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Abstract—We present a model-based framework for incremental, adaptive object shape estimation and tracking in monocular image

sequences. Parametric structure and motion estimation methods usually assume a fixed class of shape representation (splines,

deformable superquadrics, etc.) that is initialized prior to tracking. Since the model shape coverage is fixed a priori, the incremental

recovery of structure is decoupled from tracking, thereby limiting both processes in their scope and robustness. In this work, we describe

a model-based framework that supports the automatic detection and integration of low-level geometric primitives (lines) incrementally.

Such primitives are not explicitly captured in the initial model, but are moving consistently with its image motion. The consistency tests

used to identify new structure are based on trinocular constraints between geometric primitives. The method allows not only an increase

in themodel scope, but also improves tracking accuracy by including the newly recovered features in its state estimation. The formulation

is a step toward automatic model building, since it allows both weaker assumptions on the availability of a prior shape representation and

on the number of features that would otherwise be necessary for entirely bottom-up reconstruction. We demonstrate the proposed

approach on two separate image-based tracking domains, each involving complex 3D object structure and motion.

Index Terms—Shape recovery, object tracking, parametric models, geometric constraints, bundle adjustment, optimization.

�

1 INTRODUCTION

MANY applications, such as robust and flexible object
tracking or generic object recognition, depend on the

recovery of reduced part models that capture the coarse
shape of an object. For tracking, it is desirable to build
models on the fly, but, often, enough image features cannot
be simultaneously detected and tracked over sufficient
frames in order to obtain the minimum number of
equations for direct, bottom-up reconstruction. To address
these problems, various reduced prior shape models have
been used [24], [1], [13], [40], [28], [29], [16], [44], [25], [26].
For instance, deformable superquadrics represent a power-
ful class of models whose recovery from range data has met
with considerable success, e.g., [36], [8]. However, the
recovery and tracking of such models from 2D data have
been elusive due to the weak 3D shape constraints provided
by a sparse set of 2D features, such as contours or regions.
In simple scenes, where extracted image regions (or contour
groups) map one-to-one to the surfaces of qualitatively-
defined parts, high-level, parametric part recovery is

possible [12], [11]. However, for images of real objects, in
which salient image features do not necessarily map to
salient model structure [23], the recovery of the coarse
shape of an object is an open problem.

Consider, for example, the situation in which only a
small portion of the object can be fit, albeit crudely, with a
set of qualitatively defined, parametric volumetric parts.
For moving objects or cameras, the estimates of both the
shape and pose of the parts could be improved by tracking
them. In previous work, a similar approach was used to
successfully track simple, part-based objects in image
sequences [5], [11]. However, if the part coverage is poor,
i.e., much of the object’s shape is not modeled by the
recovered parts, or if the level of abstraction high, i.e., there
is little pixel-based correspondence between detected image
features and projected model features, neither the accuracy
of the recovered shape and pose nor the scope of the model
will improve with tracking. How, then, can we exploit the
motion of the object to improve both the accuracy and scope
of the recovered shape?

In this paper, we present a dynamic, incremental
approach to shape recovery and tracking, assuming that
at least part of the model can be recovered during
initialization. We adopt a parametric framework, where
3D volumetric part models can adapt to the data. While in
the initial frame the pose and shape of the parts may not be
accurately recovered, as the object moves the motion is
tracked and the part shape refined. We show that the
motion estimates provided by the initial parts can be often
sufficient to identify other object structure that is moving
consistently with them. Here, we use geometric consistency
constraints to verify relations between the rigid parameters
of the 3D model and independently moving image lines.
Consistent lines are reconstructed and included in the 3D
model in order to improve its shape and motion estimation
over time.1
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Organization: Following a discussion of related work in
Section 2, we present our parametric model estimation
framework in terms of geometry and dynamics in Section 3.
In Section 4, we give a framework to incrementally integrate
consistently moving line features into the model. In
Section 5, we discuss two experiments involving objects
with complex shape and motion and show that the method
is able to recover new model structure efficiently from
monocular video sequences. Our quantitative results show
that the incrementally recovered structure significantly
improves the accuracy and speed of the tracking process,
providing important constraints, especially during difficult-
to-estimate degenerate object configurations with respect to
the camera.

