or recognition of faces, objects or locations)
(Polyn et al., 2004). Some experimental conditions had many runs
and many subjects, and we have selected randomly from those
large sets to produce a more balanced collection. This results in a
total of 430 processed experiment/subject combinations. Each
was processed using FSL (a GLM-based package Worsley and
Friston, 1995). The activation was then thresholded to yield the
final t-maps. Table 1 gives a summary of the datasets. The data used
here were collected at three different imaging sites, using different
magnets. However, all the sites were studying healthy college-age
subjects, which is a limitation of the present research. Extension
to populations of the very young and the very old is planned.

3. Distance metrics

After processing and thresholding, the 4D fMRI datasets are
converted into spatially distributed regions. In this section, we
present a family of distance functions which measure the distance
Romantic 2 30 15 Aron et al. (2005)

The t-maps were constructed in varying types of experiments, each with a number
of experimental conditions.
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between two fMRI images represented as spatially distributed
regions (referred to as thresholded t-maps or t-maps for short),
T1 ¼ fðv1; sv1 Þ; . . . ; ðvN; svN Þg and T2 ¼ fðu1; su1 Þ; . . . ; ðuM ; suM Þg.
The proposed measure defines the distance between two fMRI
images as a function of the actual intensities in the voxels in or
very near the region of overlap between the sets of active voxels
in their respective t-maps T1 and T2. The distribution-based dis-
tance, also known as the Earth Mover’s Distance (EMD), is designed
to evaluate the similarity of multi-dimensional distributions. In our
application of distribution-based distance, we will assume that a
distance measure _ðv;uÞ between every pair of voxels v 2T1 and
u 2T2, called the ground distance, is given. The distribution-based
distance then ‘lifts’ this distance from individual voxels to a full
distribution distance DðT1;T2Þ between the t-maps T1 and T2.

The above formulation could allow the activation in one voxel
in T1 to move to any voxel in T2. Although such a flow may be
part of a global optimum, it may violate the physical constraints
of activation flow in the brain over a fixed time interval. Imposing
such a physically-based constraint on flow yields a modified dis-
tance measure that restricts flow to a fixed-radius around the vox-
el. The formulation of the resulting fixed-radius distribution-based
distance as an optimization problem is based on the well-known
transportation problem, whose solution determines the minimum
amount of work required to transform one distribution into the
other, subject to a given upper bound on the ground distance dvu

between individual t-values sv and su in T1 and T2.
Specifically, for t-maps T1 ¼ fðv1; sv1 Þ; . . . ; ðvN; svN Þg and T2 ¼

fðu1; su1 Þ; . . . ; ðuM; suM Þg, we define D ¼ ½dij�N�M to be the pairwise
ground distance matrix, where dij is the ground distance between
voxels vi 2T1 and uj 2T2. Our objective is to find the optimal
flow assignment matrix F ¼ ½fij�, with fij representing the flow of
t-values in svi

to suj
, that minimizes the overall cost:

DðT1;T2Þ ¼
XN

i¼1

XM

j¼1

fijdij:

We avoid the trivial solution F ¼ ½0�N�M by ensuring that maximum
possible flow will leave or enter each voxel, specifically by minimiz-
ing the sum of the slacks between mass and flow for each voxel:

eDðT1;T2Þ ¼
XN

i¼1

svi
�
XM

j¼1

fij

 !
þ
XM

j¼1

suj
�
XN

i¼1

fij

 !

subject to the following constraints:

fij P 0; 1 6 i � N; 1 6 j 6 M; ð1Þ
ðq� dijÞfij P 0; 1 6 i 6 N; 1 6 j 6 M; ð2ÞXM

j¼1

fij 6 svi
; 1 6 i 6 N; ð3Þ

XN

i¼1

fij 6 suj
; 1 6 j 6 M: ð4Þ

The constraints in Eq. (1) will guarantee the non-negativity of the
flow matrix. The constraints in Eq. (2) will impose the desired upper
bound q on the ground distance the flows can move. Specifically, if
the ground distance between voxel-pair ðvi;ujÞ satisfies dij > q, the
corresponding constraints in Eq. (2) and non-negativity of flow will
force fij ¼ 0. Finally, Eqs. (3) and (4) relate the flow values out of
each voxel to the t-values. The optimal value of the objective func-
tion DðT1;T2Þ defines the distribution-based distance between
two t-maps T1 and T2. Solving the above optimization problem
for a full brain can be complex and time consuming. We have ex-
plored two simplifications: (1) removing the effect of distance
terms dij (q-radius network flow), and (2) ignoring the activation
value of voxels fij (q-radius bipartite method).
The q-radius distribution-based distance between t-maps T1

