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AbstractÐWe quantify the observation by Kender and Freudenstein [24] that degenerate views occupy a significant fraction of the

viewing sphere surrounding an object. For a perspective camera geometry, we introduce a computational model that can be used to

estimate the probability that a view degeneracy will occur in a random view of a polyhedral object. For a typical recognition system

parameterization, view degeneracies typically occur with probabilities of 20 percent and, depending on the parameterization, as high

as 50 percent. We discuss the impact of view degeneracy on the problem of object recognition and, for a particular recognition

framework, relate the cost of object disambiguation to the probability of view degeneracy. To reduce this cost, we incorporate our

model of view degeneracy in an active focal length control paradigm that balances the probability of view degeneracy with the camera

field of view. In order to validate both our view degeneracy model as well as our active focal length control model, a set of experiments

are reported using a real recognition system operating on real images.

Index TermsÐView Degeneracy, aspect graphs, object recognition.

æ

1 INTRODUCTION

1.1 Motivation

IMAGE segmentation is the task of transforming a signal-
level image description into a symbolic description,

consisting of sets of segments or features of some sort.
Examples of features in common use are homogeneous
regions or discontinuities described by line segments or
curves. From certain viewpoints, such features may be
accidentally aligned in the image, resulting in a degenerate
view. For example, if two object edges are abutted and
collinear, one longer edge is seen in their place. Or, an object
may be oriented in such a way that, from a particular
viewpoint, two nonparallel edges on the model appear as
parallel lines in the image.

Much work in 3D object recognition from a single 2D
image is based on the assumption that degenerate views
rarely occur. As stated by Witkin and Tenenbaum [43],
ªregular relationships are so unlikely to arise by chance
that, when such relationships can be consistently postu-
lated, they almost certainly reflect some underlying causal
relationship, and therefore should be postulated.º It could be
argued, therefore, that regular relations found in an image
should be mapped to a set of causal relations identified on
the model. For example, in Lowe's SCERPO system [27],
parallel lines in the image were mapped to manually
identified parallel edges in the model. Pairs of model edges
that appear parallel only in a degenerate view were not
tagged as parallel in the model since such degenerate views
were deemed too unlikely.

Another body of work in 3D object recognition from a
single 2D image [3], [2], [18], [21], [29], [30] attempts to

recover complex volumetric parts, known as geons [4]. In
these systems, geons are recovered by extracting the
properties of a restricted generalized cylinder, including
the geon's axis (straight vs. curved), its cross-section sweep
(constant vs. expanding vs. expanding then contracting), its
cross-section symmetry (reflective symmetry vs. rotational
symmetry vs. asymmetric), and cross-section shape
(straight-edged vs. curved-edge). These properties, in turn,
are based on the same nonaccidental image relations
proposed by Lowe [27]. Thus, a bent cylinder viewed in
the plane of the curve could only be interpreted as a straight
cylinder, the former being considered an unlikely degen-
erate view. Furthermore, those views in which one or more
of the defining properties was not visible were also
considered degenerate and, therefore, unclassifiable. For
example, an end-on view of a cylinder, appearing as a
single ellipse, encodes no information about the cross-
section sweep property: It could, for example, be a rear-
pointing cone, a cylinder, or a sphere.

Given arbitrarily high resolution, the various degenerate
views described above are not a problem because they
would occur only for a vanishingly small fraction of the
possible viewpoints [5]. Unfortunately, cameras and feature
extraction operators have finite resolution and, as a result,
the probability of encountering a view degeneracy is no
longer trivial. Kender and Freudenstein [24] were the first to
observe this phenomena, but did not provide a computa-
tional model. In the first part of this paper, we introduce the
first computational model for view degeneracy that can be
used to compute the probability that, from a random
perspective view of the object, a view degeneracy will
occur. For a typical tabletop vision system parameteriza-
tion, we show that this probability can be very significant,
even as high as 50 percent.

Given that view degeneracies occur with significant
probabilities, what does this mean for the designers of both
viewer-centered and object-centered object recognition
systems? Any correspondence between an image feature
group (containing a degeneracy) and a model feature group
will be incorrect. The time spent solving for model pose or
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verifying the correspondence will only serve to reduce
recognition efficiency and performance. In other cases,
recognition may not even be possible when degenerate
views prevent critical 3D inferences. Conversely, in view-
based recognition systems using aspect graphs or collec-
tions of views, care must be taken to explicitly include the
degenerate views in the representation or else single-view
recognition may not be possible.

Given that view degeneracies occur with significant
probabilites, what does this mean for the designers of both
viewer-centered and object-centered object recognition
sytems? Any correspondence between an image feature
group (containing a degeneracy) and a model feature group
will be incorrect. The time spent solving for model pose or
verifying the correspondence will only serve to reduce
recognition effciency and performance. In other cases,
recognition may not even be possible when degenerate
views prevent critical 3D inferences. Conversely, in view-
based recognition systems using aspect graphs or collec-
tions of views, care must be taken to explicitly include the
degenerate views in the representation or else single-view
recognition may not be possible.

In the second part of this paper, we explore the impact of
our model on the design of object recognition systems. For a
particular recognition system, we show that there exists a
high correlation between degenerate views and ambiguous
views of an object, linking view degeneracy with the cost of
object disambiguation. One way to reduce this cost is by
lowering the probability of encountering a degenerate view.
Having already established that the probability of view
degeneracy is sensitive to camera focal length, we then
introduce a quantitative prescription for active focal length
control that allows a trade-off to be achieved between the
camera field of view and the probability of view degen-
eracy. We conduct a series of experiments applying a real
object recognition system to a set of real images to validate
both our view degeneracy model as well as our active focal
length control model.

