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Abstract —We present a method for segmenting and estimating the
shape of 3D objects from range data. The technique uses model views,
or aspects, to constrain the fitting of deformable models to range data.
Based on an initial region segmentation of a range image, regions are
grouped into aspects corresponding to the volumetric parts that make
up an object. The qualitative segmentation of the range image into a
set of volumetric parts not only captures the coarse shape of the parts,
but qualitatively encodes the orientation of each part through its
aspect. Knowledge of a part’s coarse shape, its orientation, as well as
the mapping between the faces in its aspect and the surfaces on the
part provides strong constraints on the fitting of a deformable model
(supporting both global and local deformations) to the data. Unlike
previous work in physics-based deformable model recovery from range
data, the technique does not require presegmented data. Furthermore,
occlusion is handled at segmentation time and does not complicate the
fitting process, as only 3D points known to belong to a part participate
in the fitting of a model to the part. We present the approach in detail
and apply it to the recovery of objects from range data.

Index Terms —Shape recovery, range data, volumetric parts, model-
based segmentation, object recognition, deformable superquadrics.

————————  ✦  ————————

1 INTRODUCTION

THE recovery of volumetric shape descriptions from range data
has drawn much attention in the literature, e.g., [24], [11], [21],
[26], [25], [22], [9]. While each of these approaches addresses the
problem of recovering a deformable model, superquadric, or set of
modes corresponding to a part, many avoid the issue of part seg-
mentation. In some cases, either a single unoccluded object ap-
pears in the image or part segmentation is performed manually
[26], [22], [25]. In other cases, decomposition of the image into
parts is integrated into the fitting process, resulting in a costly
global optimization process [24], [21]. Furthermore, in many cases,
the fitting process is sensitive to initial placement and orientation
of the model. If its initial position is not inside the data or if its z
axis is not closely aligned with the principal axis of the data, a
canonical fit may not be achieved.

In this paper, we propose a three-step shape recovery process
which first groups range pixels into homogeneous regions based
on surface curvature. In the second step, the regions are grouped
into aspects or views corresponding to a vocabulary of 3D parts.
For unambiguous views, this process yields the qualitative shape
of the part, the qualitative orientation of the part through its as-

pect, and an exact mapping between the regions in the recovered
aspect and the surfaces on the part. This information is used in the
third and final stage to provide strong constraints on the fitting of
a deformable model to the segmented range data. The 3D data
corresponding to the contours that define the recovered aspects
are used to recover a part’s global deformations, while the 3D data
corresponding to pixels bounded by aspect faces are used to re-
cover a part’s local deformations. Finally, the initial model can be
specified in any initial size, position, and orientation with correct
convergence ensured by the constraints.

Following the introduction, we first present a new view-based
qualitative representation for volumetric parts appearing in range
images, followed by a review of our quantitative part representa-
tion. Next, we present our qualitative and quantitative shape re-
covery techniques, and show how the use of model-based seg-
mentation can provide very strong constraints on the fitting of
part models to range data. Finally, we apply the techniques to a set
of range images and close with some conclusions and limitations.

2 RELATED WORK

The first parts representation was due to Binford [3], who suggested
the idea of generalized cylinders. Unfortunately, the recovery of this
type of representation seems to require elaborate line grouping and
reasoning, a difficult and largely unsolved problem. Moreover, be-
cause such descriptions are often not unique, it is unclear how they
aid in object recognition. The recovery of restricted classes of gener-
alized cylinders was first shown by Agin and Binford [1] and Ne-
vatia and Binford [19], while recent results include the work of Ulu-
pinar and Nevatia [27] and Zerroug and Nevatia [29].

The idea of generalized cylinders has subsequently been elabo-
rated in two very different ways. One variation is due to Bieder-
man [2], who suggested using the Cartesian product of qualitative
properties such as tapering, cross-section, etc., in order to create a
qualitative taxonomy of generalized cylinders. His theory was that
the use of such a qualitative representation could simplify the
process of segmenting objects into parts.