2 RELATED WORK

Approaches to structure and motion estimation can be
broadly classified as top-down (model-based) and bottom-
up (feature-based). Model-based techniques rely on minimiz-
ing a residual error between model feature predictions and
image observations assigned to them: 1) CAD-based
methods [24], [1], [13] assume precise, off-line constructed
rigid object models and estimate their motion using
nonlinear least-squares. Despite their effectiveness, such
methods are limited to tracking known objects having fixed,
nonadaptive shapes. 2) Physics-based frameworks [40],
[28], [29], [16] employ either reduced degrees of freedom
object parameterizations, like splines or superquadrics, or
point-based representations with regularized physical
properties.2 From an optimization viewpoint, the deform-
able approaches involve quadratic energy functions and are
solved using estimation schemes based on gradient descent
to find local minima. 3) Parametric models [44], [25], [26]
are specifically built to represent certain classes of objects,
but without physical analogy. Although their formulation is
different from the physics-based methods, they are similar
in terms of flexibility and mathematical treatment, i.e., their
structural and rigid parameters are estimated iteratively
using nonlinear techniques.

Bottom-up, feature-based structure and motion estimation
techniques differ in the types of correspondences (2D to 2D,
2D to 3D, or 3D to 3D) and features (lines, points, or
corners) assumed available—see [21], [18] for a review.
Some reconstruction algorithms are based on trilinear (or
more generally multilinear) constraints between points and
lines [37], [32], [17] in multiple views. Others [7], [45], [14]
incrementally reconstruct features as they become available
by exploiting pairwise distance or (for lines) angular
invariance constraints. All these methods require a mini-
mum number of simultaneously available features in order
to obtain enough equations to directly solve for structure
and motion. Rigid nonlinear batch approaches [38], [2], [39]
can work with missing features and are based on the
inversion of the forward model, a method closely related to
the relative orientation algorithm [20]. Deformable batch
methods [3] extend classical factorization schemes [42] to

recover a linear deformable model representation and the
camera motion under certain rigidity assumptions.

In this work, we rely on flexible parametric models [44],

[40], [28], [29], [16], [25] as basic representational primitives.
Nevertheless, as powerful as these techniques are, they
have two important limitations:

1. Fixed Representation: A common assumption is that
the model representation is fixed and known a
priori, sometimes imposing a heavy burden on
initialization [12], [11]. Furthermore, a representa-
tional gap exists between the coarse, high-level
parametric shapes used to model the objects and
low-level features like points, lines, corners, or
curved contours that can be detected in the image
[23]. It is not obvious how to bridge this gap to
represent object markings, discontinuities, or other
fine surface detail through the inclusion of other
basic geometric primitives, e.g., lines or planes, etc.
In fact, the diversity of parameterizations corre-
sponding to different features at different abstraction
levels usually leads to difficulties when integrating
them within a single representation or optimization
procedure [31]. Our method aims for a representa-
tion that is flexible, can be estimated jointly (in a
single optimization problem), provides higher-level
abstraction and low-level image coverage, and can
be refined and augmented during tracking.

2. Estimation and Dimensionality: The flexibility of an
object representation that can adapt comes at the
expense of more parameters to estimate. To avoid
singularities or ill-conditioning, it is important to use
complementary image cues that can induce local
minima with large, stable basins of attraction in
parameter space. (For good modeling, these corre-
spond to true object localization in the image.)
Methods for constraint (cue) integration in a model-
based framework have successfully used contours
and stereo [41], shading and stereo [16], contours and
optical flow [9], and shading [30]. Beyond the
particular choice of sources of information they use,
these approaches differ in the way they fuse them.
Some combine information in a symmetric manner,
weighting it statistically (e.g., soft constraints). Others
favor a particular hierarchical constraint satisfaction
order with an exact policy, such that inconsistent
contributions to the solution from constraints further
down in the hierarchy are pruned away by con-
straints higher up (hard constraints).

We work in a robust model-based tracking framework,
where we assume an incomplete initial model and recover
additional structure using geometric consistency tests. The
tests are based on those used in separate, bottom-up
structure and motion estimation for 2D to 2D line
correspondences in the Euclidean calibrated case [21],
[27], [46]. Unlike these approaches, we assume an incom-
plete adaptive model and we do not solve for the rigid
parameters in a bottom-up fashion. Instead, given the
model’s estimated rigid parameters and independently
tracked lines in the image, we test only if these motions
are consistent and reconstruct the lines that pass the test.
Their image contribution is fused together with point-based
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1. The model state combines higher-level 3D shape parameters and low-
level line features. The shape has a point discretization and image
measurements are collected for points and lines (Fig. 1).