1.2 Related Work

The notion that finite-resolution cameras and finite-width
feature operators could significantly increase the probabil-
ity of view degeneracy was first articulated by Kender and
Freudenstein [24]. However, no computational model was
provided for determining exactly how high this probability
could be for a given object or how sensitive this probability
was to various system parameters, e.g., focal length,
operator width, etc. Dickinson et al. [12], [15], [14] analyzed
the set of views of simple volumetric parts and found that
the empirically derived view degeneracy probabilities were
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Fig. 1. Our definition of view degeneracy. The two cases are the
collinearity of the front nodal point of the lens with two object point
features (top), or with one object point feature and a point on one line or
line segment (bottom).

Fig. 2. An example of view degeneracy in which a vertex is imaged in the
plane of a scene edge.

Fig. 3. An example of view degeneracy in which parallel scene lines are
imaged in their own plane.

Fig. 4. An example of view degeneracy in which coplanar scene lines are
imaged in their own plane.



significant, leading to the inclusion of ªdegenerate viewsº

in their aspect database.
In 1993, Wilkes, et al. [40] introduced the first computa-

tional model of view degeneracy based on a full perspective

camera model. Shortly after that, Shimshoni and Ponce [32]

also noted that ªaccidental viewsº will appear over a finite

region of the viewing sphere when considering finite

resolution. Assuming orthographic projection, they pre-

sented an algorithm for constructing the finite resolution

aspect graph of a polyhedron. Preceding the work of

Shimshoni and Ponce, Eggert et al. [17] also noted the effect

of finite resolution on the complexity of an aspect graph.

Using a full perspective model, they introduced the notion

of a scale-space aspect graph for 2D polygonal objects.
A number of researchers have studied the closely-related

problem of how an object's features vary with view. For

example, Burns et al. studied how projections of 3D point

sets and lines vary with viewpoint [8]. Ben-Arie introduced

probabilistic methods for computing the observation prob-
abilities of an object's features and their quantitative
attributes [1]. Burns and Kitchen [7] and Swain [35] both
proposed view-based, decision-tree-based recognition sys-
tems that exploited probability distributions for an object's
features, while Weinshall and Werman [38] measured the
probability that a certain view is observed (or how stable
the view is with changes in viewpoint).

Despite the large body of work in aspect graph
construction, e.g., [25], [34], [17], [16], [28], [31], [32], [20],
[19], [33], very few aspect graph-based recognition systems
have been developed, e.g., [15], [14], [9], [23]. If a degenerate
view is ambiguous or excluded from the set of model views
in order to reduce complexity, then one must have a
mechanism for detecting degeneracy when it occurs, and
moving out of the degenerate view position. This can be
accomplished in two ways, each requiring changes in
imaging geometry. Wilkes [39] has explored the idea of
moving the camera to a viewpoint advantageous to
recognition. This approach meets with success, but at the
cost of significant viewpoint changes. Dickinson et al. [10],
[11] use a probabilistic aspect graph to guide the camera
from a position where the view is ambiguous (and often
degenerate) to a position where the view is unambiguous.

The second approach to camera motion in order to
move out of a degenerate view is to increase the
resolution of the camera, i.e., increase the camera's focal
length. In 1995, Wilkes et al. [41] applied their computa-
tional model of view degeneracy to actively control the
focal length of a camera to balance the trade-off between
probability of view degeneracy and the field view. A
similar trade-off has been noted in the work of
BrunnstroÈm et al. [6] who use a wide angle of view to
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Fig. 5. An example of view degeneracy in which perfect symmetry gives
preference to a flat, 2D interpretation of the lines.

Fig. 6. Loci of degeneracy with infinite resolution. This illustrates
degeneracies of both Case 1 type (involving two 0D object features) and
Case 2 type (involving a 0D object feature and an infinite line defined by
object features).

Fig. 7. The loci of degeneracy of the previous figure with finite resolution.
The regions of the viewing sphere affected by degeneracy are large. The
circle of the previous figure is actually a thick band on the sphere. The
points from the Case 1 degeneracy are actually disks.



detect object junctions and then zoom in to increase
image resolution for junction classification.

1.3 What's Ahead

In the remainder of this paper, we begin by defining view
degeneracy precisely (Section 2), and show how our
definition covers many interesting classes of degeneracy.
Next, in Section 3, we develop a model of view degeneracy
under perspective projection. It is parameterized by the
distance to the object to be recognized, the separation of
features on the object, the minimum separation of the
corresponding image features in order for them to be
detectable as distinct features, and camera focal length. The
model gives the probability of encountering a degenerate
view as a function of the model parameters. The evaluation
of the model at realistic parameterizations, including a
sensitivity analysis, indicates that degenerate views can
have very significant probabilities (Section 3.4).

In Section 4, we discuss the implications of our model for
object recognition. Choosing a viewer-centered object
recognition system, we incorporate our view degeneracy
model into a prescription for active focal length control that
trades off view degeneracy with field of view. A set of
experiments are shown with real images to validate both
our view degeneracy model as well as our active focal
length control model. Finally, in Section 5, we draw some
conclusions about the model.

2 DEFINITIONS oF DEGENERACY

Kender and Freudenstein [24] presented an analysis of
degenerate views that pointed out problems with existing
definitions of the concept. The definitions that they propose
in place of earlier problematic ones incorporate the notion
that what constitutes a degenerate view is dependent on
what heuristics the system uses to invert the projection from

three dimensions to two. One of the definitions incorporat-
ing this system-dependence is the negation of the definition
of a general viewpoint: A general viewpoint is such that there
is some positive epsilon for which a camera movement of
epsilon in any direction can be taken without effect on the
resulting semantic analysis of the image. This definition
was noted by Kender and Freudenstein to be incomplete in
the sense that there exist general viewpoints on certain
objects that are unlikely to allow a system to instantiate a
proper model for the object relative to other views of the
same object (e.g., the view of the base of a pyramid). They
argue for somehow quantifying degeneracy according to
the amount of additional work expected to be required to
unambiguously instantiate a model corresponding to the
object being viewed.