Dickinson et al. [8], [7] have extended Biederman’s representa-
tion to include intermediate representations and conditional prob-
abilities that guide the grouping process. Using this extended
framework, they were able to demonstrate that it is possible to
quickly segment 2D images of objects into their component parts.
An adaptation of this approach is used in this paper to group faces
from range data into volumetric parts.

Another alternative to Binford’s generalized cylinders was sug-
gested by Pentland [20], who used superquadrics with parameter-
ized global deformations. Use of a parameterized implicit function,
such as the superquadric, converts the problem of recovering a de-
scription into a relatively simple numerical optimization. Using this
approach, many researchers, starting with Solina and Bajcsy [24] and
Pentland [21], have reported success at recovering superquadric
models with global deformations from a variety of data types
(Pentland and Sclaroff [22], Terzopoulos and Metaxas [25], Gupta
[12], Ferrie et al. [9], Leonardis et al. [14], and Wu and Levine [28]).

At about the same time, Terzopoulos et al. [26] developed
physics-based techniques for fitting deformable models with local
deformations to visual data. These techniques provide a robust
framework for fitting, and offer the possibility for natural exten-
sion to moving, dynamic scenes. Consequently, it is natural to
apply physics-based techniques to the recovery of deformable
superquadrics. During the last few years, such physics-based for-
mulations have become the most popular method for the recovery
of deformable superquadric models from range data (Pentland
and Sclaroff [22], Terzopoulos and Metaxas [25], and Metaxas and
Terzopoulos [17], [18]).
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Recently, Metaxas and Terzopoulos [25], [17], [18] have ex-
tended this approach by developing a class of deformable models
in which both global and local deformations are physics-based
(deformable superquadrics are a special case of this class of mod-
els). The global deformations capture the salient structure of object
parts, while the local deformations capture the object’s details.
This is the formulation used in this paper.

The qualitative and parametric approaches to representing
shape have complementary properties. The qualitative represen-
tation of part structure has proven useful for segmentation and
grouping, while the parametric representations have proven use-
ful for recovering precise descriptions of shape. It is, therefore,
natural to try to combine the strengths of the two approaches,
using one for grouping and segmentation, and the other for fitting
and description.

Some work has already proceeded along these lines. Using a
part-based aspect approach to segmentation based on Dickinson et
al. [8], Raja and Jain [23] segment a range image into parts corre-
sponding to geons. In order to determine geon orientation, i.e.,
end vs. side faces, they fit a superquadric to the segmented part to
determine the principal axis of the geon. The technique combines
qualitative models for segmentation but does not attempt to re-
cover a precise parametric model. Instead, the static superquadric
fitting step is used only as an aid for geon labeling.

Dickinson and Metaxas [5] present an approach in which re-
covered qualitative shape is used to constrain the recovery of a
deformable model (global deformations only) from 2D image data.
This paper extends that approach to 3D data, by first introducing a
new view-based representation for 3D data. This representation,
called the range aspect hierarchy, is similar in structure to the origi-
nal aspect hierarchy introduced in [8], [7], but with an additional
surface curvature attribute recoverable from range data. Just as we
used 2D aspects to constrain 3D shape recovery from a 2D image,
we can apply the same framework to the extraction of 3D shape
from a range image, including local deformation recovery
(underconstrained in shape recovery from 2D contours). The re-
sulting framework thereby offers a unified approach to 3D shape
recovery and segmentation from range data.

3 OBJECT MODELING

3.1 Qualitative Shape Modeling
In [8], we introduced a hybrid object representation for the recog-
nition of 3D objects from 2D images. Objects were constructed
from some finite set of object-centered, volumetric parts, while the
parts were represented in the image as a finite set of hierarchi-
cally-defined viewer-centered aspects. Recently, Raja and Jain [23],
extended this idea to the domain of range data where view-based
representations were used to model the appearance of a finite set
of volumetric parts. Like the aspect definition proposed in [8], Raja
and Jain chose to eliminate symmetries from the aspect graph, so
that all views having the same component shapes and adjacencies
belonged to the same class regardless of which surfaces of the
volumetric part the views mapped to. However, unlike our previ-
ous representation, Raja and Jain added an additional attribute to
an aspect, namely surface shape (based on the signs of the maxi-
mum and minimum curvatures). This was facilitated by the use of
range data as their sensor image type.