2. Regularization is based on “physical” measures like stiffness or
damping.



contour and intensity observations into an augmented
model-based cost function for tracking (Section 4.5).

3 MODEL REPRESENTATION AND ESTIMATION

The next two sections review the geometric modeling and
optimization used in our framework (see [33] for details).
We describe how new image features, initially not modeled,
are detected and reconstructed and how we design
modified cost functions that include them. Model para-
meters are computed using a robust MAP estimator. For
increased reliability, this can be embedded in a multiple
hypothesis framework [19], [4], [34]. Given the second-order
continuity of our cost surface, direct multiple minima
search methods [35] are also applicable.

3.1 Model Geometry

The reference shape of the model is defined over a
domain � as p ¼ Gðxd;uÞ, where G defines a global
deformation based on parameters xd and u 2 � is an
element of the model discretization (a point on its surface
mesh). The model is represented with (possibly) multiple
deformable superquadric ellipsoid parts having global
tapering and bending deformations [36], [40]. The
prediction of an element u in the image is computed as
r ¼ PðTðGðxr;pÞÞÞ, where T is a rigid displacement
represented by xr and P is a perspective image trans-
form. The rigid and nonrigid parameters are assembled in
a model state vector, ðxr;xdÞ. The state is also augmented
with incrementally recovered 3D line parameters (see
Fig. 1).

3.2 Cost Function and Optimization

During tracking, robust prediction-to-image matching cost
metrics and their gradient and Hessians, gi;Hi, are
evaluated for each predicted model feature ri (for model
feature ui) and the results are summed over all features to
produce the image contribution to the overall parameter
space cost function. We use image-based cost metrics, such
as robust normalized edge energy, intensity-based cost
metrics, and feature-based cost metrics (for new lines that
are incrementally recovered). Thus, we (implicitly or
explicitly) associate the predictions ri with one or more

nearby image features �rri. The cost is a robust function � of

the prediction error �riðxÞ ¼ �rri � riðxÞ, where �ðsÞ can be

any increasing function with �ð0Þ ¼ 0 and d
ds �ð0Þ ¼ �

�2
. This

models error distributions corresponding to a central peak

with scale � and a widely spread background of outliers �.
The overall parameter space cost function consists of

terms from contour fC , intensity fI , and incrementally

reconstructed lines fL: f ¼ fC þ fI þ fL. Model state esti-

mation is based on local cost optimization. We use a second

order trust region method, where a descent direction is

chosen by solving the regularized subproblem [15]:

ðHþ �WÞ �x ¼ �g, where W is a symmetric positive

definite damping matrix, � is a dynamically chosen

weighting factor, g ¼ df
dx , and H ¼ d2f

dx2 . In our case, H ¼
HC þHI þHL and g ¼ gC þ gI þ gL. Specific forms for

individual feature costs are given next.

3.2.1 Contour Cost

Simple image preprocessing operations are used during

feature extraction for the contour likelihood as follows:

1. the images are smoothed with a Gaussian kernel;
2. they are contrast normalized;
3. a Canny edge detection is applied;
4. an edge distance Chamfer image is computed.

Given the distance image, we build a two-dimensional

continuous potential surface, fC ¼ 1
2

R
kPck2du, by fitting

local quadric surfaces to 3� 3 image patches (this is a

windowed parabolic fitting method, also known as Savits-

ky-Golay filtering). The gradient and Hessian matrices of

the corresponding contour cost term (applied to model

features that lie on occluding contours or on high surface

curvature) can be derived from the model-image Jacobian

and the corresponding Pc quadric terms:

gC ¼
Z

dPcðrðxÞÞ
dx

du ¼
Z

J> dPc

dr
du; ð1Þ

HC ¼
Z

d2Pc

dx2
du �

Z
J> d2Pc

dr2
Jdu: ð2Þ
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Fig. 1. Estimation pipeline for incremental tracking. On the left, we show the parametric model and incrementally recovered lines. On the right, we

give the predictive pipeline that relates model parameters to image measurements during tracking. The recovered line features are included in the

model and all parameters are jointly estimated in a nonlinear refinement loop as follows: the coarse shape parameters, the new reconstructed lines,

and the common rigid parameters. This gives robust and unbiased results.