We are interested in a definition that is independent of
the particular recognition system in use, and are willing to
trade away the completeness of the definition to achieve
this. Fig. 1 illustrates a definition of degeneracy that covers
a large subset of the cases appearing in the literature. The
definition has to do with collinearity of the front nodal point
of the lens and a pair of points on (or defined by) the object.
We shall consider a view to be degenerate if at least one of
the following two conditions holds:

a zero-dimensional (point-like) object feature is
collinear with both the front nodal point of the lens
and either:

1. another zero-dimensional object feature, or
2. some point on a line (finite or infinite) defined

by two zero-dimensional object features.

Each of the specific imaging degeneracies enumerated by
Kender and Freudenstein for polyhedral objects belongs to
one of these types. Below, we discuss each of their example
degeneracies in turn.
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Fig. 8. Perspective projection of a pair of points. We will determine the fraction of all orientations of line AB in relation to the camera for which the
image separation s of A and B is small enough to interfere with their resolution into distinct features.



2.1 Vertices Imaged in the Plane of Scene Edges

This is encompassed by Case 2 (finite line) above and is
depicted in Fig. 2. The lower right scene edge on the upper
object is the line segment of Case 2 (finite line). The vertex
on the lower object is the zero-dimensional object feature.

2.2 Parallel Scene Lines Imaged in Their Own Plane

We depict this situation in Fig. 3. This is Case 2 (infinite
line) above. The portion of the viewing sphere in which the
degeneracy occurs is that for which the front nodal point of
the lens is in the plane defined by an end point of the edge
on the front object and the other scene line (extended to
have infinite length).

2.3 Coincident Scene Lines Imaged in Their Own
Plane

This generalizes to coplanar lines imaged in their own plane.
We depict this situation in Fig. 4. This is equivalent to
Case 2 (infinite line). This reflects the fact that a
degeneracy exists (in that noncollinear lines are perceived
as collinear) for any viewpoint (not just a subset of the
viewpoints) in the plane of (but not on) the lines. An
endpoint of the edge on the right-hand object may be used
as the zero-dimensional feature. The edge on the left-hand
object may be extended to define the infinite line.

2.4 Perfect Symmetry

Kender and Freudenstein include perfect symmetry in the
enumeration of types of degeneracy because they say that it
leads to a tendency to interpret the symmetric structure as
flat. An example is shown in Fig. 5. In the case of radial

symmetry, this is equivalent to Case 1, with the two zero-

dimensional points chosen to be any two distinct points on

the axis of symmetry. In the case of symmetry about a

plane, this is equivalent to Case 2 (infinite line), with both

features chosen arbitrarily to lie in the plane of symmetry.

Note that, in the case of symmetry, the features defining the

degeneracy are more likely to be abstract points on the

object (e.g., the centroid of an object face) rather than points

extractable directly by low-level vision. The use of abstract

object points rather than obvious feature points has no

impact on the estimation of the probability of degeneracy

that follows. What matters is that there is some means to

enumerate the types of degeneracy that are important to the

approach. This enumeration is discussed later in the paper.

2.5 Dependence on Effective Resolution

If a computer vision system had infinite ability to resolve

object features that were close to one another, then all of the

degeneracies discussed above would have infinitesimal

probability of occurrence. Fig. 6 shows typical loci of points

on the viewing sphere at which instances of each type of

degeneracy occur, assuming infinite resolution. Each Case 1

degeneracy occurs at a pair of points on the sphere surface.

Each Case 2 (infinite line) degeneracy occurs at a circle of

points on the sphere surface. Each Case 2 (finite line)

degeneracy occurs on two sectors of a circle of points on the

sphere surface. The sectors are the sets of viewpoints from

which the defining point feature appears to lie within the

defining line feature. Since these loci of points are of

lower dimensionality than the viewing sphere itself, the
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Fig. 9. The regions of the sphere swept by point B for � 2 ��0; �0 ���� and � 2 �0; ��. The shaded parts are the areas for which s < sc.



probability that the viewpoint is on such loci is vanish-
ingly small.

Kender and Freudenstein [24] point out that the finite
resolution of real systems has the potential to make the
probability of the degenerate views significant or even a
certainty. This is due to the thickening of all of the loci of
points on the viewing sphere corresponding to degen-
eracies to include viewpoints from which the key features
are ªalmost collinearº with the front nodal point of the
lens. Fig. 7 illustrates this thickening.

We will use the phrase effective resolution to capture all
system dependencies in our model. As a result, the
definition is a general one, to be specialized to each system
as needed:

Definition. The effective resolution in the image is the
minimum separation of a pair of points, corresponding to

distinct object features, needed in order to detect both features.

Effective resolution is a function of both actual camera
resolution and the method used for feature detection. For
example, one may estimate the effective resolution to be the
width of the convolution kernel used to extract object edges
or some function of the kernel width and edge length
chosen to model actual system performance.