For the model we propose here, we extend our concept of the
aspect hierarchy to support range data, and add the surface shape
attribute to the face components of an aspect, as proposed by Raja
and Jain [23]. As in the case of our original aspect hierarchy, our
new view-based representation, called the range aspect hierarchy, is
composed of three levels, including the set of aspects that model
the chosen volumes, the set of component faces of the aspects, and
the set of boundary groups representing all subsets of contours

bounding the faces. As in our original aspect hierarchy, each as-
pect in the range aspect hierarchy consists of one or more faces
from the next level down (the face level), along with a specification
of how the faces are connected, i.e., for two adjacent faces, those
contours of the faces make up the connection. Each face at the face
level is defined by the shapes of its projected bounding contours in
2D (e.g., straight, convex, or concave), as well as a surface shape
attribute defined by the signs of the face’s maximum and mini-
mum curvatures. The lowest level of the range aspect hierarchy is
again called the boundary group level, consisting of all subsets of
the bounding contours of the faces. However, unlike the original
aspect hierarchy, the surface type attribute of the face from which
the boundary group is defined is included in the definition of a
boundary group.

Fig. 1 illustrates the ten volumetric classes used to demonstrate
our approach, while Fig. 2 illustrates a portion of the range aspect
hierarchy. The ambiguous mappings between the levels of the
range aspect hierarchy are captured in a set of conditional prob-
abilities, mapping boundary groups to faces, faces to aspects, and
aspects to volumes. These conditional probabilities result from a
statistical analysis of a set of range images approximating the set
of all views of all the volumes.

Fig. 1. The 10 modeling primitives.

Fig. 2. The range aspect hierarchy.

The use of range data and the addition of the surface type at-
tribute to faces and boundary groups means that there is an im-
portant distinction between the original aspect hierarchy (for 2D
data) and the range aspect hierarchy (for 3D data). The addition of
the surface shape attribute means a greater distinction between
face types, resulting in many more face classes at the face level. For
example, the original aspect hierarchy contained a parallelepiped
face. However, in the range aspect hierarchy, the surface bounded
by a parallelepiped in the image could have five distinguishable
shapes according to the signs of their principal curvatures, e.g.,
(0, 0), (+, 0), (-, 0), (-, -), (+, +) (note: There is no (-, -) surface in
our part vocabulary).

Since the aspects are made up of faces, there will be more as-
pects at the aspect level, and since boundary groups are compo-
nents of faces, there will be more boundary groups at the bound-
ary group level.1 As a result, the ambiguity of the mappings be-
tween levels will decrease, resulting in less uncertain inferences
between boundary groups and faces, faces and aspects, and as-
pects and volumes. We trade off the increased size of our model
space with a decrease in inferencing ambiguity.
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New objects can be added to the object database as long as their
constituent parts are in the range aspect hierarchy’s part vocabu-
lary. However, if a new part is added to the part vocabulary, the
range aspect hierarchy must be recomputed. Due to the simplicity
of the volumetric parts, no single part in the original or range as-
pect hierarchies has more than 12 aspects, while no single aspect
has more than five faces. In the worst case, the number of addi-
tional aspects needed to encode a new part is equal to the number
of aspects belonging to the new part, while the number of additional
faces is equal to the number of component faces in the new aspects.
However, in practice, there is considerable overlap between the as-
pects of the parts as well as between their component faces. By ef-
fectively breaking down the objects’ aspect graphs into parts, we can
avoid the tremendous complexity of traditional aspect graphs.