3.2.2 Intensity Cost

To model not only geometric image features, like edges, but
also image intensity variations, we use cost models based
on intensity residuals, �I. The observables are image gray
values or colors, I, rather than feature coordinates, r. To
transfer from a point projection model, r ¼ rðxÞ, to an
intensity-based one, we compose with the assumed local
intensity model, I ¼ IðrÞ, and premultiply point Jacobians
by point-to-intensity Jacobians, dI

dr . Given the intensity cost:
fI ¼ 1

2

R
k�Ik2du, the gradient is:

gI ¼
Z

�0J>�I>
dI

dr
du: ð3Þ

Similarly, the cost Hessian in a Gauss-Newton approxima-
tion is:

HI �
Z

�00J> dI

dr

� �> dI

dr
Jdu: ð4Þ

Used in optimization, the intensity cost provides soft
model-based optical flow constraints. Implicitly, the image
patches under the 3D model prediction during initialization
(or the previous image during tracking) are registered
against the current image. The inter-frame flow is explained
by the 2D variations allowed by the shape and motion
parameters of the 3D model. We collect measurements at
visible model nodes inside the predicted convex-hull and
avoid the occluding contours because of likely optical flow
constraint boundary violations.

4 LINE FEATURE FORMULATION

In Section 3, tracking is based on robust estimation, where
model parameters are constrained by contour and intensity
observations. These are localized in the neighborhood of
predictions for the already-known model parts. In this
section, we show how new lines can be integrated into the
model—these are not part of the initial model, but evidence
for them exists in the image. Tracking starts with a minimal
model and incrementally over time we: 1) identify line
features moving consistently with the model and 2) aug-
ment the model with those features to improve its tracking.

Our incremental tracking method is based on image-level
and model-level processing. We use contour and intensity
observations to estimate the rigid and nonrigid parameters
of the model. Independently, we use image-based techni-
ques to detect and track lines (This involves interest point
tracking and line fitting, see Section 5). These are image-
tracked lines (ITLs). We decide if an ITL (not present in the
model) belongs to the object using two geometric consis-
tency tests derived from ITL’s in at least three frames. The
lines that pass the test are consistent image-tracked lines
(CITLs). We recover CITL structure in a model-centered
coordinate system and predict their appearance in subse-
quent images based on the current estimate of the model’s
rigid motion. These predictions are the model-predicted lines
(MPLs). The error between a CITL and a MPL is used to
define additional image alignment cost terms. The recon-
structed lines are then reestimated jointly with other model
parameters to improve robustness and remove bias. The
tracking pipeline is shown in Fig. 1.

4.1 Line Parameterization

We denote 3D lines by li ði ¼ 1 . . .n) and their projected
image lines (or segments) by Li : ði ¼ 1 . . .n). A 3D line is
parameterized by a unit vector v, representing one of its
two possible directions, and a vector d perpendicular to l

(see Fig. 2). This is a six-dimensional over-parameterization
with only four intrinsic degrees of freedom. The constraints
among variables determine a four-dimensional manifold in
the six-dimensional representation space and any line can
be identified with two points on this manifold [22], [39].

The line l and the optical center of the camera determine
a plane (the line’s interpretation plane) with normal,
N ¼ ðNx;Ny;NzÞ>. The interpretation plane intersects the
image plane, defined by z ¼ f (with f the camera focal
length) at L. The equation of L is:

NxX þNyY þNzf ¼ 0: ð5Þ

The relation allows the plane normal containing a 3D line
to be recovered from the equation of its projection. Given a
plane, P ¼ ðNx;Ny;Nz; 0Þ> ¼ ðN>; 0Þ> and any point X ¼
ðX;Y ; Z; 1Þ> belonging to the interpretation plane of a line,
the plane equation is: P>X ¼ 0.

4.2 Model-Based Consistency Tests

Standard formulations for structure and motion estimation
using image line correspondences (e.g., [21], [46], [27]) rely
on three frames and at least six line correspondences
(although no formal proof is yet available [21]) to uniquely
recover the structure and motion of a rigid object.3 For the
two view case, the resulting system of equations does not
constrain the motion at all. There is a consistent structure
for any set of image lines and any motion.