and T2 can be effectively computed in polynomial time using lin-
ear programming by creating a convex combination of DðT1;T2Þ
and eDðT1;T2Þ, and reporting DðT1;T2Þ. There are simplified for-
mulations for q-radius distribution-based distance with better
complexity than linear programming. The individual flow values
fij will not be scaled by the ground distance between corresponding
voxels vi and vj, provided that dij 6 q. It is not hard to see that this
problem can, in turn, be formulated in terms of computing the
maximum flow in a flow network GT1 ;T2 ¼ ðV ; EÞ. The vertex set
V of this graph consists of voxels fv1; . . . ; vN;u1; . . . ;uMg, a source
node s, and a sink t. For every pair of voxels v 2T1 and u 2T2,
if dðu; vÞ 6 q, a directed edge hv;ui of capacity minðsv; suÞ is in E.
We also add to E directed edges hs; vi with capacity sv, for each
v 2T1, and hu; ti with capacity su, for each u 2T2. The maximum
flow computed in flow network GT1 ;T2 will, in turn, be used to cal-
culate the modified distance DðT1;T2Þ. It should be noted that the
solution to the maximum flow problem in the network GT1 ;T2 can
be computed in time Oðn7=6m2=3Þ, where n ¼ jV j and m ¼ jEj (Kar-
ger and Levine, 1997). We refer to this distance measure as the
q-radius network flow distance. Note that this measure of similar-
ity bounds the deformation, but does not penalize larger allowed
deformations.

Assigning a unit t-value to active voxels in thresholded t-maps
yields a binary representation of active/inactive voxels, simplifying
the computation of q-radius distribution-based distance. Specifi-
cally, we build a bipartite graph GT1 ;T2 ðV1;V2; EÞ with color classes
V1 and V2 representing active voxels in t-maps T1 and T2. We in-
clude an edge ðu; vÞ with u 2T1, v 2T2 of weight dðu; vÞ in E if
dðu; vÞ 6 q. As a result, the q-radius distribution-based distance
between T1 and T2 can be formulated based on the weight of
the maximum-cardinality minimum-weight matching in the
bipartite graph GT1 ;T2 . We call this the q-radius bipartite method.
It should be noted that such a bipartite matching can be computed
in time Oðm

ffiffiffi
n
p
Þ (Cormen et al., 1990), where n ¼ jV j and m ¼ jEj.

Note that setting q ¼ 0 effectively computes the intersection
between two thresholded t-maps.
4. Experiments

In this section, we examine the performance of the q-radius
network flow and bipartite distance functions for the task of con-
tent-based image retrieval. Using a database of 430 t-maps gath-
ered under a number of different experimental conditions, we
first explore the impact of the radius parameter, q, on the perfor-
mance of the network flow and bipartite distance functions. We
then compare the performance of these with a number of other
distribution-based distance functions.

In order to test the retrieval quality obtained with each distance
function, we perform a retrieval using each t-map in the database
as a query. A retrieval is performed for a specific query by comput-
ing a ranked list of the distances between the query and the other
t-maps in the database. For each query, the ranked list of t-maps is
examined to determine which are relevant to the query. A t-map is
relevant to the query only if it shares the same experimental con-
ditions. As we move a pointer down the ranked list of retrieved
items, we hope to see that the relevant t-maps predominate early
in the list. To assess this we track the number of cumulated rele-
vant and irrelevant t-maps as the pointer moves.

We summarize the performance of a method using the receiver
operating curve (ROC). The ROC plots the probability of true posi-
tives and false positives along the normalized Y- and X-axis,
respectively. We use the area under this curve as a measure of
the retrieval performance, where an area of 1.0 is associated with
a perfect retrieval (100% true positives and 0% false positives)
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and 0.5 with random guessing (50% true positives and 50% false
positives). Note that the scale of each axis is normalized so that
the curve is unaffected by the ratio of relevant to irrelevant t-maps
in the dataset. For each query, we measure the area under the ROC
curve, and use the mean and standard deviation of the ROC curves
for all the queries to evaluate a particular distance function.

