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Abstract—Learning a class prototype from a set of exemplars is an important

challenge facing researchers in object categorization. Although the problem is

receiving growing interest, most approaches assume a one-to-one

correspondence among local features, restricting their ability to learn true

abstractions of a shape. In this paper, we present a new technique for learning an

abstract shape prototype from a set of exemplars whose features are in many-to-

many correspondence. Focusing on the domain of 2D shape, we represent a

silhouette as a medial axis graph whose nodes correspond to “parts” defined by

medial branches and whose edges connect adjacent parts. Given a pair of medial

axis graphs, we establish a many-to-many correspondence between their nodes to

find correspondences among articulating parts. Based on these correspondences,

we recover the abstracted medial axis graph along with the positional and radial

attributes associated with its nodes. We evaluate the abstracted prototypes in the

context of a recognition task.

Index Terms—Shape abstraction, medial axis graphs, prototype learning, many-

to-many graph matching.

Ç

1 INTRODUCTION

OBJECT categorization requires prototypical models that are
invariant to within-class changes of appearance and shape. In the
domain of prototypical shape modeling, this translates to models
that capture the articulation-invariant, coarse part structure of an
object. If a set of exemplars belonging to a given class can be
replaced by (or grouped hierarchically under) a single prototype,
then the complexity of the recognition task can be greatly reduced
through coarse-to-fine search/indexing techniques.

Early shape categorization (or generic object recognition)
systems, e.g., [1], [2], constructed such models manually, a
challenging and time-consuming task. Since then, a number of
researchers have explored the problem of automatically learning a
prototypical shape model from a set of exemplars, e.g., [3]. As
powerful as these recent techniques are, most are restricted to
categorical models whose exemplars share the same features in
one-to-one correspondence. And although the relative positions of
these features may vary slightly, as in the cases of such restricted
categories as faces, motorcycles, or cars, such models are typically
not invariant to part articulation, image rotation, or scale.

Invariance to deformation, articulation, occlusion, and image
transformation can best be achieved through an object-centered
structural description which captures the invariant relations
among a set of deformation-invariant parts. Like many generations
of recognition systems, including the early categorization systems
cited above [1], [2], graphs represent a convenient structural

abstraction of shape. Relaxing the one-to-one feature correspon-

dence assumption across a category’s set of exemplars therefore

translates to a many-to-many node correspondence assumption

across their corresponding exemplar graphs. If we can find these

many-to-many correspondences, we can use them to generate the

abstract features (nodes) and relations (edges) of a prototypical

graph that meets our requirements for a categorical model.
In this paper, we propose a new framework for automatically

learning a shape-based categorical model from a set of exemplar

shapes. Assuming that each input exemplar can be represented as

a graph, our framework begins by computing the many-to-many

node correspondences between a pair of exemplar graphs. From

these correspondences, we generate a prototypical graph whose

nodes represent abstractions of corresponding feature collections

and whose edges represent attachments between the abstractions.

This pairwise abstraction process forms the heart of a hierarchical

clustering procedure that partitions a set of shapes into classes and

computes their abstracted class prototypes.
To ground the method in a particular shape description, we turn

to the domain of generating prototypical models of 2D image

regions, defined by the shapes of their bounding contours

(silhouettes). The silhouette of a region can be decomposed into a

medial axis graph, whose nodes correspond to “parts” defined by the

branches of the region’s medial axis [4] and whose edges connect

adjacent parts. Given a pair of regions represented by their medial

axis graphs, our pairwise shape abstraction procedure consists of

two steps. First, a structural, many-to-many correspondence

between the graphs is established—a challenging problem given

that small variations in shape may result in significant variations in

graph topology. Moreover, due to noise, or within-class deforma-

tion, fragments of one medial axis may not correspond to any

fragments in the other. We therefore seek a partial, many-to-many

correspondence between the medial axis graphs. Fig. 1 (columns

one, two, four, and five) illustrates the many-to-many correspon-

dences computed between two pairs of exemplar graphs (repre-

senting the regions shown immediately above).
The second step of the pairwise abstraction process generates

the abstract description from the underlying many-to-many

correspondences. We compute the abstracted medial axis graph

by first computing the averages of the corresponding pairs of

subgraphs (collections of skeletal branches) to yield the nodes in

the abstracted graph, and then define the overall topology of the

resulting abstract parts to yield the relations. Each matching pair of

subgraphs corresponds to a single node in the abstracted graph

and two abstracted nodes are connected by an edge if the

corresponding subgraphs are adjacent in the original graphs. As

mentioned earlier, the above two-step procedure forms the basis of

an iterative framework in which pairs of similar medial axis graphs

are clustered and abstracted, yielding a set of abstract medial axis

graph class prototypes. Fig. 1 (columns three and six) illustrates the

shape prototypes (and their medial axis graphs below) computed

for two pairs of exemplars. The two shape prototypes reflect the

main contribution of this work: From a set of examples whose part

structure and part shape may differ, we compute a prototype

whose part structure and part shape is an abstraction of the

examples rather than an intersection of the examples.