3.2 Quantitative Shape Modeling
Geometrically, the deformable models used in this paper are
closed 3D surfaces. The time-varying positions of points on the
model relative to an inertial frame F are given by x(u, t), where u
is the model’s material coordinates defined over a domain W, and t
is time. We also set up a noninertial, model-centered reference
frame f [16], and express these positions as:

x = c + Rp (1)

where c(t) is the origin of f at the center of the model, and the ori-
entation of f is given by the rotation matrix R(t). We further ex-
press p as the sum of a global reference shape s(u, t) and a local
displacement function d(u, t).

We define the global reference shape as

s T e= u; , ; ,a a b b0 1 0 1K Kc hd i (2)

Here, a geometric primitive e, with material coordinates u and
parameterized by the variables ai, is subjected to the deformation
T which depends on the parameters bi. Although generally non-
linear, e and T are assumed to be differentiable and T may be a
composite sequence of primitive deformation functions T(e) =
T1(T2(... Tn(e))). For the experiments shown in this paper, we use
as deformable models, superquadric ellipsoids with linear taper-
ing along principal axes 1 and 2, and bending along principal axis
3 [18]. We then collect the parameters in s into the vector of global
deformation parameters

qs a a a a t t b b b= , , , , , , , , , ,1 2 3 1 2 1 2 1 2 3e ec hT (3)

where a ≥ 0 is a scale parameter, 0 £ a1, a2, a3 £ 1 are aspect ratio
parameters, and e1, e2 ≥ 0 are “squareness” parameters, -1 £ t1, t2 £ 1
are the tapering parameters in principal axes 1 and 2, respectively;
b1 defines the magnitude of the bending and can be positive or
negative; -1 £ b2 £ 1 defines the location on axis 3 where bending is
applied; and 0 < b3 £ 1 defines the region of influence of bending.

We express the local displacements d based on the theory of fi-
nite elements as

d Sq= d
(4)

where s is a shape matrix whose entries are the finite element shape
functions and qd is the vector of local deformation parameters [25].

We then define

q q q q q= c s d
T T T T T

, , ,qe j (5)

(with qc = c and qq = q), as the vector of generalized coordinates
which consists of the model’s parameters [18].

3.2.1 Dynamics and Generalized Forces
When fitting the model to range data, our goal is to recover q. We
make the model dynamic based on the Lagrange equations of mo-
tion [18]. For static shape reconstruction problems, where we want
the model to come to rest as soon as the external forces equilibrate
or vanish, we set the mass density to zero [25]. Subsequently, the
Lagrange equations of motion simplify to the following first-order
system

Dq Kq f& + = q (6)

where D is the damping matrix and K is the stiffness matrix. Finally,

f L fq d= z T u (7)

are generalized external forces associated with the components of
q, f(u, t) is the force distribution applied to the model through our
physics-based approach to visual estimation [25], and L is the Jaco-
bian matrix that converts q-dimensional vectors to 3D vectors [18].

4 SHAPE RECOVERY

Recovering a volumetric description from a range image consists
of two steps. First, a qualitative 3D volume is recovered from the
range image. Next, the recovered qualitative volume is used to
constrain the fitting of a deformable model to the range data. In
this section, we describe each of these steps in greater detail.

4.1 Qualitative Shape Recovery
From an input range image, we apply Flynn’s range image region
segmentation algorithm [10], which is based on the algorithm of
Hoffman and Jain [13]. First, surface normals are computed at each
pixel in the image. Next, an initial surface segmentation is formed
based on a clustering of the surface normals; similar adjacent
patches are merged. Each surface is then classified according to the
signs of its maximum and minimum curvatures. One problem
with this method, as pointed out in Raja and Jain [23], is that since
surfaces are segmented along orientation discontinuities, certain
complex surfaces, like the body of the bent cylinder in Fig. 1, do
not have a unique surface classification. In the case of the bent
cylinder, the classification is (+, +) along the outside (where it
bends out) and (+, -) along the inside (where it bends in), where
(Smax, Smin) represent the signs of the maximum and minimum
curvatures, respectively.