We implemented the q-radius network flow and q-radius
bipartite distance functions in C++ in a Linux environment. On a
machine with dual 1.50 GHz Xeon processors and 1 gigabyte of
RAM, both measures can computed between two brain images,
each with 2000 activated voxels, in approximately 1.5 s. Our con-
tent-based retrieval system, and therefore this running time, scales
linearly with the number of t-maps in the database.

4.1. Effect of the radius parameter

Both the q-radius network flow and q-radius bipartite distance
functions require a specific radius parameter, q. The radius deter-
mines the spatial constraints on the flow between two t-maps.
For example, a radius of 1 causes the flow of any voxel to be con-
strained to 26 possible voxels. By adjusting the radius parameter,
the distance functions can be made more or less sensitive to
discrepancies in the spatial distribution of activated voxels in
two t-maps.

Fig. 3 shows the mean and standard deviation of the ROC curves
of the q-radius network flow and q-radius bipartite distance func-
tions for increasing neighborhood size. Both distance functions
have a maximum ROC area at a radius of 2. A neighborhood size
of 1 is apparently too constrained to accurately retrieve similar
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brains, whereas neighborhood sizes greater than 2 are undercon-
strained and result in an increased number of false positives. Also
observe from the figure that the bipartite distance function outper-
forms the network flow distance. This may be due to the fact that
the bipartite distance function penalizes flow by the distance it
travels, whereas the network flow distance does not. However,
with a mean ROC over 0.77 for all radius values, both distance
functions perform well at retrieving the t-maps in this dataset.
Fig. 4a illustrates the average ROC for the radius-2 bipartite and
network flow distance functions. The distance metrics perform
similarly, and accurately retrieve relevant experiments from the
database. Additionally in Fig. 4b illustrates the histogram of the
ROC mean’s obtained for the 430 queries done for the radius-2
bipartite distance function. Although the retrieval is not perfect,
the curve shows that the distance functions serve as an accurate
means of obtaining an initial set of similar experiments prior to
examination by a human.

In Fig. 1, one can see a color-coded hit matrix where the match-
ing function is plotted for each dataset. All of the datasets are rep-
resented along the horizontal and vertical axes. The color map is
shown under the similarity matrix, with yellow representing high
similarity and blue representing low similarity. The yellow line
along the diagonal represents datasets matching to each other. Be-
cause the datasets are laid out along the axes in groups of experi-
ments, we expect to see blocks of high matching along the
diagonal.

Fig. 5 shows a graphical representation of the effect of the ra-
dius parameter when matching the two brain images shown in
Fig. 2: (run 1 of subject 4, in the study-face condition) and (run 1
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Fig. 5. The effect of increasing the radius parameter. The two rows of images show the corresponding voxels for the two brain images shown in Fig. 2, for the (q)-radius
bipartite (first row) and network flow (second row) distance functions, respectively. The voxels in the two datasets that are found to be in correspondence to a voxel from the
other dataset (matched voxels) are shown as colored spheres. Each connected cluster of matched voxels is shown in a different color. As the (q) parameter increases, a greater
number of activated voxels are found to be in correspondence. By setting the (q) parameter appropriately, the distance functions are robust in the presence of noise, but still
enforce spatial constraints on the corresponding voxels. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Brain retrieval performance using a number of distance functions

Distance measure Mean ROC Standard deviation of ROC

q-Radius bipartite 0.808 0.126
q-Radius network flow 0.800 0.126
Simple overlap (0-radius bipartite) 0.765 0.128
Kullback Leibler divergence 0.758 0.135
PCA 0.747 0.146
Brodmann cosine 0.723 0.143

Due to the relaxation of the spatial constraints in the voxel matching, the q-radius
bipartite and network flow distance functions outperform the other distance met-
rics in a content-based image retrieval task.
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of subject 8, study-face condition). The first row shows the effect of
the radius parameter on the (q)-radius bipartite distance function,
and the second row shows the effect in the network flow distance
function, for various values of the radius parameter (q). The col-
ored spheres represent voxels from each of the two datasets which
are found to be in correspondence with a voxel from the other
dataset. Each connected cluster of voxels found to be in correspon-
dence is shown in a different color. For example, for q ¼ 0 (over-
lap), voxels which overlap are shown in green. As the radius
parameter increases, a larger number of voxels are found to be in
correspondence (colored voxels). Through this parameter, the dis-
tance function is robust in the presence of noise while enforcing
spatial constraints of the correspondences.

