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Abstract—Hierarchical image structures are abundant in computer vision and have been used to encode part structure, scale spaces,

and a variety of multiresolution features. In this paper, we describe a framework for indexing such representations that embeds the

topological structure of a directed acyclic graph (DAG) into a low-dimensional vector space. Based on a novel spectral characterization

of a DAG, this topological signature allows us to efficiently retrieve a promising set of candidates from a database of models using a

simple nearest-neighbor search. We establish the insensitivity of the signature to minor perturbation of graph structure due to noise,

occlusion, or node split/merge. To accommodate large-scale occlusion, the DAG rooted at each nonleaf node of the query “votes” for

model objects that share that “part,” effectively accumulating local evidence in a model DAG’s topological subspaces. We demonstrate

the approach with a series of indexing experiments in the domain of view-based 3D object recognition using shock graphs.

Index Terms—Structural indexing, graph spectra, object recognition, shock graphs.
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1 INTRODUCTION

THE recognition of hierarchical (e.g., multiscale or multi-
level) image features is a common problem in object

recognition.1 Such structures are often represented as
rooted trees or directed acyclic graphs (DAGs), where
nodes represent image feature abstractions and arcs
represent spatial relations, mappings across resolution
levels, parts, etc. [1], [2]. The requirements of matching
include computing a correspondence between nodes in an
image structure and nodes in a model structure, as well as
computing an overall measure of distance (or, alternatively,
similarity) between the two structures. Such matching
problems can be formulated as largest isomorphic subgraph
(or subtree) problems, for which a wealth of literature exists
in both the graph algorithms and computer vision commu-
nities. However, the matching procedure is expensive and
must be used sparingly. For large databases of object
models, it is simply infeasible to perform an exhaustive
search of the database.

An indexing mechanism is essential for selecting a small
set of candidate models to which the matching procedure is
applied. When working with hierarchical image structures,
in the form of directed acyclic graphs, indexing is a
challenging task and can be formulated as the fast selection
of a small set of candidate model graphs that share a
subgraph with the query. But, how do we test a candidate
without resorting to subgraph isomorphism? If there were a
small number of subgraphs shared among many models,
representing a vocabulary of object parts, one could conceive
of a two-stage indexing process, in which image structures
were matched to the part vocabulary, with parts “voting”
for candidate models [3], [4]. However, we are still faced
with the complexity of subgraph isomorphism, albeit for a
smaller database (vocabulary of parts). The problem is
further compounded by the fact that, due to occlusion and
noise, no significant isomorphisms may exist between the
query and the model. Yet, at some level of abstraction, the
two structures (or their substructures) may be similar.
Thus, our indexing problem can be reformulated as finding
model (sub)graphs whose structure is similar to the query
(sub)graph.

In this paper, we begin by outlining the requirements of
an effective structural indexing mechanism. Next, we
introduce a novel encoding of a directed acyclic graph’s
topology which satisfies these requirements. Our encoding,
or topological signature, is derived from an eigenvalue
characterization of a DAG’s f�1; 0; 1g adjacency matrix,
and we draw on a number of important results in spectral
graph theory to establish its stability under minor perturba-
tion due to noise, occlusion, and node split/merge. Our low-
dimensional vector encoding of a graph’s structure allows
us to retrieve similar structures from a database using a
nearest-neighbor search. To deal with large-scale occlusion,
we introduce an evidence accumulation framework which
accumulates local evidence in a model’s topological sub-
spaces that correspond to the model’s parts.
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1. Such structures are not only common in computer vision, but also
appear in linguistics (syntax trees), graphics (CSG trees), computational
biology (phylogenetic trees), and a wide range of other domains.
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Although applicable to any domain in which queries and
models can be represented as directed acyclic graphs, such
as, e.g., [1], [2], we demonstrate our approach on the
domain of view-based 2D silhouette recognition, in which
image and model silhouettes are represented as directed
acyclic shock graphs. Intuitively, the taxonomy of shocks
consists of four distinct types: the radius function along the
medial axis varies monotonically at a 1, achieves a strict
local minimum at a 2, is constant at a 3, and achieves a strict
local maximum at a 4 (see Kimia et al. [5]). This system of
shocks can be abstracted into a shock graph where vertices
are labeled by their shock types and the shock formation
times direct the edges [6] (see Fig. 1).

The many other techniques that are being considered for
dimensionality reduction of graph (and tree) structure can
be distinguished by the manner in which they represent
structure in various nonlinearities. Our approach explicitly
attempts to capture summaries of “higher-order” structure
at each level, as is explained below.

2 RELATED WORK

Spectral approaches to shape description and indexing are
numerous. Turk and Pentland’s eigenface approach [10]
represented an image as a linear combination of a small set
of basis vectors (images) computed from a large database of
images. Nayar and Murase extended this work to 3D objects
where a dense set of views was acquired for each object
[11]. Other eigenspace methods have been applied to higher
level features, offering more potential for generic shape
description and matching. For example, Sclaroff and Pent-
land compute the eigenmodes of vibration of a 2D region
[12] and use the low-order modal coefficients to search a
database of 2D shape models. Since the spectral character-
izations are global, these methods are not invariant to
occlusion. Moreover, such characterizations depend on
database contents. In contrast to these approaches, our
representation is independent of the contents of the model
database by using a uniform basis to represent all objects.

Recently, Luo et al. [13], [14] investigated the use of leading
eigenvectors of a graph’s adjacency matrix to characterize
its eigenmodes. They also studied the use of two embed-
ding techniques, component analysis (principle and inde-
pendent) and multidimensional scaling, and their use for
clustering graph data extracted from 2D views.

In recent years, nearest-neighbor (NN) search techniques
have become very popular for feature-based retrievals. For
instance, Beis and Lowe [15] use a database to store classes
of feature vectors that characterize arrangements of lines. A
feature vector is formed, for example, by the angles between
a set of three coterminating lines. Other perceptual grouping
methods, as well as the number of lines considered, define
different feature classes. An NN search on the correspond-
ing database is performed for every image feature, allowing
each match to vote for a model according to the saliency of
the feature. For NN search, Beis and Lowe developed an
approximation to the k-d tree search algorithm, called best
bin first, or BBF. In more recent work, Lowe [16] computes a
high-dimensional (160 components) feature vector based on
the appearance of an interest point and uses BBF search to
retrieve objects containing those points.

Indexing into large databases using structural features
was popularized by the geometric hashing community.
Lamdan et al. [17] used geometric hashing to map affine
invariant interest point coordinates, expressed relative to a
basis defined by three noncollinear interest points, to
models sharing those component interest points. Each
interest point voted for one or more models, with the
correct model typically emerging with maximal support. In
a related viewpoint-invariant indexing scheme, Forsyth
et al. [18] used projective invariants, computed over conics
and lines, to index into a large database of planar shapes.
Clemens and Jacobs [19] presented bounds on the space and
speedup that is achievable through any indexing mechan-
ism when the underlying data is based on 2D point features.
They proved that there is no quantitative feature that is
invariant under all projections of a model into an image.
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Fig. 1. (a) An illustrative example of a silhouette and (b) its shock graph [6], computed using the Hamilton-Jacobi skeletonization algorithm [7], [8] and
the shock graph construction algorithm [9].



They also observed that indexing by itself will not produce
significant speedup unless it is combined with feature
grouping operations.

In a more traditional hashing framework, Flynn and Jain
[20] mapped viewpoint-invariant 3D features, computed
over 3D surfaces, to locations in a set of interpretation tables
whose entries, in turn, pointed to models sharing those
features. The major challenge to hash table and voting
mechanisms is choosing the bin size or hash function
“spread.” Fixed-sized bins do not effectively capture the
nonuniform distribution of the data. This lack of adaptation
has given rise to other data structures designed specifically
for similarity searching and for high-dimensional search
(see Section 6.2).