3 A COMPUTATIONAL MODEL oF VIEW

DEGENERACY

3.1 Degeneracy Based on a Pair of Points:

Fig. 8 shows the perspective projection of a pair of feature

points, A and B. For simplicity, our analysis assumes that A

is centered in the image.1We are interested in the separation

s of the images of the two points as a function of the other
parameters shown in the figure. The parameters are:

f distance from image plane to rear nodal point
R distance of A from the lens front nodal point
r separation of the two object points
��; �� orientation of B with respect to

the optical axis
� apparent angular separation of the points

We have that

tan� � s

f
�1�

and that

tan� �
���������������������������������������������������
r2 sin2 �� r2 cos2 � sin2 �

p
R� r cos� cos �

�2�

Let sc be the effective resolution, as defined earlier.
Equating the two right-hand sides, we will solve for �
given s � sc and �. The choice to solve for � is arbitrary. We
obtain two solutions, �0 and �1, at which s � sc:

�0 � cosÿ1 ÿRs2
c � f

���������������������������������������
r2f2 ÿ s2

cR
2 � s2

cr
2

p
r�f2 � s2

c� cos �

 !
�3�

or �1 � �ÿ cosÿ1 Rs2
c � f

���������������������������������������
r2f2 ÿ s2

cR
2 � s2

cr
2

p
r�f2 � s2

c� cos �

 !
; �4�

�0 and �1 exist provided that the arguments for their
respective cosÿ1 functions are in the interval �ÿ1; 1�. Where
they exist, there are intervals of � for which s < sc. The
intervals are �0; �0� and ��1; ��. Where they do not exist, it is
because the entire range of � values from 0 to � gives s � sc
at the given � value. Fig. 9 shows the sections of the sphere
swept out by point B in Fig. 8 as � ranges over a small
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Fig. 10. Perspective projection of a line segment and a point. We will determine the fraction of all possible orientations of A with respect to line BC for
which the image separation of A and BC is small enough to interfere with the detection of A as a separate feature.

1. This simplification is based on our assumption that the off-axis effects
are small, assuming that the camera is foveating on the object.



interval ��0; �0 ���� and � ranges over the interval �0; ��.
For each small interval in �, the ratio of the area for which

s < sc to the total area of the sphere swept by point B is g���,
where

g��� � 1

total area
� �shaded area� �5�

� 1

2r2��
�
 Z �0

0

Z �0���

�0

r2 cos�d�d�

�
Z �

�1

Z �0���

�0

r2 cos

�
�ÿ �

�
d�d�

! �6�

� 1

2r2��
� r2�

Z �0

0

�� cos�d�

�
Z �

�1

�� cos

�
�ÿ �

�
d�

! �7�

� 1

2��
��� sin�0 � sin �ÿ �1� �� � �8�

� sin�0 � sin�1

2
: �9�

Thus, we may estimate the probability that s is smaller than

some critical value sc by doing a numerical integration of

g��� over all � values to determine the fraction of the sphere

swept by � and � that gives s < sc.

3.2 Degeneracy Based on a Point and a Line

Fig. 10 shows the perspective projection of a line segment of

length l, with endpoints B and C and a point A. We simplify

our calculations by centering B in the image. Without loss

of generality, we choose an image coordinate system that

causes the image of the line to lie along one of the

coordinate axes. Let A0, B0, and C0 be the images of A, B,

and C, respectively. In addition to the parameters used in

the case of two points, we have the additional parameters:

w angle between the line segment and
the optical axis

a length of the line segment B0C0

(possibly infinite)
b separation of A0 and C0

c separation of A0 and B0

t distance between B0 and the
nearest point to A0, on the infinite
line through B0 and C0

The parameter t is used to determine whether a perpendi-

cular dropped to the line through B0 and C0 falls on the

segment between B0 and C0.
We have

s � r cos� sin �
f

R� r cos� cos �
�10�

t � r sin�
f

R� r cos� cos �
�11�

a � l sin! f

R� l cos!
�12�

b �
��������������������������
s2 � �tÿ a�2

q
�13�

c �
��������������
s2 � t2

p
; �14�

We are interested in the distance of the image of the point

from the line segment. This distance d is

d �
s if t � 0 and t � a
b if t > a
c if t < 0:

8<: �15�

We considered two possibilities for the integration for the

probability that d is less than some critical value dc. The
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Fig. 11. In the point-line case, the point A sweeps a sphere as � and � are varied for each value of !. Here, ! � �
2 . The shaded regions are the areas

for which s < sc. For ease of presentation, the lower half of the sphere is not shown and only half of each region in the upper half of the sphere is
shown. The lines passing through B and C intersect at the front nodal point of the lens.



approach that is analogous to the approach used in the first
case leads to numerical evaluation of a three-dimensional
integral. Fig. 11 shows the sections of the sphere swept out
by the point A, assuming a vertical line BC (with B at center
of sphere). Note that, for clarity, the portion swept out on
the lower half of the sphere is not shown and only half of
each section (on either side) on the top half is shown. We
chose an easier method, consisting of performing a Monte
Carlo integration by randomly choosing triples �!; �; ��
uniformly on the surface of the viewing sphere and
tabulating the fraction of the trials for which d < dc.

3.3 Combining Probabilities of Individual
Degeneracies

Finally, if we have estimates of the probabilities of
degenerate views based on individual pairs of points and
(point, line segment) pairs, we need to combine the
probabilities of individual degeneracies to get the prob-
ability that at least one degeneracy exists. This final step is

somewhat application-dependent because different classes

of objects have different degrees of interaction among their

features. If we were to assume independence among all of

the points and line segments in the object set and if the

objects were wire-frame objects so that all features were

visible all of the time, then the task would be easy: All

features would be able to interact with each other to cause

degeneracies. This model is appropriate with sensors or

objects for which transparency or translucency is common

(e.g., X-ray images).
For computer vision, there typically exist pairs of

features that do not interact to form a degeneracy simply

because they are at opposite positions on an opaque object.