The segmentation algorithm will classify the surface according
to which surface type is dominant. Thus, it is essential that the
range aspect hierarchy captures all possibilities of single classifi-
cations of surface type for the various surface types that make up
the chosen volumes. In this case, the bent cylinder will have differ-
ent aspects depending on which side of the bent cylinder is being
viewed. Ideally, we should add a confidence measure to our sur-
face classification. When confidence is low, we would simply ig-
nore the surface type and match solely on the shapes of the face’s
bounding contours. Although this may introduce additional aspect
hypotheses, they will be rank-ordered according to their support-
ing evidence.

The above surface segmentation and classification steps yield a
2D region label image where a contiguous region represents a
mask specifying which pixels in the original range image belong to
the surface represented by the region. In addition, the signs of the
maximum and minimum curvatures are encoded for each region.
From the resulting 2D region label image, we build a region topol-
ogy graph, in which nodes represent regions and arcs specify re-
gion adjacencies. Each node (region) encodes the 2D bounding
contour of a region as well as a mask which specifies pixel mem-
bership in the region.

From the region topology graph, each region is characterized
according to the qualitative shapes of its bounding contours. The
steps of partitioning the bounding contour and classifying the

1. The original aspect hierarchy for 2D images has exactly 40 aspects
and 18 faces. The range aspect hierarchy has exactly 54 aspects and 30
faces.
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resulting contours are performed simultaneously using a minimal
description length algorithm due to Li [15]. From a set of initial
candidate contour breakpoints (derived from a polygonal ap-
proximation), the algorithm considers all possible groupings of the
inter-breakpoint contours according to a minimum description
length measure based on how well lines and elliptical arcs can be
fit to the segment groups in terms of the cost of coding the various
segments. The result is a region boundary graph representation for a
region, in which nodes represent bounding contours, and arcs
represent relations between the contours, including cotermination,
parallelism, and symmetry.2

Once we have established a description of each image region
which includes both its surface shape and boundary shape (of its
2D projection), the next step is to match that description against
the faces in the range aspect hierarchy using an interpretation tree
search. Descriptions that exactly match (both surface shape and
boundary) a face in the range aspect hierarchy will be given a sin-
gle label with probability 1.0. For region boundary graphs that do
not match due to occlusion or segmentation errors, we descend to
an analysis at the boundary group level and match subgraphs of
the region boundary graph along with the surface shape to the
boundary groups in the range aspect hierarchy. Each subgraph
that matches a boundary group generates a set of possible face
interpretations (labels), each with a corresponding probability
defined by the nonzero conditional probabilities mapping bound-
ary groups to faces in the range aspect hierarchy. The result is a face
topology graph in which each node contains a set of face labels (sorted
by decreasing order of probability) associated with a given region.

In an unexpected object recognition domain, in which there is
no a priori knowledge of scene content, each face in the face topol-
ogy graph (recall that there may be many at each node) is used to
infer a set of aspect hypotheses, using the nonzero conditional
probabilities mapping faces to aspects in the range aspect hierar-
chy. Thus, at each node in the face topology graph, we have a set
of aspect hypotheses that can account for that node. We state the
problem of shape recovery as a partitioning of the nodes in the
face topology graph into groups or clusters, each isomorphic to an
aspect of a volumetric part. This can be solved by searching through
the various labelings of the face topology graph nodes (choosing one
aspect label per node) until a complete covering of the image is
achieved. This search is guided by a heuristic based on the condi-
tional probabilities in the range aspect hierarchy [8], [7].

During the search process, aspect verification, like face match-
ing, is accomplished through the use of an interpretation tree
search. Once a set of aspects has been recovered, each aspect is
used to infer one or more volume hypotheses based on the nonzero
conditional probabilities mapping aspects to volumes in the range
aspect hierarchy. This time, we search through the space of vol-
ume hypotheses until we find a set of volumes that are consistent
with the objects in the database (Dickinson et al. [7]).