The spectral indexing and structural hashing approaches
described above attempt to compute features of the query
that will prune the database down to a few candidates.
Without such a pruning mechanism, the query would have
to be exhaustively compared to each model. However, if the
models in the database are organized judiciously, an
exhaustive search can be avoided. A decision tree [21] is a
mechanism for hierarchically partitioning a database. A
query shape is matched to the root and, depending on the
results of the match, the process is applied recursively to
one of its children. At each step, the space of possible
models is reduced. Within this framework, a spectral graph
decomposition was reported by Sengupta and Boyer for the
partitioning of a database of 3D models, where nodes in a
graph represent 3D patches [22].

A closely related approach to the partition (decision tree)
scheme described above is to organize the database into a set
of prototypes (clustering). In this case, the database is
organized by grouping similar objects and choosing a
representative (prototype) for each group. This idea can be
recursively applied, forming a hierarchical representation of
the database. Shapiro and Haralick [23] used a simple
relational distance metric, followed by either clustering by
similar values of the metric or by constructing a binary
decision tree, to organize a large database of relational
models. Sengupta and Boyer [24] presented one of the
earliest frameworks for object recognition through a hier-
archically structured database of parametric structural des-
cription graphs. The hierarchical structure was constructed
through clustering and computing representative members
of each cluster. Recently, Sebastian et al. [25] used a similar
approach to address the problem of indexing into a database
of shock graphs representing the 2D shape silhouettes
sampled from a 3D object’s viewing sphere and proposed a
hierarchical partitioning of the database in which shapes are
grouped into categories. A small number of exemplars from
each category are chosen to represent the groups, thus
forming a database of prototypes used to index into the
larger model database. A problem with this approach is that
it is not always possible to find shape clusters large enough to
significantly reduce the size of the database. Moreover, each
match at the prototype level implies an exhaustive search
among the shapes belonging to that category, which can be
costly if good partitions do not exist.

Recently, Irniger and Bunke [26] presented an approach
for filtering graph databases based on a feature vector
characterization of graphs in a decision tree model. Their
vector characterization encodes such structural information

as cardinality of the vertex set, frequency and degree
properties of nodes with given labels, as well as frequency
of nodes of a particular degree, etc. They showed how a
modified decision tree model can be utilized to tackle both
graph and subgraph isomorphism problems and also
studied the utility of the approach and its performance in
filtering random and regular graphs.

The topic of graph matching in computer vision has been
studied extensively, with both exact and inexact graph
matching algorithms applied to object recognition, includ-
ing Sanfeliu and Fu [27], Shapiro and Haralick [28], [29],
Wong et al. [30], [31], Boyer and Kak [32] (for stereo
matching), Kim and Kak [33], Messmer and Bunke [34],
Christmas et al. [35], Eshera and Fu [36], Pellilo et al. [37],
Gold and Rangarajan [38], Zhu and Yuille [39], Cross and
Hancock [40], Huet and Hancock [41], and Siddiqi et al. [6],
to name just a few. Although, in some cases, e.g., [6], [41],
graph abstractions are sought to improve matching robust-
ness, the above methods still focus on the problem of
comparing two graphs and not on the problem of graph
indexing (prior to matching). On the topic of graph
indexing in computer vision, there has been much less
activity. Dickinson et al. [4] processed a graph representing
the part structure of an object, yielding a set of connected
subgraphs of bounded size. A hash function then mapped
the node labels in a subgraph to a hash table location which,
in turn, pointed to a second hash table. A second hash
function mapped the edge labels in the subgraph to a
location in this second hash table containing those models
which contain the subgraph as a part. Costa and Shapiro
[42] also report a scheme in which small relational
subgraphs are used to retrieve model graphs from a large
database. Perhaps the closest work to the work reported in
this paper is that of Sossa and Horaud, who use a small
subset of the coefficients of the d2-polynomial corresponding
to the Laplacian matrix associated with a graph [43].
Although they attempt to encode a graph’s structural
properties with a low-dimensional descriptor, their method
cannot accommodate either noise or occlusion, requiring an
exact isomorphism between query and model.

A closely related problem to indexing in the information
management community is that of query processing over
data that conforms to labeled-tree or labeled-graph data
models. A schema for such data, if present, may only
partially constrain the data. Such a data model is often
referred to as semistructured data model [44], [45]. Most of
the work in this community has focused on extracting
summaries that are information preserving but not struc-
ture preserving [46], [47], [45]. Specifically, the notion of
information preserving summaries refers to signatures that
are invariant to the node-labels and data types associated
with vertices of such abstract representations [44]. Contrary
to vision applications in which relational structure among
image features is critical and can, in fact, carry more
information than the features themselves, preserving such
structure in data models and corresponding schemas plays
a secondary role in indexing [44], [48].

Finally, there has been growing interest in creating
compressed approximate decompositions of data sets
modeled as large matrices [49], [50]. Such structures are
commonly used in information retrieval and data mining
[51], [52]. Specifically, a large collection of n objects, e.g.,
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documents, genomes, or Web pages, is implicitly presented
as a set of points in an m-dimensional Euclidean space,
where m is the number of features that describes the object.
Thus, this collection may be represented by anm� nmatrix
A, the columns of which are the object vectors and the rows
of which are the feature vectors. The indexing problem can
therefore be formulated as the retrieval of matrices with
similar compressed decompositions from a large library of
such matrices.

3 CRITERIA FOR AN EFFECTIVE INDEX

If the image (or query) DAG has rich structure in terms of
depth and/or branching factor, its topology alone may
serve as a discriminating index into a database of model
structures. Although false positives (e.g., model DAGs that
have the same structure, but whose node labels are
different) may arise, they may be few in number and can
be pruned during verification. As stated in Section 1, we
seek a reduced representation for a DAG that will support
efficient indexing and matching. An effective topological
encoding of a DAG’s structure should:

1. map a DAG’s topology to a point in some low-
dimensional space,

2. capture local topology to support indexing in the
presence of occlusion,

3. be invariant to reorderings of the DAG’s branches,2

and
4. be efficiently computed.

Consider the naive, low-dimensional characterizations of
hierarchical structure shown in Fig. 2. Although character-
ization measures such as maximum degree, minimum
degree, average degree, degree variance, etc. (whether
applied to all nodes or just internal nodes) provide a
compact structural encoding and satisfy the aforementioned
four criteria, they are obviously too weak. The structure of
the two trees is clearly different. However, since they have
identical, sorted degree sequences, these particular mea-
sures yield identical encodings for the two trees. As a result,
any structural characterization should also:

1. be as unique as possible, i.e., different DAGs should
have different encodings, and

2. be stable, i.e., small perturbations of a DAG’s
topology should result in small perturbations of
the index.

Clearly, we need an intermediate representation that is
rich and discriminative, on one hand, yet compact and
efficient, on the other.