Consider the motion of a line, l, in three successive frames
(li; i ¼ 1; 2; 3 with direction vi; i ¼ 1; 2; 3) and image projec-
tions L (Li; i ¼ 1; 2; 3). The motion between frames 1 and 2
has translation t12 and rotation R12, whereas for frames 1
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3. Within a scale factor for translation and structure parameters.

Fig. 2. Line parameterization using distance and unit direction vectors.
The representation is six-dimensional, but there are only four degrees of
freedom due to unit direction and orthogonality constraints.



and 3, these are t13 and R13. The normals of the interpreta-
tion planes, P1; P2; P3, are determined by Li and the centers
of projection are N1;N2;N3, respectively (see Fig. 3).

The constraints between line normals and the rigid
motion in three frames can be derived either geometrically
or algebraically as [21], [27], [46]:

N1 � ðR�1
12 N2 �R�1

13 N3Þ ¼ 0; ð6Þ

� t12 � ðR12N1Þ ¼
kN2 �R12N1k
kN2 �R�1

23 N3k
�R�1

23 t23 �R�1
23 N3: ð7Þ

In this model-based approach, we do not directly solve for
rotation and translation. Instead, given a model with known
motion and independent ITLs, we verify if the lines move
consistently with the model (CITLs). Given an ITL in
three frames (i.e., knowing N1, N2, and N3) and the rigid
motion of the model (i.e., R12, t12, R13, t13), the relations (6)
and (7) are used to test if the 2D line motion is consistent
with the 3D rigid motion. It can be shown that (6) and (7)
are necessary and sufficient conditions for consistency.4 If
the test is verified, we hypothesize that the line is part of
the object and we include it in its model. Notice that this
model-based test is flexible. It can apply to individual ITLs
and does not require a minimal set of three-frame ITLs as
in bottom-up structure from motion algorithms.

4.3 Model-Based Structure Recovery

Once a moving image line has been assigned to the model,
we reconstruct its 3D structure, i.e., ðv;dÞ, in a model-
centered coordinate system. To increase robustness, one can
use as many line correspondences in as many frames (at
least two) as are available. This is done as follows: All
interpretation planes for the lines in the camera coordinate
system are transformed to a common, model-centered
coordinate system. Each line, li, with interpretation plane,
Pi, is displaced by T�1

c T�1
i , where:

Tc ¼
Rc tc
0 1

� �
ð8Þ

is the displacement of the camera and Ti is the displace-
ment of the model (in the world coordinate system) in
image frame i. The equation of the plane in the object-
centered coordinate system is: Pi

> �T�1
c T�1

i �X ¼ 0. By
stacking together the equations for all lines, we obtain:

A �X ¼

P>
1 �T�1

c T�1
1

P>
2 �T�1

c T�1
2

. . .

. . .

. . .

P>
k �T�1

c T�1
k

2
666666664

3
777777775
�X ¼ 0: ð9Þ

All the planes have to intersect at a common line, so the
½k� 4� matrix A should have rank 2. Any point p on the
intersecting line can be written as a linear combination of
the singular vectors corresponding to the two smallest
singular values of A:

p ¼ a �Xs1 þ b �Xs2: ð10Þ

The line can be reconstructed as:

v ¼ Xs1 �Xs2 d ¼ I� v � v>

k v k2

 !
�Xs1: ð11Þ

The stability of the reconstruction can be verified in
terms of the ratio of the second and third singular values of
A (in the noise-free case, the last two singular values should
be zero) being satisfactory when this ratio is high. This
linear method, although robust, is prone to bias in the initial
line parameter estimates due to fixed rigid displacements.
To remove bias, we work in a nonlinear estimation
framework that jointly reestimates all the model parameters
(including new reconstructed lines) based on robust,
statistically meaningful error norms.

4.4 Forward Model Line Prediction

Once consistent lines (CITL) have been identified, recon-
structed, and included in the model, they are used to
improve tracking by providing additional constraints on the
alignment with the object.