2 RELATED WORK

Shape abstraction (sometimes referred to as shape learning, shape

averaging, or shape simplification) has been studied in many

different contexts, including contours [5], [6], closed surfaces [7],

structural descriptions [8], [9], active shape models [10], graphs

[11], constellation models [3], and animation [12]; space allows us

to only briefly sample some of the various approaches.

944 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 5, MAY 2009

. M.F. Demirci is with the Department of Computer Engineering, TOBB
University of Economics and Technology, Sogutozu Cad. No.: 43, Ankara
06560, Turkey. E-mail: mfdemirci@etu.edu.tr.

. A. Shokoufandeh is with the Department of Computer Science, Drexel
University, 3141 Chestnut St., Philadelphia, PA 19104.
E-mail: ashokouf@cs.drexel.edu.

. S.J. Dickinson is with the Department of Computer Science, University of
Toronto, 6 King’s College Rd., Rm 283B, Pratt Building, Toronto, ON
M5S 3G4, Canada. E-mail: sven@cs.toronto.edu.

Manuscript received 20 Sept. 2007; revised 29 May 2008; accepted 22 Oct.
2008; published online 31 Oct. 2008.
Recommended for acceptance by M. Pelillo.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2007-09-0615.
Digital Object Identifier no. 10.1109/TPAMI.2008.267.

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Toronto. Downloaded on July 23, 2009 at 10:54 from IEEE Xplore.  Restrictions apply. 



In the context of contours, the shape abstraction framework

developed by Ueda and Suzuki [5] uses a multiscale dynamic-

programming curvature-based approach to find matching curve

fragments. The authors form an abstracted curve by constructing it

from those points of high curvature that are common across the
initial curves, with model curve fragments representing averages

of corresponding curve fragments in the initial curves. Active

shape models [10] offer a powerful statistical framework for shape

abstraction by computing distributions for contour point locations

on exemplars belonging to a class. However, like the curve
fragment approach above, the technique relies on a one-to-one

feature correspondence across exemplars. Moreover, the shapes

must be correctly aligned at training time.
Appearance-based models (both global and local) have evolved

from exemplar-specific models, due to the specificity of their

underlying features, to restricted categorical models, when classes

include features that are invariant to within-class variability. For

example, Mohan et al. [13] have reported promising results in
learning component-based, appearance-based models of humans,

supporting their detection in cluttered outdoor scenes. Weber et al.

[14] have learned categorical models for such restricted categories

as heads, leaves, and cars, while Fei-Fei et al. [15] (and Fergus et al.

[3]) learn a generative probabilistic model in the form of a
constellation of scale-invariant image patches belonging to an

object class. Leibe and Schiele [16] combine both the appearance

and shape (contour) of sets of class exemplars to model and

categorize isolated objects, while Winn and Jojic [17] also combine

shape and appearance, learning a deformable probabilistic index
map that captures a notion of parts.

The above appearance-based approaches are very impressive in

their ability to cope with real objects in real images. However,
although they attempt to learn categorical descriptions, the

categorical features are typically not true abstractions of the input

exemplar features, but rather consistently appearing local features

in one-to-one correspondence. Moreover, the granularity of such

local features often lies below that of a category’s high-level part
structure, limiting the articulation invariance of such models.

Finally, most appearance-based modeling approaches are not

object-centered, often precluding their invariance to significant

changes in image position, rotation, scale, or part articulation.

In the domain of graph algorithms and computer vision, there

have been efforts to generate a prototypical graph from a set of

exemplars. Jiang et al. introduced the concept of the median graph,

defined as a graph, drawn from the set, whose sum distance to the

other members (graphs) of the set is minimized, and the set median

graph, a more general concept, which is not constrained to come

from the set [11]. Jiang et al. proposed a genetic algorithm for

computing the generalized median, while Luo et al. have explored

the related problem of graph clustering using a spectral embed-

ding of graphs [18]. It is important to note that these approaches

assume that graphs belonging to the same class are structurally

similar and do not accommodate the many-to-many correspon-

dences that often reflect significant within-class shape variation.
Keselman and Dickinson [19] overcome this limitation in an

approach to shape-based generic model abstraction from exem-

plars. Starting with a set of region adjacency graphs, the algorithm

searches for isomorphic partitions, resulting in a set of abstract

(meta)regions that may not have appeared in any input graph.