4 ENCODING GRAPH STRUCTURE

To describe the topology of a DAG, we turn to the domain
of spectral graph theory, first noting that any directed graph
can be represented as an antisymmetric f0; 1;�1g adjacency
matrix, with 1s (�1s) indicating a forward (backward) edge
between adjacent nodes in the graph (and 0s on the
diagonal). For a graph G with adjacency matrix AG, we
define the spectrum �ðAGÞ as the set of magnitudes of its n
eigenvalues, since the eigenvalues of an antisymmetric
matrix are complex. In subsequent discussion, for brevity,
the term “eigenvalues” will be used in place of “magnitudes
of eigenvalues.” The spectrum of a graph’s adjacency
matrix encodes important structural properties of the
graph, including the size of the graph and the degree
distribution of its nodes. Furthermore, the magnitudes of
the eigenvalues of an antisymmetric (or Hermitian) matrix
A are invariant to any orthonormal transformation of the
form PtAP . Since a permutation matrix is orthonormal, the
magnitudes of eigenvalues of a graph are therefore
invariant to any consistent reordering of the graph’s
branches. However, before we can exploit a graph’s
spectrum for indexing purposes, we must establish their
stability under minor topological perturbation, due to noise,
occlusion, node split/merge, or deformation.

We will begin by showing that any structural change to a
DAG can be modeled as a two-step transformation of its
original adjacency matrix. The first step transforms the
DAG’s original adjacency matrix to a new matrix having the
same spectral properties as the original matrix. The second
step adds a noise matrix to this new matrix, representing
the structural changes due to noise and/or occlusion. These
changes take the form of addition/deletion of nodes/arcs
to/from the original DAG. We will then draw on an
important result that relates the distortion of the elements of
the spectrum of the matrix resulting from the first step to
the magnitude of the noise added in the second step. Since
the spectrum of the original matrix is the same as that of the
transformed matrix, the noise-dependent bounds therefore
apply to the original matrix. The result will establish the
stability of a DAG’s spectrum to minor topological changes.

We begin with some definitions. Let A
G
2 0; 1;�1m�m

denote the adjacency matrix of the graph G on m vertices
and assume H is an n-vertex graph obtained by adding
n�m new vertices and a set of edges to the graph G. Let
� : f0; 1;�1gm�m ! f0; 1;�1gn�n be a lifting operator which
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Fig. 2. Naive characterizations of hierarchical structure are compact yet ambiguous. In this case, two trees with the same sorted degree sequence
will yield the same simple characterizations.

2. Such reorderings might occur during a nondeterministic construction
of a DAG. Since we are not enforcing left-to-right sibling ordering, the same
object might be represented by two isomorphic DAGs whose only
difference is their branch ordering.



transforms a subspace of Rm�m to a subspace of Rn�n with
n � m. We will call this operator spectrum preserving if the
eigenvalues of any matrix A 2 f0; 1;�1gm�m and its image
with respect to the operator (�ðAÞ) are the same up to a
degeneracy, i.e., the only difference between the spectra of
A and �ðAÞ is the number of zero eigenvalues (�ðAÞ has
n�m more zero elements than A). As stated above, our
goal is to show that any structural change in graph G can be
represented using a spectrum preserving operator and a
noise matrix.

Proposition 1. LetA
H
denote the adjacencymatrix of the graphH.

Then, there exists a spectrumpreservingoperator�ðÞ andanoise
matrix EH 2 f0; 1;�1gn�n such that A

H
¼ �ðA

G
Þ þ E

H
:

Proof. We define �ðÞ as a lifting operator consisting of
two steps. First, we will add n�m zero rows and
columns to the matrix A

G
and denote the resulting matrix

by A0
G
. Next, A0

G
will be pre and postmultiplied by a

permutation matrix P and its transpose Pt, respectively,
aligning the rows and columns corresponding to the
same vertices in A

H
and �ðA

G
Þ. Since the only difference

between the spectrum of A0
G
and A

G
is the number of

zero elements and PA0
G
P t has the same spectrum as the

matrix A0
G
, �ðÞ is a spectrum preserving operator. As a

result, the noise matrix E
H

can be represented as
A

H
��ðA

G
Þ 2 f0; 1;�1gn�n. tu

Armed with a spectrum preserving lifting operator and a
noise matrix, we can now proceed to quantify the impact of
the noise on the original graph’s eigenvalues. Specifically,
let �iðXÞ for i 2 f1; . . . ; ng denote the ith largest element of
the set of magnitudes of eigenvalues, �ðXÞ, for matrix X. A
seminal result of Wilkinson [53] (see also Stewart and Sun
[54]) states that:

Theorem 1. If A and Aþ E are n� n antisymmetric matrices,
then:

�iðAÞ þ �iðEÞ � �iðAþ EÞ � �iðAÞ þ �1ðEÞ;
for all i 2 f1; . . . ; ng:

ð1Þ

For H (perturbed graph) and G (original graph), AH ¼
�ðAGÞ þ EH , the above theorem yields, for all i 2 f1; . . . ; ng,

�ið�ðA
G
ÞÞ þ �iðEH

Þ � �iðAH
Þ � �ið�ðA

G
ÞÞ þ �1ðEH

Þ
�iðEH

Þ � �iðAH
Þ � �ið�ðA

G
ÞÞ � �1ðEH

Þ
j�iðAH

Þ � �ið�ðA
G
ÞÞj � j�1ðEH

Þj:
ð2Þ

Specifically, we have:

Proposition 2. (Notation as above), j�iðAH
Þ � �ið�ðA

G
ÞÞj �

j�1ðEH
Þj:

The above chain of inequalities gives a precise bound on
the distortion of the elements of spectrum �ð�ðA

G
ÞÞ in

terms of the largest element of �ðE
H
Þ for noise matrix E

H
.

Since �ðÞ is a spectrum preserving operator, the elements of
�ðA

G
Þ follow the same bounds in their distortion.

The above analysis provides a general bound on the
distortion of the spectrum as a function of noise. It should
be noted that a similar bound can be provided when
dealing with more specific classes of noise, such as node
merges or splits due to under and oversegmentation. For

example, consider the case of a node split due to over-
segmentation. Without loss of generality, assume this
occurs at the root of a DAG. A generalization of the same
argument can be presented for the split of internal nodes.

Specifically, let r denote the root node in DAG G. Let r be
replaced by two new nodes, r and r0, due to oversegmenta-
tion in G0, with r being the new root and r0 its new child.
Considering the worst case scenario, we will also assume
that the subgraph G n frg of r in G was broken into
two parts, D1 and D2, in G0 and, while D1 stays with root r,
D2 becomes a subgraph of r0. First, we observe that the
adjacency matrix of G can be represented as (up to a
permutation):

AG¼

0 et et �00
t

�e AD1
AD1 ;D2

AD1 ;Gnfr[D1[D2g

�e �At
D1 ;D2

AD2
AD2 ;Gnfr[D1[D2g

�00 �At
D1 ;Gnfr[D1[D2g

�At
D2 ;Gnfr[D1[D2g

AGnfr[D1[D2g

2
664

3
775;

where e and �00 denote the vectors of all ones and all zeroes,
respectively, of appropriate dimension, AX is the adjacency
matrix of subgraph X, AX;Y is the adjacency structure
between subgraphs X and Y , and G n fr [D1 [D2g is the
induced subgraph of G after removing vertex r and
subgraphs D1 and D2. Observe that matrix AG has the
same nontrivial spectrum as:

�ðAGÞ ¼

0 0 et et �00
t

0 0 �00
t �00

t �00
t

�e �00 AD1
AD1 ;D2

AD1 ;Gnfr[D1[D2g

�e �00 �At
D1 ;D2

AD2
AD2 ;Gnfr[D1[D2g

�00 �00 �At
D1 ;Gnfr[D1[D2g

�At
D2 ;Gnfr[D1[D2g

AGnfr[D1[D2g

2
66664

3
77775
:

It is not hard to see that the adjacency matrix of graph G0

has the following form (again up to a permutation):