We will examine the case of a polyhedral world in order to

provide an example of the analysis necessary to determine

overall probabilities of occurrence of degeneracy. In a

polyhedral world, features are clustered to be in coplanar

groups (faces), reducing the probability of degeneracy from
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Fig. 12. Segmented Images of Origami Object. (a) Nondegenerate gray-level image of origami figures. (b) Edge image with the edge of interest
highlighted. (c) Gray-level image of same origami figures from a slightly different viewpoint. (d) Edge image of (c) showing the absorption of a second
edge due to the apparent collinearity (point-line degeneracy) in the new view.



the value that would be estimated assuming independence

of the features.
In the case of single isolated convex polyhedral objects,

we can take a face-by-face approach to estimating the

probability of degeneracy. Specifically, we will only exam-

ine interactions among points and lines belonging to the

same face since features not sharing a face are relatively less

likely to interact. An edge-on view of a face is equivalent to

our Case 2 (infinite line) degeneracy where the point used is

an arbitrary vertex and the line used is an edge on the

opposite side of the face extended to have infinite length.
To arrive at a global estimate of degeneracy, we could

simply sum the probabilities of degeneracy for each face.

However, since parallel faces cause strongly overlapping

regions of the viewing sphere to be degenerate, faces should

be divided into equivalence classes, with one class per face

orientation. For example, a cube consists of three sets of

faces, with three distinct orientations. We may estimate the

probability of degeneracy for the cube by summing the

probabilities of three faces, one representing each equiva-

lence class. Finally, we can take into account the degeneracy

due to radial symmetry by summing the point-pair

degeneracy estimates for each axis of radial symmetry in

the object.
If we define terms as follows:

p00 the probability of an individual point-pair
degeneracy

p01 the probability of an individual line-point
degeneracy

nr the number of axes of radial symmetry
nf the number of face equivalence classes

where nr does not include axes of symmetry lying in planes

of symmetry, then the overall probability of a degenerate

view, pd, is estimated by

pd � 1:0ÿ �1:0ÿ p00�nr|���������{z���������}
no symmetry degeneracies

� �1:0ÿ p01�nf
z���������}|���������{no face degeneracies

: �16�

The above expression corresponds to an assumption of

independence of the axes of radial symmetry and face

groups. We conjecture that this is more realistic than

assuming no overlap between the regions of degeneracy

(as one would assume by simply summing the individual

probabilities of degeneracy). In a world with multiple

objects in each image, there is a greater degree of

independence among the features since the positions of

the objects with respect to one another are less likely to be as

ordered as the positions of individual features within an

object. The above enumeration would provide an optimistic

lower bound on the probability of degeneracy. Summation

over all feature pairs (as in the wireframe case) would
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Fig. 13. Functional perturbation analysis: pd=df as a function of f.

Fig. 14. Results for a tabletop vision system. The basic parameterization
corresponds to our experimental setup. One fifth of the views on a single
object are degerate. The probability of degeneracy varies significantly as
model parameters are perturbed.



provide a pessimistic upper bound on the probability of
degeneracy.

Our analysis has ignored the fact that objects in the
world have preferred orientations, sit on tables, have tops
and bottoms, and so forth. In fact, there may be surfaces on
an object which are rarely visible. In a more thorough
analysis, the probability of view degeneracy contributed by
a face should be weighted by the probability of the visibility
of the face. Finally, it should be noted that in the case of
nonconvex objects, (16) provides an even more optimistic
lower bound on the probability of degeneracy. For convex
polyhedra, the point-line degeneracies involve points and
lines on adjacent faces. However, in the case of nonconvex
polyhedra, nonadjacent faces (in addition to adjacent faces)
may contribute to point-line degeneracies involving a given
face.

3.4 Sensitivity Analysis of the Model

We have parameterized the model to match the situation in
some of our own work on active object recognition. The
experimental apparatus consists of a gray-level CCD
camera mounted on a light robot arm which is, in turn,
mounted on a mobile robot. Recognition of origami figures
lying on a tabletop is accomplished by using low-level
image data to drive the camera to a special viewpoint on the
unknown object. The recognition work is described in detail
in [39] and presented in overview in [42]. We have used the
actual camera pixel size to compute the critical feature
separation sc, while the object-related parameters are those
of the origami object set. Example segmented images with
and without a view degeneracy are shown in Fig. 12.

Fig. 14 tabulates the results with the basic parameteriza-
tion, and examines the sensitivity of the probability of
encountering a degeneracy to each of the model parameters
by perturbing each parameter in isolation. The parameters
were derived as follows:

. f was the nominal focal length of the camera lens.

. l was the average (to one significant digit) of the
edge lengths over all discriminable edges in the
eight origami figures used in the experiment.

. r was set equal to l on the grounds that the average
interfeature distance would be of the same order of
magnitude as the edge length in typical scenes.

. sc was three times the actual CCD pixel size.

. nf was the nearest integer to the average value over
the eight origami figures.

. R was the approximate operating distance (to one
significant digit) of the camera from the objects,
given that the example recognition system actively
controlled the camera to give an edge of interest in
the scene a fixed initial length in the image (so
average camera distance is dependent on the length
of scene edges).

The above perturbations were given as sample data points,
due to the discrete nature of the parameters. And, although
the models in Fig. 8 and Fig. 10 can be scaled up or down at
will (so all the parameters could be divided by either R or
f), it was a matter of convenience to parameterize the model
directly from measured quantities. Nevertheless, in Fig. 13,
we show one of the perturbations in functional form.