In an expected or top-down object recognition domain, in
which we are searching for a particular object or part, we use the
range aspect hierarchy as an attention mechanism to focus the
search for an aspect at appropriate regions in the image. This tech-
nique was applied to the top-down recognition of multipart ob-
jects in Dickinson et al. [6]. Moving down the aspect hierarchy,
target objects map to target volumes which, in turn, map to target
aspect predictions which, in turn, map to target face predictions.
Those faces in the face topology graph whose labels match the
target face prediction provide an ordered (by decreasing probabil-
ity) set of ranked search positions at which the target aspect pre-
diction can be verified. If the mapping from a verified aspect to a
target volume is ambiguous, this attention mechanism can be used

to drive an active recognition system which moves the cameras to
obtain a less ambiguous view of an object’s part [6]. Finally, it
should be noted that for either top-down or bottom up volume
recovery, each recovered volume encodes the aspect in which it
viewed; the aspect, in turn, encodes the faces that were used in
instantiating the aspect, while each face specifies those contours in
the image used to instantiate the face.

4.2 Quantitative Shape Recovery
4.2.1 Simplified Numerical Simulation
Since we want to reconstruct the shape of objects from range data,
we use (6). Equation (6) is discretized in material coordinates u
using nodal finite element basis functions. We carry out the dis-
cretization by tessellating the surface of the model into linear tri-
angular elements [18]. Furthermore, for fast interactive response,
we employ a first-order Euler method to integrate (6).

4.2.2 Applied Forces
In the dynamic model fitting process, the data are transformed
into an externally applied force distribution f(u, t). We convert the
external forces to generalized forces fq which act on the general-
ized coordinates of the model [25]. We apply forces to the model
based on differences between the model’s points and the 3D data.
Each of these forces is then converted to a generalized force fq that,
based on (6), modifies the appropriate generalized coordinate that
has to be adapted so that the model fits the data.

Given that our vocabulary of volumes is limited, we devise a
systematic way of computing the generalized forces for each vol-
ume. The computation depends on the influence of particular
parts of the data to model degrees of freedom. Such parts corre-
spond to the various regions making up the aspect used to identify
the volume’s coarse shape. From the correspondence between the
3D points which project to the bounding contours of each region in
the recovered aspect and the corresponding points on the model,
we use (7) to define forces that will affect the global deformations
of the model. Next, from the correspondence between the 3D
points internal to a region and their nearest points on the model,
we use (7) to define forces which will affect the local deformations
of the model. In the case of occluded volumes, resulting in both
occluded aspects and occluded faces, only those portions
(boundary groups) of the regions used to infer the faces exert ex-
ternal global deformation forces on the models.

4.2.3 Model Initialization
One of the major limitations of previous deformable model fitting
approaches is their dependence on model initialization and prior
segmentation [26], [25], [22]. By first recovering a qualitative vol-
ume, we generate a number of strong constraints that are used in
the deformable model recovery process. First, the volume’s shape
class can be used to immediately constrain the model’s global
deformation parameters before the fitting even begins. For ex-
ample, if we have recovered a cylinder volume from one of its
aspects, then we can initialize the deformable model to have, for
example, zero bending, zero tapering, and square x - z cross-
sectional shape. Second, we know exactly which contours in the
image data should exert forces on the model, since we know
exactly which contours were used to recover the qualitative
shape of the volume. Third, since the aspect hierarchy encodes a
mapping between aspect faces and volume surfaces, our image
correspondences between the recovered aspect faces and the
projected model faces is explicitly given. Finally, the recovered
aspect encodes the qualitative orientation of the volume allow-
ing the orientation of the model to be further constrained. In the
examples presented in the next section, however, this last con-
straint was not used in order to illustrate the lack of dependence
of the technique on model initialization.

2. See Dickinson et al. [8] for a discussion on how parallelism and
symmetry are computed.
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4.3 Summary of the Algorithm
Our approach to deformable model fitting can be summarized as
follows:

1) Segment the range image into a set of homogeneous regions
based on surface curvature.

2) Characterize the shapes of the regions and cluster them into
local part-based qualitatively-defined aspects.

3) Use the information encoded in the qualitative aspects to
initialize a deformable model for each part.