AG0 ¼

0 1 et �00
t �00

t

�1 0 �00
t

et �00
t

�e �00 AD1
AD1 ;D2

AD1 ;Gnfr[D1[D2g

�00 �e �At
D1 ;D2

AD2
AD2 ;Gnfr[D1[D2g

�00 �00 �At
D1 ;Gnfr[D1[D2g

�At
D2 ;Gnfr[D1[D2g

AGnfr[D1[D2g

2
66664

3
77775
:

Let n1, n2, and n3 denote the sizes of subgraphs D1, D2, and
G n fr [D1 [D2g, respectively, and define the matrices:

E1 ¼

0 0 �00
t

et �00
t

0 0 �00
t �00

t �00
t

�00 �00 ~00n1�n1
~00n1�n2

~00n1�n3

�e �00 ~00n2�n1
~00n2�n2

~00n2�n3

�00 �00 ~00n3�n1
~00n3�n2

~00n3�n3

2
6666664

3
7777775
;

E2 ¼

0 0 �00
t �00

t �00
t

0 0 �00
t

et �00
t

�00 �00 ~00n1�n1
~00n1�n2

~00n1�n3

�00 �e ~00n2�n1
~00n2�n2

~00n2�n3

�00 �00 ~00n3�n1
~00n3�n2

~00n3�n3

2
6666664

3
7777775
;

and

I ¼
0 1 �00

t

�1 0 �00
t

�00 �00 ~00ðn1þn2þn3Þ�ðn1þn2þn3Þ

2
4

3
5;
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where ~00x�y represents the all-zeroes matrix of size x� y.
Using this notation, it turns out that AG0 ¼ �ðAGÞ þ ð�E1Þ þ
E2 þ I . Observe that matrices E1 and E2 are isospectral
(congruent up to a permutation). Using Proposition 2, this
implies that the distortion for the spectrum �ðGÞ of graph G
is bounded by at most �1ðE1Þ þ �, for a small � > 0, under
node split. As mentioned earlier, a similar argument can be
also presented for the case of node merge.

The above result has several important consequences for

our application of a graph’s spectrum to graph indexing.

Namely, if the perturbation E
H

is small in terms of its

complexity, i.e., small spectral radius �1ðEH
Þ, then the

spectrum of the new graph H (e.g., the query graph) will

remain close to the spectrum of the original graph G (e.g.,

the model graph), independent of where the perturbation is

applied to G. The magnitude of the spectral distortion is a

function of the number of edges/vertices added/deleted

to/from the graph due to noise or occlusion. Specifically, if

the noise matrix E
H
introduces ‘ new vertices to G, then the

distortion of every element of the spectrum can be bounded

by
ffiffiffiffiffiffiffiffiffiffiffi
‘� 1

p
(Neumaier [55]). This bound can be further

tightened if the noise matrix has a simple structure. For

example, if E
H
represents a simple path on ‘ vertices, then

its norm can be bounded by ð2 cos �=ð‘þ 1ÞÞ (Lovász and

Pelikán [56]). In short, large distortions are due to the

introduction/deletion of large, complex subgraphs to/from

G, while small structural changes will have little impact on

the higher order elements of �ðA
G
Þ. The spectrum of a

graph is therefore stable under minor perturbations in

graph structure.

5 FORMULATING AN INDEX

Having established the stability of a DAG’s spectrum under
minor perturbation of the graph, we can now proceed to
define an index based on the magnitudes of the eigenva-
lues. We could, for example, define a vector to be the sorted
elements of the spectrum of a DAG, with the resulting index
used to retrieve nearest neighbors in a model DAG database
having similar topology. However, for large DAGs, the
dimensionality of the index (and model DAG database)

would be prohibitively large. Moreover, since the graph’s
spectrum reflects global structure, it cannot accommodate
significant occlusion. A more common solution is simply to
truncate the spectrum at some (arbitrary) number, but this
has the effect of concentrating indexing too heavily on
(weak) global aspects of the structure. Our solution to the
problem of dimensionality is based on eigenvalue sums
rather than on the eigenvalues themselves, while our
solution to the problem of occlusion is based on computing
both local and global indices.

Specifically, let T be a DAG whose maximum branching
factor is �ðT Þ and let the subgraphs of its root be
T1; T2; . . . ; T�, as shown in Fig. 3. For each subgraph, Ti,
whose root degree is �ðTiÞ, we compute the spectrum of Ti

0s
submatrix, sort the sequence in decreasing order by
absolute value, and let Si be the sum of the �ðTiÞ � 1
largest absolute values. The sorted Sis become the
components of a �ðT Þ-dimensional vector assigned to the
DAG’s root. If the number of Sis is less than �ðT Þ, then the
vector is padded with zeroes. We can recursively repeat
this procedure, assigning a vector to each nonterminal node
(i.e., node with nonzero out-degree) in the DAG, computed
over the subgraph rooted at that node. We call each such
vector a topological signature vector, or TSV. Returning to our
example of Fig. 2, we now have diverging signatures, as
shown in Fig. 4.

Although the sum of eigenvalue magnitudes is invariant
to any consistent reordering of the DAG’s branches, we
have given up some uniqueness (due to the summing
operation) in order to reduce dimensionality. We could
have elevated only the largest eigenvalue magnitude from
each subgraph (nonunique but less ambiguous), but this
would be less representative of the subgraph’s structure.
We choose the �ðTiÞ � 1 largest eigenvalues for two reasons.
First, the largest eigenvalues are more informative of graph
structure. Second, by summing �ðTiÞ � 1 elements, we
effectively normalize the sum according to the local
complexity of the subgraph’s root. Since we assume that
the branching structure is more salient at higher levels in a
hierarchical structure, this gives us a mechanism for at least
distinguishing increased branching structure at the root. As
shown in [6], these eigenvalue sums can be computed in
polynomial time.

The above definition of the TSV ignores information
related to terminal nodes (leaves). The TSV of a DAG, Gv,
rooted at node v, that has terminal nodes flign>0

i¼1 as its
children, will be equal to that of the graph with these leaves
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Fig. 3. Forming a topological signature vector, or TSV. The subtrees
rooted at the children of the root, V , each yield a sum, the collection of
which are sorted to become the components of a vector (the TSV)
assigned to V . Each sum, e.g., the sum corresponding to node a, is
computed as the sum of the k largest magnitudes of the eigenvalues of
the adjacency submatrix corresponding to the directed acyclic subgraph
rooted at a, where k is the outdegree of a.

Fig. 4. The TSV’s computed for the two trees in Fig. 2. Unlike the naive

characterizations, the TSV’s provide diverging signatures, reflecting the

different structure.



removed. The reason for this is that the zero eigenvalue
magnitude sum of a leaf node is indistinguishable from the
padded zeros of a TSV. To solve this, we simply add, as an
extra dimension, the eigenvalue magnitude sum Sv corre-
sponding to Gv. Since this sum will be greater than the sum
of the eigenvalue magnitude sums of the subgraphs rooted
at the children of v, it will always be the first dimension of
the TSV (see Fig. 5).