Consider the two frame case, as shown in Fig. 4. Given
ðN1;v1;d1Þ and the model rigid motion t12;R12, we can
obtain ðN2;v2;d2Þ as:

v2 ¼ R12v1; ð12Þ

d2 ¼ ðR12d1 þ t12Þ � v2ððR12d1 þ t12Þ � v2Þ; ð13Þ

N2 ¼ v2 � d2

k v2 � d2 k : ð14Þ

The Jacobian of the 3D line transform, with regard to
structure and motion parameters, is complex but straight-
forward enough to derive analytically (we used Maple for
automatic differentiation). Given a line represented as
kl ¼ ðv>;d>Þ> and the rigid model parameters, xr, we
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4. A 3D line has four intrinsic degrees of freedom while a projected
image line has only two. Measurements are collected in three frames, so this
will determine 3� 2� 4 ¼ 2 independent relations.

Fig. 3. Line motion in three frames.



concatenate structure and motion parameters5 as xl ¼
ðk>

l ;x
>
r Þ

>. The Jacobian of the line parameters with respect

to the model parameters is a ½6� 13� matrix: Jkl
¼ dkl

dxl
.

4.5 Line Cost

Given a MPL, as in (5), and a CITL, we define 2D residual

errors for their misalignment (see Fig. 5). The transform in

(14) maps a 3D line to the interpretation plane normal used

for alignment. This involves the computation of a

½3� 6� Jacobian: JN ¼ dN
dkl

. The Jacobian Jl ¼ dN
dxl

for the

transform that takes the line representation in the model

frame through the model rigid motion into an interpretation

plane normal is computed via the chain rule using

Jacobians Jkl
and JN .

Given Ni, the normal of the CITL interpretation plane,

and Nm, the normal of the MPL interpretation plane, the

cost fliðxÞ corresponding to errors �NiðxÞ ¼ Ni �Nm over

an ensemble of lines is:

fL ¼
X
i

fliðxÞ ¼
1

2

X
i

�ið�NiðxÞWi�NiðxÞ>Þ: ð15Þ

The overall cost gradient and Hessian uses contour,

intensity, and line observations, cf., (1), (2), (3), (4), and (15),

respectively:

g ¼ gc þ gI þ
X
i

Jl
>
i �

0
iWi�Ni; ð16Þ

H � Hc þHI

þ
X
i

Jl
>
i ð�i0Wi þ 2�00i ðWi�NiÞðWi�NiÞ>ÞJli:

ð17Þ

The use of a robust error norm tolerates incorrect line

hypotheses. For example, although initially detected as

consistent (and included in the model), a line can be
removed from the model if it persists being an outlier for a
long period of time. Detecting such situations involves
verifying whether the outlier’s cost influence was sup-
pressed by the robust norm during large time periods.

5 EXPERIMENTS

The experiments we show consist of two monocular

sequences, each containing 4 seconds of video (200 frames
recorded at 50 fps) of a moving bike (Fig. 9) and of a space
robotics end-effector grapple fixture (Fig. 11). Both se-
quences involve significant translational and rotational
motion in the camera frame. Part of the bike structure is
modeled and tracked using a model made of three pieces
(Fig. 6a), whereas the grapple fixture is modeled using a
single superquadric (Fig. 7a). The initial model shape and
pose was provided manually in all experiments. An
initialization method based on aspect graphs [12], [11]
could be used to automate the process, but we haven’t
pursued this here. The models are displayed overlaid and
rendered flat-shaded gray (the bike sequence) and brown
wireframe (the grapple fixture sequence), respectively.6 The
recovered models are shown in Fig. 6b and Fig. 7b, where
the incrementally reconstructed lines appear to be in good
alignment with the ridges of other nonmodeled surfaces of
the object.

In a first experiment, we try to track the grapple fixture
using a nonadaptive model made of a superquadric with
fixed parameters (Fig. 8). Tracking fails due to the incorrect
shape and pose initialization. The model appears well-fitted
in frame 60, but as the object moves, it becomes clear that
the initialization was inaccurate. The model gradually drifts
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Fig. 4. Forward line transfer under the action of the Euclidean group. Fig. 5. Line alignment error is based on the alignment of their
interpretation planes.

5. These are parameters estimated with contributions from image line
observations, but do not include the shape parameters xd (see Fig. 1). The
vector thus has seven parameters for the rigid motion (represented with
quaternions for rotations) and six parameters for each 3D line.