Although effective, the resulting abstraction is not entirely

satisfactory as it is obtained directly from the region adjacency

graph of one of the exemplars, i.e., the algorithm abstracts only the

structure of the region adjacency graphs without abstracting the

shapes of its corresponding regions. Levinshtein et al. [20] attempt

to abstract a decompositional blob/ridge graph model from

examples, again abstracting only the part structure and not the

shapes of the parts.
Another form of graph abstraction attempts to explicitly encode

structural variability within a class. Specifically, Torsello and

Hancock [21] capture the within-class variation in tree structure

using a union tree, from which class members can be derived using

node/edge removal operations. The union tree is a generative

mixture model that is learned from the class members by

optimizing a minimum description length criterion. Todorovic

and Ahuja [22] apply the union tree to learning a region-based

hierarchical object model from a set of exemplar region segmenta-

tions. While not as powerful as a union tree in capturing variation,

Lozano and Escolano [23] learn a probabilistic graph from a set of

example graphs, in which node and edge probabilities reflect

relative frequencies of nodes/edges in the example graphs.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 5, MAY 2009 945

Fig. 1. Computing the shape prototype from two exemplars. The first two columns show two exemplar regions, with varying image rotation and part articulation, and their

corresponding medial axis graphs below. Medial branches are partitioned (ellipses) to form the nodes in the graph, and node correspondences computed by the matching

are colored (both ellipses and their component medial axis branches) the same. Correspondences between nodes may be many-to-many, as illustrated by the right leg of

the person (facing reader) in the first column matching the two right leg parts in the second column. Similarly, the two left arm parts in column one match the left arm in

column two. A second example, illustrating invariance to scale and part deformation (bent arm), is illustrated in columns four and five. Columns three and six in each row

illustrate the abstract shape prototypes generated from the pairs of exemplars, rendered from the computed abstract medial axis graphs shown below.
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3 MANY-TO-MANY MATCHING OF MEDIAL AXIS

GRAPHS

The shape (silhouette) of a region can be represented as a medial
axis graph, whose nodes represent branches of the region’s medial
axis and whose edges represent branch adjacency. The medial axis
[4] captures the symmetries of a region, and its branches can be
thought of as the region’s “parts.” More formally, the medial axis is
the locus of centers of maximal circles (touching the boundary of
the region in at least two places) contained in the region. The center
of a maximal circle, whose attributes include position and radius,
is called a “shock point” [24]. To compute the set of shock points
and their connectivity, we begin with an input shape (Fig. 2a) and
apply the algorithm due to Siddiqi et al. [25]. Since we assume that
our shape has no holes, this yields an unrooted tree of shock points
(Fig. 2b), representing a discrete sampling of the continuous
medial axis. Here, each medial axis branch is sampled and
represented by a set of discrete medial loci with position and
radius encoded. To represent branches as nodes in the medial axis
graph, we use the shock points of degree 1 or � 3, which represent
the end points of a branch, as illustrated in Fig. 2c. The branches
and their connectivities map to nodes in the medial axis graph
such that each node either corresponds to a branch in the tree or a
point where two or more branches meet (Fig. 2d). This construction
ensures that neighboring branches are connected through a node.

Having defined our medial axis graph, we now turn to the
problem of finding a matching between the nodes of two such
graphs. Most previous approaches [26], [27], [28], [29] to graph
matching focus on finding a one-to-one matching between the nodes
of two graphs. However, as illustrated in Fig. 1 (top), correspon-
dence is often not one-to-one, but rather many-to-many. Even
when part correspondences should be one-to-one, noise and
segmentation errors may yield many-to-many correspondences
among their features. For medial axis graphs, this means that a
single branch (node) in one graph may match a collection of
“oversegmented” short branches (nodes) in another graph.

Our algorithm for establishing many-to-many part correspon-
dences among medial axis graphs is an extension of Demirci et al.’s
work on many-to-many matching [30]. In that approach, the nodes
of two graphs to be matched are embedded into a fixed-dimension
Euclidean space, followed by a many-to-many matching between
the embedded nodes (points). The first step of the procedure is
accomplished using the low-distortion embedding technique of
[31], [32], while the second step of the procedure is performed using
the Earth Mover’s Distance (EMD) [33] under transformation.