Our topological index satisfies the six criteria outlined in
Section 3. The eigen-decomposition yields a low-dimen-
sional (criterion 1) vector assigned to each node in the DAG,
which captures the local topology of the subgraph rooted at
that node (criterion 2—this will allow us to handle
occlusion and will be addressed in Section 6). Furthermore,
a node’s vector is invariant to any consistent reordering of
the node’s subgraph (criterion 3). The components of a
node’s vector are based on summing the largest eigenvalues
of its subgraph’s adjacency submatrix. Although our
dimensionality-reducing summing operation has cost us
some uniqueness, since the elements of each sum are
positive values and are monotonic with respect to structural
complexity, the partial sums still have relatively low
ambiguity [54] (criterion 4). From the sensitivity analysis
in Section 4, we have shown our index to be stable to minor
perturbations of the DAG’s topology (criterion 5). As shown
in [6], these sums can be computed even more efficiently
(criterion 6) than the eigenvalues themselves. Observe that
two directed graphs T and T 0, with adjacency matrices AT

and AT 0 , are isomorphic if and only if there exists a
permutation matrix P such that AT 0 ¼ PtATP [57]. In
particular, AT and AT 0 are similar and therefore have the
same characteristic polynomial, spectrum, and determinant.
As a result, the vectors obtained from the aforementioned
labeling procedure for all DAGs isomorphic to T will be the
same in R�ðT Þ�1. Moreover, this extends to any DAG T 0

which has a subgraph isomorphic to a subgraph of T , i.e.,
the TSV labeling of T and the corresponding isomorphic
subgraph of T 0 will be identical. But there is more to the
fundamental trade-off between uniqueness and compact-
ness described earlier, which we next address in the process
of candidate selection (see Section 6).

6 CANDIDATE SELECTION

Given a query DAG corresponding to an image, our task is
to search the model DAG database for one or more model
DAGs which are similar to the image DAG. If the number of
model DAGs is large, an exhaustive search of the database
is intractable. Therefore, the goal of our indexing mechan-
ism is to quickly select a small number of model candidates
for verification. Those candidates will share coarse topolo-
gical structure with the image DAG (or one of its
subgraphs, if it is occluded or poorly segmented). Hence,
we begin by mapping the topology of the image DAG to a
set of indices that capture its structure, discounting any
information associated with its nodes. We then describe the
structure of our model database along with our mechanism
for indexing into it to yield a small set of model candidates.
Finally, we present a local evidence accumulation proce-
dure that will allow us to index in the presence of occlusion.

6.1 A Database for Model Graphs

Our eigenvalue characterization of a DAG’s topology
suggests that a model DAG’s topological structure can be
represented as a vector in � þ 1-dimensional space, where �
is an upper bound on the degree of any vertex of any image
or model DAG. If we could assume that an image DAG
represents a properly segmented, unoccluded object, then
the TSV computed at the image DAG’s root could be
compared with those topological signature vectors repre-
senting the roots of the model DAGs. It follows from
Proposition 2 that the vector distance between the image
DAG’s root TSV and a model DAG’s root TSV will decrease
as the similarity of their respective DAGs increases, as
finding two subgraphs with “close” eigenvalue sums
represents an approximation to finding their largest
isomorphic subgraph.

Unfortunately, this simple framework cannot support
large structural perturbations (caused by, for example,
scene clutter or large occlusion), which could result in the
addition or removal of significant structure. In either case,
altering the structure of the DAG will affect the TSVs
computed at its nodes. The signatures corresponding to the
roots of those subgraphs (DAGs) that survive the occlusion
will not change. However, the signature of a root of a
subgraph that has undergone significant perturbation will
change significantly which, in turn, will affect the signa-
tures of any of its ancestor nodes, including the root of the
entire DAG. We therefore cannot rely on indexing solely
with the root’s signature. Instead, we will exploit the local
subgraphs that survive the occlusion.

We can accommodate such perturbations through a local
indexing framework analogous to that used in a number of
geometric hashing methods, e.g., [58], [59], [60], [61]. As
shown in Fig. 6, rather than storing a model DAG’s root
signature, we will store the signatures of each nonterminal
node in the model DAG, along with a pointer to the object
model containing that node as well as a pointer to the
corresponding node in the model DAG (allowing access to
node label information, e.g., their shock types in the case of
shock graphs). Since a given model subgraph can be shared
by other model DAGs, a given signature (or location in � þ
1-dimensional space) will point to a list of (model object,
model node) ordered pairs. At runtime, the signature at
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Fig. 5. An augmented signature at every nonterminal node. Next to each
node is the result of summing the kv ¼ �ðGÞ largest eigenvalues
corresponding to the subgraph rooted at the node v. The TSV indices
are �ðaÞ ¼ ½3:9392; 3:2361; 1�, �ðbÞ ¼ ½3:2361; 1; 0�, and �ðcÞ ¼ �ðdÞ ¼
½1; 0; 0� (padded with zeros according to the maximum branching factor).



each nonterminal node in the image DAG becomes a
separate index, with each nearby candidate in the database
“voting” for one or more (model object, model node) pairs.

The above indexing framework provides the locality of
representation required to support large perturbations, such
as occlusion. However, there is another important benefit
with regard to isospectral graphs, i.e., graphs that are not
isomorphic but have the same spectrum (see Cvetkovi�cc et al.
[57]). Let p denote the probability of such an event, i.e., the
probability of two nonisomorphic graphs being isospectral.
Under a uniform accumulation voting model, the TSV of
every nonterminal node will generate a vote (or set of votes,
depending on the number of models that share such a
substructure) and the model with the maximum votes will
be selected. An erroneous model selection (model DAG D1

and query DAG D2 are iso-spectral) under our scheme
implies that not only are the graphs isospectral, but the
majority of their (nonleaf) matching subgraphs are also
isospectral. Since a node’s votes are independent, the
probability of this event is at most pm < pn=2, which is an
asymptotically vanishing sequence for large values of n.

6.2 Searching the Model Database

At runtime, we compute the indices of all the nonterminal
nodes in the query and find their nearest neighbors in the
index database. Nearest-neighbor (NN) search in high-
dimensional spaces is a well-studied subject, with a recent
survey found in [62]. When performing a NN search, we
can retrieve either the k nearest-neighbors (k-NN) of a query
point or all the points within a fixed-size hypervolume
centered at a query point. The k-NN algorithm has the
advantage of fixing the number of retrieved points
regardless of their distance to the query, with the risk of
retrieving points far from the query; however, a small k
may exclude good candidate points. Range queries, on the
other hand, avoid the problem of excluding good candi-
dates at the cost of a potentially large number of matches.
For our experiments, we have adopted the SR-tree
technique proposed by Katayama and Satoh [63], providing
an effective range query mechanism.

The retrieved points vote for their associated model
graphs and accumulate the votes as evidence, as shown in
Fig. 7. Each such retrieved point generates a set of (model
object, model node) votes. To collect these votes, we set up
an accumulator with one bin per model object. Furthermore,
we can weight the votes that we add to the accumulator. For
example, if the label of the model node, e.g., the shock type,

is not compatible with the label of its corresponding query
node, then the vote is discarded, i.e., it receives a zero
weight. If the nodes are label-compatible, then we can
weight the vote according to the distance between their
respective TSV’s—the closer the signatures, the more weight
the vote gets.