6. We use a fine, uniform superquadric retessellation for tracking [8], but
display the curvature based one for better image visualization. The mesh
appears sparse because its points are densely concentrated at sharp corners
on the surface.



and ultimately fails to track in frame 208. Such situations
can easily occur in many applications due to uncertain
monocular initialization (e.g., due to viewpoint degener-
acy), incomplete shape coverage, or partial occlusion.

We have also run tracking experiments using adaptive,
incrementally growing models on the bike and the grapple
fixture sequences. In both of them, prior to new line
reconstruction, we track using the initial part model and use
contour and intensity measurements. The rest of the
sequence (once CITLs have been identified) is tracked
using the enhanced model with new incrementally recon-
structed lines. They augment the parameter space and
provide additional alignment residuals between CITLs and
MPLs. Lines not part of the initial models are tracked using
an independent line tracker based on interest points with
line fitting in each frame. The lines are detected using a
method described in [6]. This identifies edges and their
orientations, hypothesizes lines through them, and selects
those having strongly supported edgels using RANSAC
(see [6] for details).

It is important that the rigid motion estimation is
accurate, because it affects both the validity of the
consistency tests and the quality of line reconstruction. In
practice, the models are initialized manually and their
parameters are usually uncertain. Therefore, we neither test
consistency nor reconstruct lines immediately after initi-
alization, but allow a delay (about 20 frames) so that the
models lock onto the data. Results for the runs are shown in
Fig. 9 and Fig. 11. Lines determined as CITLs are plotted in

green while the model reconstructed and predicted lines are
plotted in yellow.

In the bike sequence, the linear reconstruction is based
on 12 frames within the interval, 20-60. Although no lines
are reconstructed until frame 20 in the bike sequence, their
reprojection is displayed over the entire sequence. Because
reconstruction uses a model-centered coordinate frame, the
lines can be predicted backward in the initial image frames
once the model motion has been estimated. In the grapple
fixture sequence, lines are shown as they are incrementally
tracked and recovered (thus, some are not visible initially).
The consistency tests are performed several times for
different groups of lines, in frames (20, 40, 60), (120, 140,
160), and (160, 175, 190). The tests are evaluated using a
threshold � ¼ 0:05 that worked well across the sequences
we tried. The stability of the reconstruction is checked by
the ratio of the second and third singular values associated
with the matrix A. This gives a principled criteria for
deciding if a set of lines and their displacements support
accurate reconstruction. Potential bias in the linear recon-
struction is eliminated by reestimating the lines jointly with
all the rigid and nonrigid model parameters in a nonlinear
loop. Indeed, in both sequences Fig. 9 and Fig. 11, the
predictions from lines added to the model correctly align
with the lines of the object in the image.

Tracking is more stable and accurate as more line

features are reconstructed and used. In Fig. 10, we give

quantitative plots that show the decrease in the number of
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Fig. 6. (a) Initial model. (b) Reconstructed model includes the initial chain of superquadric parts modeling the central frame of the bike and the

incrementally reconstructed lines (in yellow) overlaid on the object in the image.

Fig. 7. (a) Initial model. (b) Reconstructed model with additional structures (in gray) shown in good alignment with the incrementally recovered lines.



iterations of our nonlinear optimizer as more line residuals

are added to the model cost function. The average per-node

model error decreases from 0.9 (initially) to 0.4 pixels

(frame 60) in the bike tracking sequence, and from 1.2 pixels

(initially) to 0.8 (frame 60), 0.6 (frame 160), and 0.2

(frame 190) in the grapple fixture sequence, respectively.

Clear improvements are noticeable e.g., for the difficult-to-

track towards-camera motion at the end of the grapple

fixture sequence.
For the grapple fixture sequence, we also analyze the

tracker failure modes with respect to inaccuracies in line
detection and different cost error distributions. We per-
formed tracking runs using costs based on Gaussian and
Lorentzian error distributions [33]. We also simulated
two noise levels in the line feature extraction, where we
perturbed the tracked points by 2 and 4 pixels before line
fitting.7 These sets of experiments are identified as G2, G4,
R2, R4 (G is for Gaussian, R for robust, and the digit gives

the noise level in the feature extraction). We decided
tracking failure by visual inspection at the frame where
the model starts drifting from the object: e.g., in Fig. 8, this
occurs around frame 135. We found G2=163, G4=147,
R2=198, and R4=175 with a clear performance advantage
for the robust optimizer. The accuracy of line detection
becomes critical towards the end of the sequence
(frame 180), where small errors in the 3D rigid motion
estimation can make the model width parameters highly
uncertain (close to unobservable). This is caused by the
incidental alignment of the model’s depth axis with the
camera ray of sight. In such degenerate cases, the estimated
rigid motion is significantly improved by including new
lines, provided these can be detected accurately.