The adaptation of the framework [30] to many-to-many part
matching of medial axis graphs is based on several key observa-
tions. First, we are attempting to match regions at the level of their
“parts.” Since a part represents a connected subgraph of the medial
axis graph, the resulting many-to-many matching between two

medial axis graphs must map a connected subgraph into a
connected subgraph. Second, the abstraction of two regions should
ideally have as many “parts” in common between the regions as
possible. As a result, we seek a matching that maximizes the number
of pairings of connected subgraphs.1 Finally, matched “parts”
should ideally be as similar to each other as possible. Therefore, we
would like to establish a maximal, partial many-to-many matching
between connected subgraphs of the medial axis graphs such that
the collections of medial axis fragments corresponding to the nodes
of the matched subgraphs are maximally similar. The resulting
many-to-many matching framework is designed to be robust
against minor translation, scale, image rotation, articulation, and
within-class deformation, as shown in Fig. 1. Moreover, flow
constraints can be incorporated into the EMD algorithm phase to
support matching in the presence of occlusion, yielding a partial
matching between two medial axis graphs.

Intuitively, for each node (branch) in one medial axis graph, we
want to identify the set of zero or more nodes in the second graph
to which the node should be assigned. Unfortunately, the
correspondences may exist at the level of partial nodes, e.g., two
nodes and half of a third node in one graph may map to a single
node in another graph. Alternatively, small subsets of shock points
associated with one node (in the first graph) may be incorrectly
mapped to (i.e., “spread across”) shock points belonging to
multiple nodes (in the second graph). Our part matching algorithm
therefore takes a fine-to-coarse approach, first computing a many-
to-many matching between two shock point trees. The solution is a
many-to-many mapping from connected shock point subtrees in
one graph to connected shock point subtrees in the other graph
such that the (normalized) masses of corresponding subtrees is
similar and the total work is minimized. It is from these finer
granularity (i.e., partial medial axis) correspondences that we
compute the final many-to-many correspondences between the
coarser nodes in the two medial axis graphs.

The algorithm for mapping many-to-many shock point corre-
spondences (between two shock point trees) to many-to-many
medial branch correspondences is based on a simple thresholding
procedure. Medial axis graph node A is mapped into medial axis
graph node B if: 1) One or more shock points of node A are
mapped into one or more shock points of node B and 2) the
relative mass of the matched shock points of node A is not
negligible (� a threshold �). The thresholding procedure is
asymmetric in that a “light” node A may be mapped into a
“heavy” node B, but not vice versa. To make the overall matching
procedure symmetric, A and B are matched if either A is mapped
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Fig. 2. The construction of the medial axis graph from a region. (a) The silhouette of a teapot and its medial axis. (b) The unrooted tree representation of the medial axis;

shock points with larger radii are shown darker. (c) Groupings formed using points of degree 3 or larger as splitting nodes. (d) The medial axis graph formed from

the groups.

1. Given a correspondence between a connected subgraph in one medial
axis graph and a connected subgraph in another, the two corresponding
subgraphs may not share a single node in correspondence; rather, the
correspondence exists at a more abstract level.
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into B or B is mapped into A. Thus, if several nodes representing
small medial axis fragments are mapped into a single node
representing a large medial axis fragment (but not vice versa), the
large node and the small nodes will be matched to each other. Note
that a node in one graph may have no matching nodes in the other
graph, yielding a partial matching. The many-to-many matching
corresponds to the set of connected components on the bipartite
graph whose partitions are the two sets of nodes and whose edges
are established according to the node mapping described above.
We summarize our approach to partial many-to-many matching of
two medial axis graphs in the algorithm given in Fig. 3a.

It is worth noting that, in its ability to match collections of
branches many-to-many, our matching framework implicitly
groups together the members of a collection. A single part may
yield a collection of branches due to various forms of skeletal
instability, including ligature [34], or it may be a higher order
grouping (abstraction) of a set of stable skeletal branches. If an
input medial axis graph is preprocessed to remove skeletal over
and undersegmentation due to ligature instability [35], abstractions
computed by the many-to-many matching framework would
represent higher order groupings and not include lower level
skeletal regularization.

4 PAIRWISE REGION ABSTRACTION

The many-to-many matching algorithm described above yields a
set of corresponding subgraphs from which an abstract medial axis
graph must be computed. Each pair of corresponding medial axis

subgraphs defines a node in the abstract medial axis graph. But,
we still face the challenge of defining the topology (connectivity) of
the nodes to generate a complete description of the abstract
structure. Moreover, for each node in the abstract structure, we
also need to compute appropriate radial attributes which allow a
reconstruction of an associated boundary.