We can also weight the vote according to the complexity
of its corresponding subgraph, allowing larger and more
complex subgraphs (or “parts”) to have higher weight. This
can be easily accommodated within our eigenvalue frame-
work, for the richer the structure, the larger its maximum
eigenvalue [64], [65]. Since the magnitudes of the eigenva-
lues, and, hence, their sum, are proportional to both the
branching factor as well as graph size, the magnitude of the
signature is also used to weight the vote. If we let �ðqÞ be
the TSV of a query graph node q and �ðmÞ be the TSV of a
model graph node m that is sufficiently close, the weight of
the resulting vote, i.e., the local evidence for the model, is
computed as:

Wðq;mÞ ¼ jj�ðqÞjj
1þ jj�ðmÞ � �ðqÞjj ; ð3Þ

where jj � jj denotes the L2-norm.
The weighting function (3) fails to account for how much

of the query is explained by the model or how much of the
model is explained by the query. We can incorporate an
Occam’s Razor-like principle into our ranking algorithm
—we want the simplest model that best accounts for the
query. This can be easily accomplished by redefining the
vote weighting function, such that, for a query point q and
neighboring model point m, we would like to increase the
weight of the vote for an object model M, if m represents a
larger proportion of M. Similarly, we would like to increase
the weight of the vote for M if q represents a larger
proportion of the query. The relative merit of these
two goals is a function of the task domain and depends,
for example, on whether queries are cluttered or have
missing data and the extent to which model objects share
structure. Our weight function therefore becomes:

Wðq;mÞ ¼ ð1� !Þjj�ðqÞjj
�Qð1þ jj�ðmÞ � �ðqÞjjÞ

þ !jj�ðmÞjj
�Mð1þ jj�ðmÞ � �ðqÞjjÞ ;

ð4Þ

where q and m are nodes in the query graph Q and model
graph M, respectively. The weight is normalized by the
sums of the TSV norms of the entire query and model
graphs, i.e.,�GðV ;EÞ ¼

P
v2V jj�ðvÞjj. The convexity parameter
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Fig. 6. Populating the Model Database. The TSV at each nonterminal

node in a model graph defines a position in the database at which a

pointer to both the model and the node is stored. The curved arrows

indicate this insertion process.

Fig. 7. Voting for Model Graphs. Each nonterminal node in the query

defines a TSV, which is used to vote for nearby model TSVs which, in

turn, represent subgraphs of model graphs.



! weights the two goals above: The first term favors models
that cover a larger proportion of the query, while the second
term favors models with more nodes accounted for. By
normalizing by �Q and �M, we obtain vote weights whose
sum is in the interval ½0; 1� for a one-to-one vote correspon-
dence between query nodes and model nodes. When
w ¼ 1=2, for example, the sum of all votes for a given model
will be equal to one when there is a one-to-one mapping
between all query nodes and all model nodes, and their
corresponding TSVs are equal.

6.3 Evidence Accumulation

Counting the votes is not necessarily a trivial task. A simple
algorithm is to let every nonterminal query node vote for
several points, each of which, in turn, votes for a set of
models. Then, select the models with the most votes to be
candidates, an approach followed, for example, in our
previous work [66]. However, as shown in Fig. 8, this many-
to-many voting scheme is problematic. Even though model
M3 is isomorphic to the query, model M2 receives the most
votes because query structure is replicated in M2. A fair
voting process must ensure that no query node votes for
more than one node in the same model and that no model
node receives more than one vote from the query nodes. In
other words, given a large number of models, we want to find
the best one-to-one assignment of votes from query nodes to
model nodes for each candidate model.

A simple way of ensuring a one-to-one assignment of
votes is to maintain, for each candidate modelM, a list of all
ðqi;mjÞ pairs of votes, for qi 2 Q and mj 2 M. Next,
compute a maximum weight bipartite matching (MWBM)
per model graph, yielding a one-to-one assignment of votes
per model and, ultimately, the overall vote for each model.

Unfortunately, this approach is inefficient. Namely,
regardless of whether or not there are many-to-many
assignments of votes, we will have to compute k maximum
matchings, where k is the number of models that receive at
least one vote, resulting in a matching complexity of order
proportional to the number of votes and the number of
nodes in the models, which is potentially large. Clearly, the
gain in performance in finding the optimal one-to-one
assignment of votes is offset by its increased computational
complexity.

We instead propose an algorithm that finds the optimal
solution by focusing only on those queries that will benefit
from a careful counting of votes. The idea is to compute the
distances between all query nodes’ TSV’s and use these
distances to determine which query nodes might vote for
multiple nodes in the same model. Given the range for the
NN search (the diameter of the search hypervolume
centered at the query point), we know that two query
points whose distance from each other is within this range
are potential competitors, i.e., there may be points belong-
ing to a model that fall within the range of both query
points, yielding a potential many-to-many mapping. Query
points further apart, however, cannot possibly map to the
same model points. Only for those sets of “nearby” query
points do we need to compute maximum matchings to
ensure a one-to-one vote correspondence.

A query point in isolation may vote for many different
models and multiple nodes per model. We must ensure
that, for each model, the query node votes only for a single
(closest) model node. If there are jQj “nearby” query nodes
voting for model nodes belonging to models in M, we will
compute jMj bipartite matchings, each mapping the set of
jQj query nodes to the nodes belonging to a particular
model and receiving votes from a query node in Q. In fact,
for each member of Q, we need to hypothesize a
correspondence (i.e., edge in the bipartite graph) only to
the closest jQj model nodes receiving votes from that
member. This bounds the complexity of the bipartite
matching problem for a given set Q.

To provide a precise specification of the algorithm, we
first need to define a number of data structures. Let
P1; . . . ; Pn be a partition of the query points’ topological
indices �ðqÞ 6¼~00; 8q 2 Q, such that two indices that overlap
belong to the same partition. Given the range queries~rr1 and
~rr2 for two subgraphs rooted at q1; q2 2 Q, the indices �ðq1Þ
and �ðq2Þ are said to overlap if the d-dimensional hypervo-
lume centered at �ðq1Þ and �ðq2Þ with dimensions defined
by ~rr1 and ~rr2 intersect one another (see Fig. 9).3 Let
Sj;1; . . . ; Sj;p be the sets of nearest-neighbor points in the
database that are within range ~rlrlf gpl¼1 of the query node
indices �ðqlÞf gpl¼1 in the same partition Pj, for p ¼ jPjj and
1 � j � n. Finally, let Vi;j be a p� pmatrix containing in each
column q the best p votes for the object model graph Mi

received from every index �ðqÞ 2 Pj.
4 See Fig. 10 for an
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Fig. 8. Limitations of a Simple Vote Accumulation Strategy. Consider a
query graph and a small database with only three models. For simplicity,
votes are not normalized and, consequently, do not add up to 1. Here,
W ðq;mÞ represents index similarity, where perfect similarity equals 1
and total dissimilarity equals 0. Although the query is isomorphic to M3,
model M2 emerges with more votes, due to the fact that query structure
is replicated in M2 and can, therefore, unfairly vote multiple times.

3. A range query is usually defined by a weighted Ls distance. Given
two n-dimensional vectors ~xx and ~yy, the Ls distance between them is defined

as Lsð~xx;~yyÞ ¼
Pn

i¼1 wij~xxi �~yyijs
� �1=s

. In our experiments, we use the weighted
maximum distance (L1) for all the range queries, i.e., L1ð~xx;~yyÞ ¼
maxfwij~xxi �~yyijg. We set the weights so that the range search returns all
the TSV’s within a radius of 40 percent of each dimension of the query
node’s TSV.

4. This can by implemented by a list of p priority queues bounded by
length p. In the worst case, this data structure would hold p� p elements.



example of these matrices, which we will use to buffer the

votes for each model and for each set of overlapping indices.

We can now define the multiple one-to-one vote correspon-

dence algorithm (MOOVC), as shown in Algorithm 1; its

complexity and optimality analysis are given in [9].

Algorithm 1. The Multiple One-to-One Vote Correspon-

dence (MOOVC) Algorithm.

1. compute the sets fPjgMj¼1 of overlapping nodes in the

query graph.

2. for every partition set Pj, 1 � j � M do

3. let S be an empty set of jPjj � jPjj matrices Vi;j.

4. for each node qn 2 Pj, 1 � n � jPjj do
5. perform a range search for the NN of qn, forming a

list L of model nodes mi
j, such that mi

j is the node j

in model graph i within the specified range from qn.