We see that, for example, for our model system with a
parameterization to recognize small tabletop objects from a
range of half a meter, there are one in five odds that the
view encountered will be degenerate. These high odds were
reflected empirically by the actual recognition system [39].
The sensitivity analysis demonstrates that there are realistic
parameterizations of the model for which probabilities of
degeneracy are very significant. Most of the variations of pd
with the individual parameters are quite intuitive. For
example, as distance to the object increases or focal length
decreases, the probability of degeneracy increases, exceed-
ing 50 percent in some cases. Notice that the probability of
degeneracy also increases somewhat as object line length l
increases. This is due to the increased probability of
interference between the point and line features, as
described in Case 2 of our definition. In the other direction,
the probability of a point-line degeneracy becomes equal to
the probability of a point-point degeneracy as line length l
becomes zero. We also tried a parameterization with f and
sc set to match human foveal acuity of 20 seconds of arc.
The probabilities of degeneracy were negligibly small. This
may explain why the importance of degenerate views to
computer vision has traditionally been underestimated.

Although our model has been defined for polyhedral
objects, empirical studies using curved objects have come to
the same conclusion. In Dickinson et al. [15], we examined the
aspect graphs of 10 classes of volumetric parts, including a
number of curved objects (cylinder, bent cylinder, cone,
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Fig. 15. The 10 modeling primitives.



truncated cone, ellipsoid, truncated ellipsoid, and bent
block). Empirically estimating the probabilities of the views
of the various parts over a tessellated viewing sphere, we
found that the degenerate views of curved objects also had
nontrivial probabilities. In a recognition system which used
the probabilities to guide an aspect recovery process, we often
encountered such views.

4 IMPLICATIONS fOR RECOGNITION

Our model and realistic parameterizations of it provide
quantitative arguments that so-called degenerate views
should be taken into account by designers of view-based
object recognition algorithms. This was the approach
taken by the work of Dickinson et al. [13], [15], [14] in
which an object's volumetric parts are recovered from a
single 2D image using part-based aspect matching.
Integral to this approach is the estimation of the
probabilities of different aspects, including the degenerate
ones. The probabilities were estimated by determining
what set of regions was visible from each point on a
discretized viewing sphere. The degenerate views (or
aspects) were found to have nontrivial probabilities or
nontrivial regions on the viewing sphere. As mentioned
in Section 1.2, Shimshoni and Ponce [32] have accounted
for these enlarged regions in their finite resolution aspect
graph, although using only an orthographic projection
model. Eggert et al. [17] have dealt with the issue of
finite resolution in their construction of a scale-space
aspect graph. The inclusion of degenerate views, when
numerous, can lead to increased search complexity,
although, as shown in [13], [15], [14], [11], canonical
views can be hypothesized before degenarate views.

Degenerate views in 3D from 2D recognition systems
can also lead to increased search complexity. Recall from
Section 1 that any correspondence between an image
feature group (containing a degeneracy) and a model
feature group will be incorrect; solving for model pose or
verifying the correspondence under these conditions will
be fruitless. However, 3D object recognition systems based
on simple indexing features such as points or lines can
still function with various degeneracies if they can recover
a sufficient number of nondegenerate features from the
image (e.g., [27], [22]). With a few features, accurate pose
estimation is possible and the projected aligned model can
be used to verify other model features in the image. Voting
techniques can also accumulate evidence for a degenerate
view or model orientation with a small number of
nondegenerate features [36], [26].

If our goal is to avoid the degenerate views in a
viewer-centered object representation or avoid making
inferences from accidental viewpoints in a 3D from 2D
system, then one must have a mechanism for detecting
degeneracy when it occurs and moving out of the
degenerate view position. This can be accomplished in
two ways, each requiring changes in the camera's
extrinsic or intrinsic parameters.2 As mentioned in

Section 1.2, some approaches attempt to move the camera
to an advantageous viewpoint, e.g., [39], [10], [11]. A
second, and less costly, alternative is to reduce the
probability of view degeneracy. We see from the
sensitivity analysis in Section 3.4 that the probability of
degeneracy pd is sensitive to both focal length and
effective resolution. Thus, we might consider controlling
the fixation of a variable-resolution (foveated) sensor,
using an attentional mechanism of some sort, e.g., [37].
Alternatively, we could control the focal length of the
camera.

There is a clear trade-off between wide angle of view and
probability of view degeneracy. In the presence of un-
certainty in camera or object position, a wide viewing angle
is desirable for initial object detection since the object of
interest is more likely to fall in the field of view if focal
length is small. On the other hand, small focal length
increases the probability of view degeneracy. As noted in
Section 1.2, a similar trade-off has been noted in the work of
BrunnstroÈm [6], who uses a wide angle of view to detect
object junctions and then zooms in to increase image
resolution for junction classification. The existence of such a
trade-off suggests that there can be a principled choice of
focal length in many circumstances. In the following
subsections, we illustrate the use of our view degeneracy
model in selecting the optimal focal length of a camera to
maximize object recognition performance for an example
object recognition system. Note that, although the example
system is a probabilistic view-based recognition system, the
reader should not conclude that our analysis of view
degeneracy favors one recognition approach over another.

4.1 An Example Object Recognition Problem

Our demonstration of the above trade-off lies in the domain
of 3D object recognition from a single 2D image. One of the
authors has developed an approach to object recognition
based on a hybrid object representation combining object-
centered and viewer-centered models [12], [13], [15], [14].
3D objects are composed of object-centered volumetric parts
drawn from some arbitrary finite vocabulary of part classes.
The volumetric part classes, in turn, are mapped to a finite
set of views, or aspects, that capture the appearance of each
part class from all possible viewpoints. To capture the
likelihood of a particular part aspect as well as the
ambiguity of inferring a part from a given aspect, a set of
upward and downward conditional probabilities relates the
parts and the aspects.
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2. In fact, as proven in [41], detection of view degeneracy cannot be
accomplished from a single view.