Specifically, let M denote the partial many-to-many matching
among the nodes of two graphs, G1ðV ;E1Þ and G2ðU;E2Þ, i.e., M
maps Vi � V to Ui � U , for i ¼ 1; . . . ; jMj. Furthermore, let vij
denote the shortest path distance (in G1) between Vi and Vj and,
similarly, uij be the shortest path distance (in G2) between Ui and
Uj. Let G be the complete weighted (product) graph whose vertices
correspond to pairs ðVi; UiÞ i ¼ 1; . . . ; jMj and whose edge weights
are defined by dij ¼ minðvij; uijÞ, i; j 2 f1; . . . ; jMjg. The nodes of G
capture the set of possible pairings between parts in G1 and G2,
while the edges in G reflect the proximity between the parts. To
obtain the topology of the abstraction between G1 and G2, we seek
a minimal substructure of G that spans all of its nodes. Specifically,
the abstraction H of G1 and G2 is computed as the minimum
connected spanning subgraph on the complete graph G.

The above procedure is illustrated in Fig. 4. The many-to-many
graph matching of G1 and G2 in Fig. 4a yields a set of many-to-
many node correspondences (similarly colored), along with a set of
unmatched nodes (uncolored). Each pair of matched nodes in a
given many-to-many correspondence yields a node in the
complete graph shown in Fig. 4b. For example, the many-to-many
correspondence mapping fv3; v4g 2 G1 to fu4g 2 G2 yields two
nodes in the complete graph, corresponding to vertices v3u4 and
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Fig. 3. Algorithms for (a) many-to-many matching of medial axis and (b) computing the abstraction of two regions.

Fig. 4. Defining the structural (left) and medial (right) abstractions. The pairs of matched vertices of graphs G1 and G2, shown in (a), will form the nodes of the complete

graph G, shown in (b). The minimum spanning tree H, shown in (c), defines the topology (connectivity) of the resulting nodes of the abstract structure. The ordered

subsets of matched shock points P and Q (green vertices in (d)) will result in (e) a mapping for the ordered sets. We will use this mapping for computing the abstraction Z

of P and Q. The weight wi;q of each edge in the mapping is determined by the many-to-many matching algorithm.
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v4u4. The resulting minimum spanning tree H of G, shown

in Fig. 4c, defines the topological structure of the final medial

axis graph.
Having defined the topology of the abstract medial axis graph,

we now proceed to define the contents of its nodes, including shock

points and their positions and radii. Recall that, for a given node, the

many-to-many matching of two medial axis graphs implicitly

defines two sets of corresponding shock points in the graphs’

underlying medial axes (Fig. 3). It is from these corresponding point

sets that we create a new set of points for the node, and define their

attributes as a weighted function of the attributes of the points in the

two point sets. More formally, given two shock sequences P ¼
p1; . . . ; pnh i andQ ¼ q1; . . . ; qmh i, with n � m, our goal is to compute

a new shock sequence Z ¼ z1; . . . ; z‘h i, specifying the number ‘ of

points in Z and the coordinates x; y and radius r for each zi 2 Z.
To form the abstraction Z from sequences P and Q, we will use

an oriented averaging procedure that is similar to the Lagrangian

model for interpolating real-valued functions [36]. In this

procedure, a new point is added to Z for each correspondence

between points in P and Q. This ensures that the abstraction is

constructed through each correspondence between the input

sequences. More precisely, in order to generate the average Z,

we begin by forming a mapping between the points in P and Q by

computing an EMD-based many-to-many matching between them

[33].2 Assume, without loss of generality, that Pq ¼ p01; . . . ; p0k
� �

denotes an ordered subset of points in P that are matched to a

single point q 2 Q. We note that, for each p 2 Pq corresponding to

q 2 Q, a weight wp;q will also be computed by the EMD mapping.

An illustration of this step for the two subsets of nodes in Fig. 4d is

shown in Fig. 4e. Since there are three mappings from P to Q, Z

will contain three medial points, each of whose attributes will be a

normalized, weighted average of the attributes of the two points

involved in the mapping, with the weights, in turn, based on the

flows (wp;q) defined by the mapping.
Specifically, to form the average ordered set, for each

correspondence ðPq; qÞ, we add one point z to Z whose attributes

rz; xz; yz are calculated as follows:

rz ¼
1

2wz

X
p2Pq

rp � wp;q þ rq

2
4

3
5; xz ¼

1

2wz

X
p2Pq

xp � wp;q þ xq

2
4

3
5;

yz ¼
1

2wz

X
p2Pq

yp � wp;q þ yq

2
4

3
5;

where wz ¼
P

p2Pq wp;q. In general, the number of points ‘ in the

ordered set Z is bounded by n�m and is a function of the number

of points in p 2 P and q 2 Q that participate in pairings (small

weight pairings may be pruned). The overall algorithm for

computing the abstraction of two regions is presented in Fig. 3b.