4) Fit each deformable model to the range data that correspond
to the contours of the recovered aspects, using only global
deformations.

5) Improve the fit of the deformable model by including the
range data inside the region boundaries, and allow local
deformations.

5 RESULTS

We demonstrate our approach to the recovery of volumetric parts
from range data by applying it to a set of images taken from Pat
Flynn’s industrial part range image database at Washington State
University. To provide a step-by-step illustration of the approach,
we first consider a range image of a scene containing an object
consisting of two wooden parts, shown in Fig. 3a. The image was
captured using a Technical Arts Scanner at the Michigan State
University’s PRIP Laboratory. In Fig. 3b, we show the results of
applying Pat Flynn’s region segmentation algorithm to the image.
For this example, we invoked the expected object recognition
mode to first search for the best instance of the block volume. Fig.
3c shows the highlighted aspect recovered for the block; only those
contours used to infer the block are highlighted in the image. Note
that the most probable aspect for the block (containing three faces)
was not recovered; however, the next most probably aspect
(containing two faces) was recovered and used to locate the block.
Fig. 3d shows the highlighted aspect recovered for the cylinder.

For each of the two recovered qualitative volumes, we now
proceed to show the results of using the recovered qualitative
shape to constrain the fitting of a deformable model to the original
range data. In Fig. 4, we show a sequence of snapshots of the fit-
ting process taking the initial model to its final shape describing
the block. Similarly, in Fig. 5, we show a sequence of snapshots of
the fitting process taking the initial model to its final shape de-
scribing the cylinder. The bottom-right frame in Fig. 5 shows a
different view of the entire recovered object, showing the intercon-
nection of the two parts. The system runs on an SGI Indigo 2EX. For
this and all following examples, Flynn’s region segmentation aver-
ages approximately 60 seconds, resulting in a region label image.
Qualitative volume extraction averages approximately 10 seconds,
while the quantitative volume recovery process (including real-time
graphics display) also averages approximately 10 seconds. Clearly,
processing time is dominated by the region segmentation step.

  
       (a) (b)

  
       (c) (d)

Fig. 3. Qualitative shape recovery. (a) Original range image. (b) Region
segmented image. (c) Recovered qualitative block. (d) Recovered
qualitative cylinder.

In Fig. 7, we show the results of recovering a set of volumetric
parts from a sequence of real range images containing one- and two-
part industrial objects. In the first row, we show the original images,
while in the second row, we show the region segmented images. In
the third row, we show the recovered volumes, while in the fourth
row, we show the recovered volumes from a different viewpoint.

In Fig. 6, we apply our approach to a synthetic range image
consisting of a bent cylinder occluding a tapered cylinder. In
Fig. 6a and 6b, we show the original range image and region seg-
mented image, while in Fig. 6c and 6d, we show the recovered
qualitative volumes. Finally, in Fig. 6e and 6f, we show the recov-
ered 3D models from two viewpoints.
In Fig. 8, we demonstrate one of the limitations of our approach.
We apply the technique to two images containing multiple oc-
cluded parts. Since we rely on having knowledge of the vocabu-
lary of possible part classes that are visible in the image, the tech-
nique breaks down when shapes appear that are not included in
the vocabulary. In the first example, we show a scene containing
two objects. The object on the left is the familiar cylinder attached
to a block, while the object on the right is an angled part composed
of a block and a wedge. Two parts are recovered with high confi-
dence (score). The first is the cylinder that is attached to the block.
The block was not recovered with high confidence, since the only
visible region other than the top face was discarded due to its rela-
tively small size. For the angled object, only a portion of the block
part was recovered, and only up to the shadow cast by the cylinder.
In the second example, we show an image containing two objects,
including a truncated, “L”-shaped object and the object composed of
two cylinders. After region segmentation, we have lost all but the
top face of the cylinder object. Since a high confidence aspect could
not be recovered from the single, flat, elliptical surface, no volumes
were recovered for the cylinder object. For the “L”-shaped object,
however, the part of the “L” that is consistent with our vocabulary
(in this case, the block) was partially recovered.

