
Generic Model Abstraction from Examples
Yakov Keselman, Member, IEEE, and Sven Dickinson, Member, IEEE

Abstract—The recognition community has typically avoided bridging the representational gap between traditional, low-level image

features and generic models. Instead, the gap has been artificially eliminated by either bringing the image closer to the models using

simple scenes containing idealized, textureless objects or by bringing the models closer to the images using 3D CAD model templates

or 2D appearance model templates. In this paper, we attempt to bridge the representational gap for the domain of model acquisition.

Specifically, we address the problem of automatically acquiring a generic 2D view-based class model from a set of images, each

containing an exemplar object belonging to that class. We introduce a novel graph-theoretical formulation of the problem in which we

search for the lowest common abstraction among a set of lattices, each representing the space of all possible region groupings in a

region adjacency graph representation of an input image. The problem is intractable and we present a shortest path-based

approximation algorithm to yield an efficient solution. We demonstrate the approach on real imagery.

Index Terms—Image abstraction, automatic model acquisition, learning from examples, shape description, object recognition, graph

algorithms.

�

1 INTRODUCTION

1.1 Motivation

IN the object recognition community, object representa-
tions have spanned a continuum ranging from proto-

typical models (often called class-based or generic models)
to exemplar-based models (often called template-based or
appearance-based models). Those advocating prototypical
models address the task of recognizing novel (never before
seen) exemplars from known classes whose definitions
strive to be invariant to changes in surface texture, color,
part articulation, and minor deformation in shape. Those
advocating exemplar models address the very different task
of recognizing particular instances of objects, such as JFK’s
face or a can of Coke. In a completely orthogonal direction,
prototypical models can be object-centered or viewer-
centered (or both [14], [13]), provided that the 3D or
2D features that comprise the model satisfy the above
invariance goals. Similarly, exemplar models can be object-
centered, specifying the exact 3D geometry of an object, e.g.,
a rigid CAD model “template,” or viewer-centered,
specifying the exact appearance of an object.

Interestingly, the evolution of object recognition over the
past 30 years has followed a path from prototypical models
to exemplar models, as illustrated in Fig. 1. Beginning in the
1970s, vision researchers aimed for prototypical vision
systems using complex volumetric parts such as general-
ized cylinders (e.g., [5]) and, later, superquadrics (e.g., [40])
and geons (e.g., [4]). The main challenge to these early
systems was the representational gap that existed between the
low-level features that could be reliably extracted and the

abstract nature of the model components. Rather than
addressing this representational gap, the community effec-
tively eliminated it by bringing the images closer to the
models. This was accomplished by removing object surface
markings and structural detail, controlling lighting condi-
tions, and reducing scene clutter. Edges in the image could
then be assumed to map directly to the limbs and surface
discontinuities of high-order volumetric parts making up
the models. The results left many unsatisfied as the images
and objects were often contrived and the resulting systems
were unable to deal with real objects imaged under real
conditions.

The 1980s ushered in 3D models that captured the exact
shape of the object. Such models, often in the form of CAD
models, were effectively 3D templates, e.g., [22], [32].
Provided that such a model could be acquired for a real
object, the community now found that it could build object
recognition systems that could begin to recognize real
(albeit restricted) objects. This time, the representational
gap was eliminated by bringing the model closer to the
imaged object, requiring the model to capture the exact
geometry of the object. Moreover, since the presence of
texture and surface markings seriously affected the compu-
tational complexity of these systems, they too selected
objects which were texture-free—objects for which a salient
image edge discontinuity mapped to a polyhedral edge.
Again, there was dissatisfaction as the resulting systems
were unable to recognize complex objects with complex
surface markings.

Recently, beginning in the 1990s, appearance models
have replaced CAD models and, for the first time,
recognition systems were constructed that could recognize
arbitrarily complex objects, e.g., [50], [36], [31]). Storing a
dense set of images of the object from all possible view-
points, the appearance models were not limited by object
geometric complexity, texture, or surface markings. In this
case, the representational gap was eliminated by bringing
the models all the way down to the image. The resulting
systems could therefore recognize only exemplar objects—

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005 1

. Y. Keselman is with the School of CTI, DePaul University, 243 S. Wabash
Ave., Chicago, IL 60604. E-mail: ykeselman@cti.depaul.edu.

. S. Dickinson is with the Department of Computer Science, University of
Toronto, 6 King’s College Rd., Rm 283B, Pratt Building, Toronto, Ontario,
Canada M5S 3G4. E-mail: sven@cs.toronto.edu.

Manuscript received 05 Jan. 2004; revised 16 Nov. 2004; accepted 15 Dec.
2004; published online 12 May 2005.
Recommended for acceptance by M. Basu.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.organdreference IEEECSLogNumberTPAMISI-0009-0104.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

specific objects that had been seen at training time. Despite
a number of serious limitations of early approaches to
appearance–based recognition, including difficulties in
dealing with background clutter, occlusion, object transla-
tion, rotation, and scaling, the approach has gained
tremendous popularity.