Columns three and six in Fig. 1 illustrate averages computed for

the pairs of shapes shown in columns one and two and columns

four and five, respectively. We should note that the question of

ensuring that the skeletal abstraction is equal to the skeleton

generated by the abstraction’s reconstructed shape is open.

Although the derived representation, in our averaging procedure,

could be enforced to be a true medial axis by incorporating

appropriate constraints, this is beyond the scope of this paper.
We illustrate our framework for pairwise shape abstraction on

pairs of shapes representing human gestures. Fig. 5 illustrates the

computed abstraction for two articulations of the same gesture.

Figs. 5a and 5b show the gestures, their corresponding silhou-

ettes, and their computed medial axis graphs, respectively.

Fig. 5c shows the abstracted medial axis graph (below) and the

shape generated from it (above). The abstracted shape clearly

represents an intermediate state of the finger articulation,

illustrating the articulation invariance of the framework.

Figs. 5d, 5e, and 5f illustrate the ability of the framework to

abstract the salient common structure from two shapes, yielding

a shape that captures the common two-finger structure. Note the

significant differences in topology between the two input shapes

and the many-to-many matching algorithm’s ability to find

corresponding groups of skeletal fragments. Figs. 5g, 5h, and 5i

illustrate the algorithm’s rotation invariance, articulation invar-

iance, and the ability of the many-to-many matcher to compute

many-to-many correspondences (individual branches are deli-

neated by ellipses, and many-to-many branch correspondences

are colored the same).
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Fig. 5. Computing the abstractions of hand gestures. The abstraction (c) of gestures (a) and (b) illustrates the algorithm’s ability to cope with articulation. The top row

illustrates the two gestures, the middle row their corresponding silhouettes, and the bottom row their medial axis graphs, colored according to the computed many-to-

many shock point correspondences. The abstraction (f) of gestures (d) and (e) illustrates the algorithm’s ability to extract the common, salient coarse structure. Finally,

abstraction (i) of (g) and (h) illustrates the algorithm’s ability to cope with image rotation, part articulation, as well as significant structural differences in medial axis graph

topology.

2. Note that this is not the original mapping between P and Q computed
by the many-to-many matching algorithm, which may include flows
directed from/toward points not in P and Q. Instead, a new EMD mapping
is computed using just the points in P and Q.
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5 CONSTRUCTING CLASS PROTOTYPES

The pairwise abstraction model presented in Section 4 is used as a
building block to generate representative abstractions of a set of
views associated with an object class. Since the many-to-many
matching algorithm provides a quantitative measure of dissim-
ilarity between two views, one can repeatedly select a subset of
maximally similar pairs and compute their corresponding
abstracted views. The resulting hierarchical structure, called the
abstraction hierarchy, captures the maximally representative proto-
types for subsets of views in an object class.

To formalize this construction for a given object class consisting

of n views fv1; . . . ; vng, we first compute their medial axis graphs.

To initialize the abstraction hierarchy, the graphs corresponding to

the original views fv1; . . . ; vng populate the leaf level. Using our

many-to-many matching algorithm outlined in Section 3, we

compute an n� n distance matrix where each entry ði; jÞ defines

the dissimilarity score between views (graphs) vi and vj. For each

graph, we determine its most similar graph (mate) according to the

distance matrix and use our framework to compute the average

views between graphs and their mates. We then place these

average views at the next level up in the abstraction hierarchy,

with edges between the levels indicating which graph pairs are

used to compute the averages. Repeating the same process at every

level results in a hierarchical structure with the root corresponding

to the prototype shape for the entire object class.
Due to subsampling and partial matching of the medial axes,

some average views in the abstraction hierarchy may not reflect the
topological similarities of the original graphs. To ensure that the
graphs are properly represented by their averages, we use our
matching algorithm to compute the dissimilarity score between an
average and its two children. If the dissimilarity score is greater
than a predefined threshold, the average graph is not inserted into
the tree; instead, both of its children become class prototypes. Like
any hierarchical clustering algorithm, the choice of threshold
affects the number and sizes of clusters (in our case, the number of
prototypes and number of descendants). The algorithm for
computing the prototypes for a set of n views and a threshold �

is presented in Fig. 6a. Fig. 6b illustrates the construction of two
shape prototypes from six views of a teapot.