We use both region segmentation and qualitative shape recov-
ery to first partition the data into chunks, and group those chunks
into parts. The resulting parts provide strong constraints on a de-
formable model fitting procedure that is insensitive to model
initialization. The comparison to purely bottom-up recovery
methods is clear. By having qualitative models, we encode the
knowledge required to segment the scene into parts which, in
turn, encode the knowledge required to control the model fitting
process. This advantage comes at the expense of requiring that
the objects in the scene be composed of parts drawn from our
vocabulary. Good part recovery, therefore, is not possible for
scenes containing unknown parts.
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Fig. 4. Selected frames from block fitting sequence (in order from left to right, top to bottom).

Fig. 5. Selected frames from cylinder fitting sequence (in order from left to right, top to bottom). Note that the first three frames illustrate the solv-
ing for the x - y translational degrees of freedom. The last figure shows the composite object from a different viewpoint.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Results of model fitting to a bent cylinder occluding a tapered cylinder. (a) Original image. (b) Region segmented image.
(c) Recovered tapered cylinder. (d) Recovered bent cylinder. (e) Fitted models from original viewpoint, (f) Fitted models from novel viewpoint.

Fig. 7. Results of applying the approach independently to four views (real images) of Flynn’s industrial parts.
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6 LIMITATIONS

The fitting constraints provided by the recovered qualitative shape
ensure that the deformable model fitting process is invariant to ini-
tial position and orientation, as well as dimensions, degree of cur-
vature, etc. Unfortunately, relying on the correspondence between
recovered image faces and model surfaces means that the recovery
process is sensitive to region segmentation errors. However, by only
allowing high-scoring volumes to constrain the fitting process, the
chances of letting any region segmentation problems affect the fit-
ting process is low. However, filtering out low-scoring volumes
means that more regions in the image will be left uninterpreted. In
fact, low-scoring volumes can be used to guide the sensor to acquire
a higher-scoring volume [4]. We are currently looking at ways in
which weaker qualitative information, short of a complete part as-
pect, can provided the needed constraints for fitting.

Both the qualitative and quantitative shape representation
schemes are general. That is, the recovery scheme supports any set
of qualitative volumetric shapes that can be mapped to a recover-
able viewer-centered aspect hierarchy. Furthermore, any quantita-
tive shape model that can be defined using our physics-based
framework can be deformed by image forces. However, it is im-
portant to note that choosing one model will constrain the choice
of the other, i.e., a quantitative shape model must be chosen such
that it accurately models every possible instance of the qualitative
shape model.

Finally, the step-by-step procedure for sequentially solving for
a model’s degrees of freedom during the fitting procedure has
been specified for each volume. Ideally, such a procedure should
be automated given the properties of the qualitative part. We are
currently investigating methods to automate this procedure. Fur-
thermore, we are studying which degrees of freedom can be cou-
pled together during fitting while still maintaining insensitivity to
initial size, position, and orientation of the model.

7 CONCLUSIONS

Traditional physics-based, deformable shape recovery techniques
offer a completely data-driven approach to recovering an object’s
geometry. Image data points or features exert “forces” on a 3D
model to bring it (or its projection) into alignment with the image
data. Unfortunately, much of the previous work on physics-based
shape recovery has focused on model fitting at the expense of
segmentation. In many cases, these techniques assume a manually
segmented scene, or the absence of occlusion, or both. Further-
more, the recovery algorithms often assume a good initialization

of the model both in terms of position and orientation or the fit
may be incorrect.

We believe that the solution to the problem of recovering 3D
objects from range images lies in the middle ground between data-
driven and model-driven approaches. In situations where the do-
main of objects is known, we propose a scheme whereby a set of
local part-based views or aspects can bridge the gap between seg-
mentation and model fitting. Segmenting the image into a set of
simple, part-based qualitative view classes provides the needed
constraints for physics-based shape recovery to quickly and ro-
bustly converge on a set of volumetric parts.
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