4.2. Effectiveness of the distance functions for content-based image
retrieval

In this section, we compare the performance of the q-radius
network flow and q-radius bipartite matching distance functions
to a number of other histogram-based distance measures, includ-
ing the Kullback–Leibler divergence, Brodmann cosine and simple
overlap. The Kullback–Leibler divergence is a popular and effective
measure of the similarity that considers the relative entropy be-
tween those two probability distributions. In the Brodmann cosine
measure, the whole brain space is first partitioned into 96 left/right
differentiated Brodmann regions. The t-map is then represented as
a 96-dimensional vector, whose elements correspond to the ratios
of activated voxels in that region over the total size of that Brod-
mann region. The similarity between two t-maps is computed by
taking the cosine of the angle between the two corresponding vec-
tors. In addition, we also experimented with using principle com-
ponent analysis (PCA), as a means of data reduction, after which
the similarity between two brains is measured as the angle vector
representing the projection of the t-map on the top 10 significant
principal components.

Table 2 shows the mean and standard deviation of the ROC
curves for each distance measure. The q-radius bipartite and net-
work distance functions each have a radius value of 2. Observe that
the q-radius bipartite and network flow distance functions outper-
form the other techniques. By including the radius parameter q in
the measures, we are able to more accurately retrieve similar
brains, with varying amounts of noise or discrepancies in the brain
normalization. This is evident by comparison with the fully con-
strained overlap measure (q ¼ 0). Although the Kullback–Leibler
divergence is a powerful measure of the similarity between two
distributions, our experiments suggest that it is too spatially con-
strained for the task of comparing brain fMRI images. The Brod-
mann cosine measure performance is significantly worse, most
likely due to an overly coarse discretization of the brain into Brod-
mann regions. Overlap is intuitive and fast to compute; however,
the method will be inaccurate if there is noise, or discrepancies
in the brain normalization. Clearly, the results presented here are
dependent upon the preprocessing done on the fMRI scans and
on the thresholding performed on the t-maps.

The average ROC results obtained by our algorithm are compa-
rable to those obtained by Ford et al. (2003), a state of the art con-
tent-based retrieval system. This is impressive, as unlike (Ford
et al., 2003) who used machine learning techniques, we achieved
these results simply with our improved distance function. This
shows that our distance measures serve as a powerful means of
discriminating fMRI brain images that can be leveraged as the
underlying distance measure in a content-based retrieval of fMRI
images that employs an explicit training stage.

5. Limitations

The above experiments make some important assumptions,
reflecting the current limitations of our approach. Our concept of
distance penalizes object translation, rotation, and scale in the im-
age, i.e., the distance between two regions of activation (in two
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images) depends on their relative position, orientation, and size in
a brain-aligned coordinate system. While appropriate for the task
of computing the similarity of two brain activation patterns, this
lack of invariance makes the framework less appropriate, for exam-
ple, for the task of detecting lesions in an image, if what constitutes
a lesion is independent of position, orientation, or scale. This limi-
tation can be overcome if the EMD measure is computed as an
inner loop, with an outer loop which seeks to superimpose, align
and scale the images to each other. A second limitation concerns
the uniformity with which activation is compared. As domain spe-
cialists become able to provide the needed information, our metric
could be easily augmented to include measures of ‘relative signif-
icance’ of the various parts of an image, to provide a better
task-specific metric. Finally, our database is rather small, and
methods for indexing effectively into larger databases, in order to
limit the number of candidates that need to be verified using our
distance measure, need to be developed. We are currently
exploring abstract image representations that will support fast
indexing.

6. Conclusions

In this paper, we have presented a family of distance functions
that may be leveraged to develop a content-based image retrieval
system. Using two different assumptions about the underlying
brain images, we have developed two powerful image similarity
measures, the q-radius network flow and bipartite distance func-
tions, for general and binary images, respectively. Increasing the
value of q effectively increases the two distance measures’ invari-
ance to increasing amounts of noise and within-class deformation.
Through an experimental evaluation in the domain of content-
based brain image retrieval, we have shown that by using a graph-
ical network flow formulation to match images in a way that con-
serves the amount of activation, and by accounting for the
inherent noise in the data, our distance functions outperform
other commonly used measures. The two methods, in fact, add
to the realism of the approach in two complementary ways. One
penalizes long moves, while the other conserves a measure of
the correlation. This suggests that if we can find an efficient way
to conserve correlation and also penalize distance, we will achieve
somewhat better performance, while increasing the realism of the
model.
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