6 EXPERIMENTS

In this section, we evaluate our shape prototypes in the context of
an object recognition experiment. We begin with a set of 900 object
silhouettes, representing distinct views of a collection of nine 3D
objects. Every second view is removed to form a set of 450 query
views and a remaining database of 450 views. For the 450 database
views, we compute a set of class prototypes and their underlying
abstraction hierarchies.3

Two types of experiments are run. In a recognition trial, the
query is compared to each prototype. If the parent 3D object of the
closest prototype is the same as the parent of the query view, then
the trial is successful. In a pose estimation trial (essentially a more
stringent form of recognition trial), the closest prototype is found
(as in the recognition trial) and its underlying abstraction hierarchy
is searched (following the path defined by closest matching
internal nodes) in a top-down manner until the closest leaf is
found. If this leaf represents a neighboring view of the query view
(on the same 3D object), then the trial is successful. Finally, for each
experiment, we compute performance as a function of sampling
resolution of the views in the database.

To evaluate the efficacy of our shape prototypes, we compare
their performance in the above experiment to two competing
frameworks. In the first framework, we replace each prototype with
the median view drawn from the leaves of its underlying abstraction
hierarchy, i.e., from the set of all views used to construct the
prototype, we choose that view whose sum distance to all other
views is minimum. In the second framework, we eliminate the
prototypes and compare the query directly to each of the database
views (leaves). Our prediction is that, when the view sampling
resolution is sparse, our computed prototypes should yield better
performance than the median prototypes since, on average, they are
closer to the queries.4 When the sampling resolution increases, we
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Fig. 6. Computing the shape prototypes. (a) The algorithm for Computing Class Prototypes for Views fv1; . . . ; vng and Threshold � . (b) Example of computing shape

prototypes for a set of teapot images. The original images are shown at the bottom (leaf level), while their averages define the internal nodes. Pairwise averaging

continues until the prototype is sufficiently dissimilar from one of its descendants. In this case, six views give rise to two prototypes.

3. Note that, for any given prototype, its descendants (views) are
constrained to belong to the same 3D object.

4. This effect is particularly pronounced in such degenerate cases as two
samples or a set of samples forming a circle.
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expect the median prototypes’ performance to improve as they
move closer to the means (our prototypes). However, the medians
are still exemplars and not abstractions and we therefore expect
their performance to be consistently inferior to that of our computed
prototypes. For the flat, “prototype-less” database, we expect
performance to exceed either prototype method (queries will always
be closer to their neighboring views than to any type of prototype) at
the cost of increased search complexity.

The results are consistent with our predictions. The recognition

and pose estimation rates as a function of increasing database size

for each method are reported in Figs. 7a and 7b, respectively. As

view sampling resolution increases, the performance gain of the

abstracted prototypes decreases, although it does remain superior.

As predicted, maximum recognition and pose estimation rates are

achieved with the flat database. However, as shown in Fig. 7c,

which plots the number of model comparisons (matches)

computed by each method, both prototype frameworks perform

85-90 percent fewer matches, yielding far greater efficiency at the

cost of roughly a 10 percent drop in correctness.
To test or framework on a second domain, we apply it to the

MPEG-7 CE-Shape-1 (Part B) database, consisting of 1,400 shapes

clustered into 70 classes with 20 shapes per class. Again, correct

recognition is achieved when the closest shape to the query

belongs to the same class; since the shapes in a class represent

different exemplars, computing a pose estimation rate is not

applicable. The results, shown in Table 1, once again reflect the

increased recognition rate afforded by our abstract prototypes over

their median counterparts, again falling slightly short of an

exhaustive search over the entire set of exemplars (at approxi-

mately an order of magnitude greater cost).
To evaluate the sensitivity of our algorithm to noise, we perturb

our input shapes (in the first experiment) by adding noise to the

graphs from which we construct the prototypes. Specifically, we

add nodes to the graph amounting to 5, 10, 12, 15, and 20 percent

of the original size of the graph. To add K percent noise, we

randomly choose a leaf node of the medial axis graph (tree) and

add K/10 percent nodes as children of the leaf. If the mass of the
parent is m, the mass of each added child is 1=m. The process is
repeated, selecting another leaf at random, until K percent of the
size of the original graph has been added. As shown in Fig. 8,
recognition and pose estimation rates for the abstracted prototypes
continue to exceed that for the median prototypes, but still fall
slightly short of the exhaustive search.