It is important to note that in bringing the model closer to
the image, the appearance-based and CAD-based ap-
proaches have altered the problem definition from generic
to exemplar object recognition. The systems developed in
the 70s cannot be compared to those developed today, for
their target domains are different. We must acknowledge
the efficacy of appearance-based recognition systems for
exemplar recognition; provided that the above limitations
can be overcome, this technique may emerge as the best
method for recognizing exemplars. However, it is important
to acknowledge that the prototypical recognition problem is
an important one and, despite the vision community’s
movement toward appearance-based methods, the hypoth-
esis that these (or their analogous 3D template-based)
methods can scale up to perform prototypical object
recognition is dubious. What, then, has led us away from
the important problem of generic object recognition?

Over the past 30 years, the three approaches to
eliminating the representational gap (shown in Fig. 1) have
been driven by the same limiting assumption: There exists a
one-to-one correspondence between a “salient” feature in
the image (e.g., a long, high-contrast line or curve, a well-
defined homogeneous region, a corner or curvature dis-
continuity, or, in the case of an appearance-based model,
the values of a set of image pixels, possibly restricted to the

vicinity of an interest point) and a feature in the model. In
the case of generic object recognition, this assumption is
fundamentally flawed, for saliency in the image does not

imply saliency in the model. Under this assumption, object

recognition will continue to be exemplar-based and generic
recognition will continue to be rather contrived.

To make real progress on the problem of generic object
recognition, we must address the representational gap
outlined in Fig. 1. Not only must we continue to push the

technologies of segmentation and perceptual grouping, we
must be able to generate image abstractions that may not
exist explicitly in the image, but which capture the salient,
invariant shape properties of a generic model.1 We argue
that, for the purpose of generic or prototypical object (or,

more specifically, shape) recognition, the process of image
abstraction must recover a set of “meta-regions” that map to
the coarse surfaces (or volumetric primitives) on a proto-
typical model.

In light of this goal, the difficult challenge of image

abstraction can therefore be cast as a twofold problem, as
shown in Fig. 2. First, we seek a (compile-time) method for
automatically acquiring a generic model from a set of
images (containing exemplars belonging to a known class)
that bridges the representational gap between the output

of an image segmentation module and the “parts” of a
generic model. Although, in Fig. 2, this is exemplified by a
generic, view-based model (a coffee cup), those advocating

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 1. Evolution of object recognition.

1. Although a number of approaches extract regions or perceptual
groups as input to a recognition system, they typically assume that
corresponding regions or groups exist on the model.

object-centered models could easily map the parts of this
view into a set of object-centered components, e.g., [14],
[13], leading to an object-centered model. Although we
make no claim as to the final form of the model (2D or 3D),
we believe that a parts-based approach to viewer-centered
representations can better accommodate the intractable
complexity associated with “whole object” views of
complex, articulating objects [14].

Next, from an image of a real exemplar, we seek a
(runtime or recognition-time) method that will recover a
high-level “abstraction” that contains the coarse features
that make up some model. In this paper, we present an
approach to the first problem, that of generic model
acquisition from a set of exemplars belonging to a known
class.2 The second, and more difficult, problem of generic
object recognition is work in progress and is not reported
here.3 Generic object recognition is an essential task whose
lack of solution confines object recognition to the laboratory,
where such conditions as lighting, clutter, occlusion, and
object domain can be tightly controlled. Granted, the
generic object recognition torch has continued to burn,
albeit dimly, with a number of researchers committed to the
problem, e.g., [45], [56], [1], [48], [39], to name just a few. We
believe the time has come for the pendulum to swing back
toward solving the problem of generic, prototypical, or
class-based modeling and recognition. In fact, such a trend
is beginning, as witnessed by the movement away from
image-based appearance models to robust, interest point
features, e.g., [44], [33], [6], and shape contexts (point
features with an even larger, albeit qualitative, neighbor-
hood description), e.g., [2].

1.2 An Illustrative Example

Assume that we are presented with a collection of images
such that each image contains a single exemplar, all
exemplars belong to a single known class, and that the
viewpoint, with respect to the exemplar in each image, is
similar. Figs. 3a, 3b, and 3c illustrate a simple example in
which three different images, each containing a block in a
similar orientation, are presented to the system (we will
return to this example throughout the paper to illustrate the
various steps in our algorithm). Our task is to find the
common structure in these images under the assumption
that structure that is common across many exemplars of a
known class must be definitive of that class. Fig. 3d
illustrates the class “abstraction” that is derived from the
input examples. In this case, the domain of input examples
is rich enough to “intersect out” irrelevant structure (or
appearance) of the block. However, had many or all of the
exemplars had vertical stripes, for example, the approach
would be expected to include vertical stripes in that view of
the abstracted model.