Fig. 16. Parameters used in model validation.



Part of the motivation for the above representation is to

support view-based recognition while avoiding its intract-

able complexity; recall that, for a general polyhedra with n

faces, the complexity of its aspect graph is O�n9� [28].

Applying the ªrecognition by partsº paradigm to an aspect

graph of a complete object, we can break down the aspect

graph into a set of manageable parts to support local feature

indexing, effectively reducing the prohibitive complexity of

the overall aspect graph.
Our approach is based on two assumptions. First, we

assume that the aspect graph's ªpartsº correspond to the

3D object-centered volumetric parts that make up the

object. And second, we assume the views of an object's

parts to be independent. By effectively discarding the

covisibility constraints between an object's parts, we

dramatically reduce the complexity of the representation.

For example, the 10 volumetric part classes shown in Fig.

15 are entirely described by a total of 40 views.3 Unlike

ªwhole objectº aspect graphs, whose size (in number of

aspects) is proportional to the size of the object database,

the set of 40 views is independent of the number of

objects in the database.

Given the above framework, part recovery can be
formulated as local part-based aspect matching. Once a
part aspect is recovered, its 3D volumetric class can be
inferred. A set of adjacent part-based aspects therefore
yields an object-centered indexing structure (consisting of
connected 3D volumetric parts) that is rich enough to yield
a small number of object candidates for verification [15],
[14]. Note that, by assuming independence of the parts'
views, we effectively weaken our 3D model by encoding
only part connectivity; relative part orientation is therefore
lost.

4.2 The Effect of View Degeneracy

Given a recovered part aspect, we employ the aspect
hierarchy to infer the part's identity. Using the conditional
probability tables mapping aspects to volumes, we generate
a part hypothesis for each nonzero mapping. For example, if
a block is viewed degenerately as a single rectangular face,
this aspect could, in fact, be used to infer six of the 10
volumetric shapes shown in Fig. 15, albeit with different
probabilities. Nevertheless, when such a view is encoun-
tered, there is no way to disambiguate the hypothesis
without moving the camera [11].

A degenerate view is not a problem for a view-based
recognition system if its appearance is unique. However,
if a degenerate view is ambiguous, then a change in
viewpoint is necessary. Consider our set of 10 volumetric
part classes and their 40 aspects. From our conditional
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Fig. 17. Example images (original and processed) in the first sequence. (a) Nondegenerate view. (b) Degenerate view. (c) Region segmentation for
image in (a). region rsegmentation for image in (b).

3. The 40 aspects were defined by taking the union of all aspects for each
volumetric part class and removing redundant views (symmetries). For
example, the rectangular block maps to three aspects: three faces, two faces,
and one face.



probability table mapping volumes to aspects, we know
P �aspectijvolumej�. Therefore, if we assume that all volu-
metric parts are equally likely in the image, we can compute
the probability of occurrence of any of the 40 aspects as
follows:

P �aspecti� �
X10

j�1

P �volumej�P �aspectijvolumej�; �17�

where P �volumej� � 1=10.
If we examine our set of 40 aspects, exactly 13 are

degenerate views of at least one volumetric part class in that
they contain either a point-point or point-line degeneracy.
Furthermore, exactly eight of the 40 views are ambiguous,
requiring camera motion to disambiguate them. However,
in calculating the probability that a degenerate view is
ambiguous, i.e.,

P �AmbiguousV iewjDegenerateV iew�
�
P

viewi is both degenerate and ambiguous
P �viewi�P

viewj is degenerate
P �viewj� � 0:900; �18�

we find that there is a strong correlation between
degenerate views and ambiguous views; in fact, 90 percent
of the degenerate views are ambiguous! Thus, if we can
reduce the probability of a degenerate view, we can, in turn,
reduce the probability that a costly camera movement needs
to be made to disambiguate the object (volumetric part).

4.3 Reducing the Probability of View Degeneracy

One solution to the problem of reducing the probability of
view degeneracy (or probability of having to move the
camera to disambiguate the object) is to increase the focal
length of the camera, as reflected in our model. However,
there is an important trade-off that must be noted here.
Although the probability of view degeneracy is decreased as

the camera is zoomed, the probability that the object is no

longer contained in the field of view is increased. If the object

is only partially visible or leaves the field of view entirely,

then a costly camera movement must be made to bring it

back into the field of view. The important question now

emerges: What is the optimal setting of the camera's focal

length that will minimize the probability that the camera

must be moved in order to recognize the object (volumetric

part)?
We will begin by assuming that, in order to recognize the

object within the field of view, the entire object must be

visible. Furthermore, we will assume that the location of the

projected center of the object in the image can lie anywhere

in the image with equal probability. Under this assumption,

we can compute the probability that some portion of the

object will fall outside the field of view as follows:

Pmiss � 1:0

ÿ �XSizeÿ 2 � ImgRadiusavg� � �Y Sizeÿ 2 � ImgRadiusavg�
XSize � Y Size

�19�
where XSize and Y Size are the X and Y dimensions of the

image, respectively, and ImgRadiusavg is the projected

length of the object's average radius, Radiusavg, as defined

below:

ImgRadiusavg � FocalLength �Radiusavg
DistanceToCamera

: �20�

To minimize the probability (cost) of camera movement,

we must therefore minimize the total probability of

encountering a degenerate view and losing part of the

object from the field of view:
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Fig. 18. Predicted pd; pmiss and ptotal for object recognition experiment as a function of focal length.