On the issue of scalability, there are two issues. The first
concerns the scalability of the abstraction process, i.e., how the
process scales as new exemplars are added to a training set. The
second concerns the recognition component, i.e., how recognition
performance scales with the number of classes. The latter issue is a
function of the particular indexing/recognition strategy, and not
the abstraction process. The former issue affects the complexity of
the pairwise abstraction process. For N input exemplars, the
number of pairwise abstractions is bounded by the size of the tree
with N leaves, which is OðNÞ.

7 LIMITATIONS

While our approach to computing shape prototypes from exem-
plars offers invariance to translation, rotation, scale, and articula-
tion, and supports many-to-many part correspondences, working
with silhouettes assumes that they have been correctly segmented
or presented in isolation. This is a very strong assumption, and not
the one shared by those, for example, attempting to recover
restricted part-based models (e.g., constellations) from natural
images [3]. As the constraints on an object’s location in an image are
reduced, by allowing it to articulate, change size, translate/rotate
in the image, etc., and as the constraints on an object’s structure are
reduced, by not insisting that the model’s parts map one-to-one to
image parts, the model becomes weaker and less like a template. As
a result, it becomes more difficult to use the model to perform
figure/ground segmentation in cluttered or natural scenes. By
making our model more flexible and less constrained, we therefore
give up the ability (until such time as region segmentation methods
can correctly separate figure from ground) to learn a shape
prototype from exemplars appearing as real objects in real scenes.
While our method is designed to abstract a shape prototype from a
set of examples which may not share a subset of input features, it
does assume that conditions like occlusion, clutter, and noise (i.e.,
noise that is due to poor segmentation rather than within-class
variation) can be avoided.

Our abstracted medial axis graphs are designed to support object
categorization (including both indexing and matching) and not
visualization or compression. Thus, no attempt has been made to
optimize reconstruction error (of the abstracted shape with respect
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TABLE 1
Recognition Results on MPEG-7 CE-Shape-1 (Part B)

Our recognition experiment on MPEG-7 CE-Shape-1 indicates that the abstracted
prototypes continue to outperform the median prototypes, yet still fall short of an
exhaustive search (which requires approximately an order of magnitude greater
search complexity).

Fig. 7. Experimental results. (a) Recognition rates as a function of increasing database size for exhaustive search, abstracted prototypes, and median prototypes. (b)

Correct pose estimation rates as a function of increasing database size for exhaustive search, abstracted prototypes, and median prototypes. (c) The complexity (number

of matches) of the recognition and pose estimation algorithms as a function of increasing database size. Since both prototype algorithms are based on the same number

of prototypes and the same descendant leaves, we compare exhaustive search only to recognition and pose estimation using our abstracted prototypes. Note that the

exhaustive search has the same complexity when applied to either recognition or pose estimation; hence, only one curve is shown.
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to the input exemplars). Rather, our goal is optimize recognition

performance which, in a recognition-by-parts paradigm, means

optimizing structural similarity. While it is certainly true that

reconstruction error is implicitly included in our mechanism for

defining the medial points in a part, it should be noted that

optimizing purely on the basis of reconstruction error may, in fact,

work against our goal of optimizing recognition performance. On a

related fidelity note, no attempt has been made to ensure that the

skeletal abstraction is equal to the skeleton generated by the

abstraction’s reconstructed shape, or to ensure that the object angles

around a branch point sum to 360 degrees. Even though the

reconstructed shape is prototypical, by definition, it is still an

exemplar, and like all exemplars, will yield skeletal instabilities.

Across a set of exemplars, it is precisely these instabilities that we

attempt to avoid through abstraction.

8 CONCLUSIONS

Generic object recognition (or object categorization) systems must
be able to recognize objects based on their prototypical shape.
Moreover, the matching of image and model features should be
invariant to image translation, image rotation, image scaling, object
articulation, and object occlusion. However, if such systems
assume that a salient feature in the image maps one-to-one to a
salient feature on the model, then object models are constrained to
be flexible, object-centered templates of local image features.
Overcoming this restriction requires a relaxing of the one-to-one
assumption, allowing image-model feature correspondence to be
many-to-many.

The medial axis graph is a representation framework that
satisfies the invariance criteria outlined above, and the many-to-
many matching framework overcomes the one-to-one feature
matching restriction common to most recognition frameworks.
Together, they provide the foundation for a framework for learning
a skeletal shape abstraction from a set of exemplars. The computed
prototypes are shown to outperform prototype exemplars, and offer
an effective means for organizing a set of shapes in a coarse-to-fine
manner. Shock graph-based object recognition is a mature sub-
community, e.g., [29], [37], [27], and the ability to abstract a set of
prototypes from examples offers a powerful tool for improving
search efficiency.
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