6. for each node mi
j 2 L do

7. add the tuple ðW ðqn;mi
jÞ; mi

jÞ to a matrix Vi;j 2 S if

Wðqn;mi
jÞ is greater than the smallest vote in

column n of Vi;j. (V can be implemented by jPjj
priority queues, each bounded to length jPjj.)

8. end for

9. end for

10. compute a maximum weight bipartite matching

(MWBM) for each matrix Vi;j 2 S so as to obtain the

best one-to-one assignment of votes fðq;mÞgN�jPjj
v¼1

from query nodes in Pj to model nodes.

11. Finally, for each Vi;j 2 S, sum over the resulting

N-mapping of votes,

Ti;j ¼
XN
v¼1

WðMWBMðVi;jÞvÞ;

and tally a vote Ti;j for each object model Mi from the
partition Pj. This vote is the largest sum that can be

obtained by a one-to-one assignment of votes from

query nodes in the partition j to the nodes in the

model graph i.

12. end for

After the evidence accumulation is complete, those
models whose support is sufficiently high are selected as
candidates for verification. The bins containing the overall
votes for every model Mi and the vote buffer matrices Vi;j

can, in effect, be organized in a heap, requiring a maximum
of Oðlog ‘Þ operations to maintain the heap when evidence
is added, where ‘ is the number of nonzero object
accumulators.

7 EXPERIMENTS

We evaluate our indexing framework on the task of view-
based 3D object recognition, including both object identifi-
cation (correct object) and pose estimation (correct position
on the object’s viewing sphere). In any given trial, a query
view is presented to the system and the top K candidate
views from the entire database (less the query) receiving the
most votes are returned. For a recognition task, these
K candidates would then be verified by computing the
distance between each candidate and the query, with the
closest candidate taken as the response to the query.
However, in this paper, we explore only the problem of
indexing and would like to know how highly ranked the
correct response is prior to verification. If its rank is high,
that would imply that we would need to verify fewer
candidates, resulting in a recognition system with better
performance.

For object identification, we consider the identity of a
candidate view to be correct if its corresponding 3D object is
the same as that of the query view. For pose estimation, we
consider the pose of a candidate view to be correct if it
represents one of the query view’s nine closest neighbors on
the viewing sphere, as shown in Fig. 11. For both
identification and pose estimation, we measure indexing
performance by the position of the highest ranking
candidate view whose identity or pose, depending on the
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Fig. 9. An example of overlapping index ranges for a TSV space of
dimension d ¼ maxð�ðQÞ;max

i
f�ðMiÞgÞ ¼ 2. Each point v represents

the 2D TSV �ðvÞ of node v. In this example, the range query of nodes q2
and q3 is determined by a weighted L2-norm, while that of q1 is given by a
weighted L1-norm. In general, a weighted Ls-norm is used to allow more
variation along particular dimensions. The range queries for nodes q4 and
q5, on the contrary, are specified by an unweighted L2-norm that treats
every dimension equally. The TSV’s of nodes q2 and q3, along with those
of q4 and q5, are said to overlap for their given range queries.

Fig. 10. Intermediate steps of the MOOVC algorithm for the example in
Fig. 8. In the example, the range queries induce the partitions P1 ¼
f�ðq1Þg and P2 ¼ f�ðq2Þ; �ðq3Þg. The results, Si, of the range queries for
each query node i are S1 ¼ f�ðm1

1Þ; �ðm2
1Þ; �ðm2

2Þ; �ðm3
1Þg, S2 ¼ S3 ¼

f�ðm1
2Þ; �ðm2

3Þ; �ðm2
4Þ; �ðm2

5Þ; �ðm3
2Þ; �ðm3

3Þg.

Fig. 11. The structure of the viewing sphere. Left: configuration of the
nine closest neighbors of the query view (center) on the viewing sphere.
Right: one of the query’s neighbors, as seen on the 3D viewing sphere.



task, is correct. Averaging over 2,688 trials (i.e., every model
view becomes a query), this gives us a sense for how large K
should be in order to ensure that the correct response is
among the candidates.

It is important to note that our criterion for correct pose

estimation is somewhat harsh for a number of reasons.

Since we sample the entire viewing sphere, views on one

side of the viewing sphere are similar to views on the

opposite side. This similarity is more pronounced as the

viewing distance, i.e., the radius of the viewing sphere,

grows with respect to the object’s depth, i.e., the camera

geometry approaches orthographic projection. Moreover,

additional object planes of reflective symmetry or axes of

rotational symmetry may introduce additional ambiguous

views with respect to the query. These sources of

ambiguity, which should really be removed from the

database, effectively reduce the ranking of the best ranked

of the query’s nine neighbors. In the following sections, we

evaluate the performance of the indexer on both tasks while

varying the database size, the viewing sphere sampling

resolution, and the degree of missing data. First, however,

we describe the particular hierarchical, view-based 3D shape

representation that we use in the experiments.

7.1 A Directed Acyclic Graph Representation of
2D Shape

Our indexing framework will support any hierarchical
(DAG-based) image or shape description, such as a scale
space [1], [2]. In this paper, we demonstrate our framework
using a hierarchical shape representation of a 2D silhouette
based on a coloring of the shocks (singularities) of a curve
evolution process acting on simple closed curves in the
plane [5]. We have recently abstracted this system of shocks
into a shock graph where vertices are labeled by their shock
types and the shock formation times direct the edges (see
Fig. 1). The space of such shock graphs is completely
characterized by a small number of rules which, in turn,
permits the reduction of each graph to a unique rooted tree. In
recent work, we developed an algorithm for matching
two shock trees based on both topological structure and
geometric structure [6] and demonstrated it on a small
database of shock trees computed using curve evolution
techniques. The far more extensive experimentation carried
out in the current article is based on shock graphs
computed using the more efficient and robust skeletoniza-
tion algorithm developed in [7], [8] and the shock graph
construction algorithm reported in [9].

The experiments reported in this paper are applied to a
database of 2,688 shock graphs, representing 21 objects,
shown in Fig. 12, with 128 views per object. For each view,
we obtain the shock graph pertaining to the outermost

contour of the silhouette. With any indexing or recognition

application, success is a function of the contents of the

database. Specifically, one expects results to be better as the

distance between database members increases, i.e., the

ambiguity decreases. The fact that nearby views of the same

object can have similar shock graphs only increases

database ambiguity. Since the identification task compares

the parent (3D object) of the query to the parent of a

candidate view, the effects of this particular type (nearby

view) of ambiguity are minimized. However, for the pose

estimation task, this ambiguity represents a major challenge

and better results would be expected on a database of 2,688

distinct objects with one canonical view chosen per object.

7.2 Varying the Number of Objects

In this experiment, we examine the scalability of our
indexing framework. We plot the average position of the
correct response in the indexing ranking as a function of the
database size, fixing the number of views per object at 128.
Starting with a database of seven objects (896 views), the
seven objects shown in the first row of Fig. 12, we
consecutively add two objects at a time, following the
row-major order in Fig. 12, until we have 21 objects
(2,688 views) in total. The results of the experiment are
shown in Fig. 13. In Fig. 13a, we show the average of the
ranking position of the correct response as a function of
database size. The curves, from bottom to top, correspond
to the increasing database sizes (i.e., 7, 9, 11, 13, 15, 17, 19,
and 21). In Fig. 13b, we plot the number of candidates that
need to be examined to ensure that, in a given percentage of
the trials, the correct response is among the candidates.
Figs. 13c and 13d give the corresponding plots for pose
estimation.