P �degeneracy [miss�
� P �degeneracy� � P �miss� ÿ P �degeneracy \miss�;

�21�
4.4 Limitations of the Model

It is important to stress that the strong correlation between
degenerate views and ambiguous views is a function of the
particular parts chosen to make up the part vocabulary. For
our database, the correlation is high while, for other
databases, the correlation might be very low. For example,
if the part vocabulary contains a single object, then there is
no ambiguity despite the fact that the probability of
encountering a degenerate view may be high. Or, con-
versely, the part database may contain, for example, a set of
different-sized spheres, none of which has an associated
degenerate view and all of which are ambiguous from any
viewpoint. It is only with our particular system, with its set
of shapes that share high-entropy views, that we can
effectively apply this technique. If an ambiguous view is not
degenerate, then changing the focal length will not
disambiguate the object (part), ultimately requiring a
change in viewpoint.

It is also important to note that our formulation of the
cost of the camera movement is overly simple, and is
presented solely to illustrate the trade-off between smaller
field of view and higher probability of degeneracy. A more
complete formulation would factor in the cost (in time) of

changing the focal length and changing the pan/tilt of the
camera. Furthermore, the equal probability assumption on
the object's position in the image is also overly simple. In
this case, a more effective model would assume, for
example, that the object sits on a table and that its possible
positions are equiprobable. In this case, the projected
positions in the image would yield a more complex Pmiss.

4

4.5 Experimental Results

We validate our model in the context of the OPTICA system
[15], [14], [11]. We begin by placing an isolated volumetric
part (volume 1 in Fig. 15) on a turntable in front of a camera.
We assume that we know the average inter-feature distance
of the edges and vertices of the planar faces comprising the
volume, the camera focal length, and the approximate
distance to the object. Furthermore, we know the size of the
feature extraction operator used by OPTICA to extract
regions from the image. The values of these parameters are
presented in Fig. 16. The turntable is then rotated 360 degrees
and a dense sequence of images is acquired (one image
approximately every one degree). Fig. 17 shows a few frames
from the image sequence containing both nondegenerate and
degenerate views. Since the elevation of the camera is fixed,
the top face of the block volume is always visible and, thus,
cannot be viewed degenerately. Fig. 17 also shows the results
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Fig. 19. Example images (original and processed) in the second sequence with the increased focal length. (a), (b) contain a nondegenerate image
and a degenerate image from the sequence, while (c), (d) contain their corresponding region segmented images.

4. The authors would like to thank one of the anonymous reviewers for
suggesting these enhancements to the model.



of OPTICA's region segmentation operator on the two
images.

When a view degeneracy occurs, it will appear in the
image as two visible faces on the volume (including the top
face). This view is, in fact, an ambiguous view, given our
part vocabulary, and would require camera movement in
order to disambiguate (recognize) the object. Conversely,
when no view degeneracy occurs, the three faces of the
volume (including the top face) will be visible. In this case,
the view is unambiguous and OPTICA would be able to
make a unique inference from the aspect without additional
camera motion.

Given the two possible views that we will encounter, we
need only compute P01, the probability of a point-line
degeneracy that corresponds to the degenerate view of the
block volume. From the formulation of point-line degen-
eracy given in Section 3.2, we can derive p01 by noting that
the angle � is fixed due to the fixed elevation of our camera.
Making the appropriate modifications to the model in
Section 3.2 and using the parameters in Fig. 16, the resulting
plot showing the probability of view degeneracy as a
function of focal length is shown in Fig. 18. In addition to
showing Pdegeneracy, Fig. 18 also shows Pmiss and
Ptotal � Pdegeneracy � Pmiss, under the simplifying assumption
that P �degeneracy \miss� is negligible.5

To validate our model, we begin by applying the
OPTICA object recognition system to every image in the
dense test sequence and noting the number of views which
were identified as ambiguous, i.e., images for which
OPTICA was able to recover only two distinct faces. Given
this empirically-derived value of Pdegeneracy, we can compare
it to the predicted value of Pdegeneracy at f � 0:02 (the focal
length used in acquiring the images). The predicted value
from Fig. 18 (0:1008) is, in fact, quite close to the
empirically-derived degeneracy of 0:1111.

Given the above parameterization, we can now compute
the optimal focal length that will minimize the probability
of having to move the camera in order to disambiguate the
volume (recognize the object). We should choose that value
of f in Fig. 18 that minimizes the function ptotal. Choosing
the value f � 0:03, pd is calculated to be 0:0670. Now,
returning to our experiment, we can zoom the camera to
f � 0:03, acquire another dense sequence of images, and re-
apply our recognition algorithm. Fig. 19 shows two example
images from this second sequence. Again, our predicted
probability (0:0670) compares favorably to our empirically
observed probability (0:0666). As expected, due to the
increased focal length (resolution), the probability of view
degeneracy has gone down, while the probability of losing
the object in the field of view has risen.

5 CONCLUSIONS

We have introduced the first computational model of view
degeneracy for the class of polyhedral objects under
perspective projection. Our experimental results indicate
that degenerate views are neither accidental nor unlikely.

View degeneracy is a surprisingly frequent occurrence that
warrants consideration in the design of object recognition
systems. In viewer-centered recognition systems, degener-
ate views must be encoded, while, in object-centered
systems, view degeneracy can increase the number of pose
hypotheses that need to be verified. In both these
paradigms, recognition performance can be increased by
reducing the probability of view degeneracy. We have
shown how the trade-off between the probability of view
degeneracy and the field of view can lead to a focal length
prescription that can be used to reduce the probability of
having to perform a costly camera viewpoint change in
order to recognize an object.
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