6 LIMITATIONS AND FUTURE WORK

The approach we have presented aims at flexibly modeling

and tracking objects, but still has limitations that motivate

future research:

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 5, MAY 2005

Fig. 8. Using an uncertain, manually initialized nonadaptive model (brown wireframe) leads to tracking failure. Although, initially, the model appeared

well-fitted, the motion revealed that the shape was incorrect. The imperfect initialization and the use of a model that cannot dynamically adapt

eventually lead to tracking failure. (a) Frame 60. (b) Frame 100. (c) Frame 130. (d) Frame 160. (e) Frame 180. (f) Frame 208.

7. The variance of the cost error distribution is 1.5 in all experiments.
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Fig. 9. Tracking and augmenting a bike model (bike triangular frame, gray flat shaded) with additional lines. The MPLs are shown in yellow, the CITLs

(green) are also visible on color plates. We show all the reconstructed lines (their MPL) in all frames, but lines are reconstructed incrementally (see

text). (a) Frame 0. (b) Frame 40. (c) Frame 80. (d) Frame 130. (e) Frame 170. (f) Frame 200.

Fig. 10. The number of iterations per frame (Bezier interpolation) decreases due to the addition of line constraints.



1. We assume that at least a portion of the object can be
modeled using simple volumetric parts and that at
least one of them can be coarsely fit using a
parametric model. Previous work addressed the
direct recovery of volumetric deformable models
from 2D images [10], [11]. That work assumed that
image regions mapped to volumetric part surfaces,
which turned out to be a strong assumption. More
recent research has investigated techniques for
model-based region merging [23].

2. The consistency tests and the incremental structure
added to the model are currently restricted to lines,
whereas estimation applies to a model discretized
with points and lines. The framework can be
extended to planar surface patches and curves.

3. Asdiscussed inSection1, a long-termcomputervision
goal is flexible object modeling and qualitative shape
recovery for recognition. The framework presented
here improves the shape and motion estimation of

some initially recovered volumetric model parts and
adds additional structure to them. Still, a representa-
tional gap exists between this structure in the form of
lines and the volumetric parts, useful for qualitative
modeling and recognition. It would be interesting to
group the incrementally recovered features and
recover volumetric part abstractions from them.

7 CONCLUSIONS

We have presented a framework for incremental model

acquisition and tracking using parametric adaptive models.

We relax the constraint that the model has to be entirely

known a priori and enhance its basic discretization

structure in terms of points and lines, but preserve a

higher-level representation in terms of parametric shapes.

This allows a flexible use of model-based geometric

consistency tests for incremental 3D line feature recovery

and eliminates the need for minimal sets of feature
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Fig. 11. Grapple fixture model tracking (the grapple fixture model in wireframe, in brown) with MPLs (yellow). CITLs (green) are also visible on color
plates. The model increases its scope during tracking and 10 additional lines, initially not modeled, are incrementally reconstructed and integrated
into estimation by frame 190. The shape and the motion of all features (superquadric parameters, additional lines, rigid motion) are jointly estimated
in a nonlinear loop to avoid bias. (a) Frame 0, no reconstructed lines. (b) Frame 40, 3 reconstructed lines. (c) Frame 80, 3 reconstructed lines.
(d) Frame 120, 4 reconstructed lines. (e) Frame 160, 7 reconstructed lines. (f) Frame 190, 10 reconstructed lines.



correspondences that may often not be available for direct,
bottom-up reconstruction. Tracking robustly combines
linear and nonlinear estimation techniques and augments
the initial model-based cost function with new line
measurements. We have experimentally demonstrated
good reconstruction and tracking accuracy in two separate
image domains, both involving objects with complex
structure and motion.
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