Fig. 13 shows that the indexing strategy is effective in
reducing the number of models that need to be verified. The
average rank of the correct response is low both in object
recognition5 and in pose estimation. For example, in the
largest database of 2,688 views, many of which are
ambiguous, the highest rank of one of the query’s neighbors
(Fig. 13c) is still in the top 40, on average. We would expect
this rank to decrease with effective view clustering and the
removal of ambiguous views due to symmetries. Figs. 13b
and 13d also gives us some insight into appropriate values
of K in our indexing strategy. For example, in the database
with 2,688 views, we only need to verify the first
approximately 50 (for object recognition) and 250 (for pose
estimation) candidates to ensure that in 98 percent of the
trials, the correct response is included.

SHOKOUFANDEH ET AL.: INDEXING HIERARCHICAL STRUCTURES USING GRAPH SPECTRA 11

Fig. 12. The 21 3D models used to generate a database of 2,688 views. The objects are chosen so as to present a large variation in terms of shape
complexity. Note that simple objects (e.g., 1, 6, 16, and 19) are represented by small graphs that are also subgraphs of larger graphs in the database.

5. Here, the average rank varies mostly as a function of of the ambiguity
introduced by the class of graphs added to the database.



7.3 Varying the Sampling Resolution

In this experiment, we examine the performance of our
indexing framework as a function of viewing sphere
sampling resolution. Having fewer views per object reduces
the size of the database, thereby reducing search complexity.
Fewer views per object also reduces the number of
ambiguous views per object, which may boost the ranking
of the correct response. However, the cost of subsampling is
the increased distance between a query and its neighbors on
the viewing sphere. In the worst case, as the sampling
resolution falls, all of a view’s immediate neighbors may
belong to entirely different view classes, making it very
unlikely that any of the query’s neighbors will rank highly.
This is a limitation of our evaluation strategy and could be
alleviated if wewere to ensure that at least two samples from
each view class remain (since our queries are taken from the
database without replacement). Ultimately, only one proto-
typical view per view class need be stored in the database for
effective recognition (and qualitative pose estimation).

The subsampling is performed using a simple strategy.
For each object, we generate subsampled (from the original
128 views per object) view sets of size 96, 64, and 32 by
randomly eliminating views on the object’s viewing sphere.
Next, we use every view in the original database with
128 views per object as a query against each subsampled
database (the query view is also removed from the

subsampled model database if it is still present). We
conducted 2,688 trials for each of three randomly sampled
databases for each of the three sampling resolutions (a total
of 24,192 trials) and computed the average performance
with the results shown in Fig. 14. It should be noted that our
random strategy for subsampling the viewing sphere is
clearly inefficient since it does not focus on eliminating
redundant views from the database. As sampling resolution
is lowered, redundant views may remain while other views
may lose all their similar neighbors, effectively reducing
indexing performance.

Figs. 14a and 14b plot identification and pose estimation
performance, respectively, as a function of sampling
resolution. We can see that the performance on identifica-
tion and pose estimation is still strong when sampling
resolution drops to 64 views per object (over the entire
viewing sphere). Furthermore, when the sampling resolu-
tion drops to 32 views per object, the decrease in
performance is more pronounced but still degrades grace-
fully, reflecting the stability of the indexing and the
viewpoint invariance of the shock graph representation.

7.4 Varying the Degree of Missing Data

In the final experiment, shown in Fig. 15, we plot
recognition performance (for the entire database) as a
function of degree of missing data. This experiment is
designed to reflect the ability of the indexing framework to
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Fig. 13. Indexing performance as a function of increasing database size. (a) Rank of correct response for object identification; (b) number of
candidates required to ensure that, in a given percentage of the 2,688 trials, the correct response is among the candidates with eight curves
reflecting increasing database sizes from bottom to top; (c) and (d) are the corresponding plots for pose estimation.



accommodate large-scale perturbation. To generate a partial

query, we randomly choose a node in the query DAG and

delete the subgraph rooted at that node, provided that the

order (size) of the original graph does not drop by more

than 50 percent. We repeated the experiment 10 times for a

total of 26,880 trials.
As shown in Fig. 15, the performance of the indexer

decreases gradually as a function of the amount of missing

data, reflecting the framework’s ability to effectively index

with partially visible objects. Since an increasing amount of

missing data does not have a dramatic impact on the

performance, we can conclude that the framework satisfies

the important property of stability.
These results, representing the first systematic large-

scale perturbation study in the shock graph community, can

be considered an approximation to a form of “graph”

occlusion (with an invisible occluder) or a form of region

oversegmentation. Granted, this is not equivalent to placing

randomly shaped occluders with random sizes over

random parts of the query object, but it does represent a

significant test of the framework’s ability to successfully

index on the basis of local information. It should also be
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Fig. 14. Varying the viewing sphere sampling resolution: (a) object identification as a function of increased sampling resolution; (b) number of
candidates required to ensure that, in a given percentage of the trials, the correct response is among the candidates; (c) and (d) are the
corresponding plots for pose estimation. Note that, when the number of views per object is low, there are some queries for which none of its
neighboring views are in the database.

Fig. 15. Recognition performance as a function of amount (percentage) of missing data in the query.



pointed out that, for any of our pose estimation experi-
ments, the fact that the query is removed from the database
means that it must match a “nearby” view whose structure,
when similar, can be thought of as a noisy version of the
query. Together, we believe these effects make a strong case
for the robustness of the framework.

7.5 A Comparison with Our Previous Approach

We can compare the above results to a preliminary version of
our indexing framework, reported in [66], in which we
adopted both the simple vote weighting function, given in
(3), and the simple, many-to-many voting accumulation
strategy which led to our MOOVC algorithm for one-to-one
vote correspondence. Fig. 16 compares the improved frame-
work to its predecessor. In the second column, the indexing
votes are weighted according to (3) instead of (4), while
allowing a many-to-many correspondence for the nodes in
each model graph. The third column shows the performance
when a one-to-one vote correspondence is enforced and the
votes are not weighted according to the improved function,
(4). The fourth column shows the performance of the
indexing algorithm when a one-to-one assignment of votes
is allowed and each vote is weighted by (3), as was originally
proposed in [66]. The final column is the normalized, one-to-
one voting strategy. These results reveal that a one-to-one
vote correspondence produces much better indexing perfor-
mance and that (4) is particularly important if a one-to-one
vote correspondence is not ensured.

8 CONCLUSIONS

We have presented a low-dimensional description, or
signature, of a directed acyclic graph’s topology that
provides an effective mechanism for indexing into large
databases of DAGs. The signature is based on a novel
combination of the spectral properties of the graph’s
underlying adjacency matrix. Our sensitivity analysis of
these properties under minor perturbation due to noise,
occlusion, and node split/merge establishes the stability of
these properties and, hence, the signature. Each nonterm-
inal node in a query graph yields an independent index
which can be used to efficiently accumulate evidence for a
small set of models sharing the query’s topological
structure in the presence of large perturbation, such as
occlusion. In a series of experiments in the domain of
2D object recognition using shock graphs, we demonstrate
that our topological index is very effective in selecting a
small number of model candidates likely to contain the
target object. Furthermore, our experiments show that our
indexing framework scales well with increasing database

size, with decreasing sampling resolution, and with
increasing perturbation, in the form of missing data. Still,
2,688 graphs is not a large database and we plan to explore
the framework’s scalability on databases containing tens of
thousands of graphs. This may require the integration of
both node and edge attributes into the index to reduce
ambiguity. Although we demonstrate the framework on a
shape representation (computer vision) application, the
framework is indeed general and could be applied to any
indexing domain including, for example, any hierarchical or
multiscale structure in computer vision, part-whole hier-
archies in knowledge representation, syntax or parse trees
in computational linguistics, CSG trees in computer
graphics, and phylogenetic trees in computational biology.
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