Any discussion of model acquisition must be grounded
in image features. In our case, each input image will be
region-segmented to yield a region adjacency graph.4

Similarly, the output of the model acquisition process will
yield a region adjacency graph containing the “meta-
regions” that define a particular view of the generic model.5

Other views of the exemplars would similarly yield other
views of the generic model. The integration of these views
into an optimal partitioning of the viewing sphere or the
recovery of 3D parts from these views is beyond the scope
of this paper. For now, the result will be a collection of
2D views that describe a generic 3D object. This collection
would then be added to the view-based object database
used at recognition time.

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 3

Fig. 2. The role of image abstraction in both model acquisition and object

recognition.

Fig. 3. Illustrative example of generic model acquisition: (a), (b), and (c)
input examples belonging to a single known class; (d) generic model
abstracted from examples.

2. Preliminary algorithms and results have been reported in [27], [26].
This paper expands on these earlier versions, providing additional details
on the algorithms and including many new experiments.

3. A discussion of the recognition problem, along with our proposed
approaches, appears in Section 6.

4. We advocate region segmentation for several reasons. First, surfaces
on the object naturally correspond to regions in the image. Second, region
shape similarity (a critical component of our algorithm) can be effectively
computed using the approach (our previous work) described in [48]. Third,
a number of efficient and robust region segmentation algorithms have been
recently developed [18], [47], [7].

5. Unlike the regions in the input exemplar region adjacency graphs, the
regions of the model region adjacency graphs are salient and can be
mapped into meaningful higher-level surface or volumetric primitives.

1.3 Related Work

Automatic model acquisition from images has long been
associated with object recognition systems. One of the
advantages of appearance-based modeling techniques, e.g.,
[36], is that no segmentation, grouping, or abstraction is
necessary to acquire a model. An object is simply placed on
a turntable in front of a camera, the viewing sphere is
sampled at an appropriate resolution, and the resulting
images (or some clever representation thereof) are stored in
a database. Others have sought increased illumination,
viewpoint, or occlusion-invariance by extracting local
features as opposed to using raw pixel values, e.g., [42],
[33], [6], [44], [37].

Appearance-based models (both global and local) are
very exemplar-specific due to the specificity of their under-
lying features, yet restricted categorization is sometimes
possible when classes include appearance-based features
that are invariant to within-class variability. For example,
Mohan et al. [35] have reported promising results in learning
component-based, appearance-based models of humans
suitable for detection in outdoor cluttered scenes. Leibe
and Schiele [30] combine both the appearance and shape
(contour) of sets of class exemplars to model and categorize
isolated objects. Weber et al. [53] have learned categorical
models for heads, leaves, and cars, while Fei-Fei et al. [17]
have learned a generative probabilistic model in the form of
a constellation of scale-invariant image patches belonging to
an object class. Although these approaches attempt to learn
categorical descriptions, the categorical features are not true
abstractions of the input exemplar features, but, rather,
consistently appearing exemplar features.

At the other extreme, the recovery of coarse 3D models
from image data has met with mixed success. Triggered by
Biederman’s introduction of geons [4] as a set of abstract
3D shape modeling primitives, many researchers sought to
develop algorithms for recovering geons or other qualitative
volumetric parts from 2D line drawings or, in certain cases,
real images (2D and 3D) [3], [14], [13], [11], [10]. In the
domain of range images, greater success has been achieved
in extracting coarse models. Generic shape primitives, such
as restricted generalized cylinders, quadrics, and super-
quadrics, have few parameters and can be robustly
recovered from 3D range data [41], [49], [19], [12]. Provided
the range data can be segmented into parts or surfaces, these
generic primitives can be used to model the coarse shapes of
the parts, effectively abstracting away structural detail.
Unlike methods operating on 2D data, these methods are
insensitive to perceived structure in the form of surface
markings or texture. However, the above models have been
either specified by hand or recovered from a single image,
rather than abstracted from a set of examples.

In the domain of recovering 2D generic models from
image data, most systems (like many of the appearance-
based and 3D modeling frameworks described above)
simply fit a prototypical model, e.g., a shock graph [48],
[46], to a single image exemplar with the hope that the
model will be sufficiently flexible to accommodate other
exemplars belonging to its class. In the domain of
recovering generic models from a set of 2D examples, there
has been considerably less work. The seminal work of

Winston [54] pioneered learning descriptions of 3D objects
from structural descriptions of positively or negatively
labeled examples. Nodes and edges of graph-like structures
were annotated with shapes of constituent parts and their
relations. As some shapes and relations were abstractions
and decompositions of others, the resulting descriptions
could be organized into a specificity-based hierarchy. In the
2D shape model domain, Connell and Brady [8] modified
Winston’s ANALOGY program to learn structural concepts
from positive examples. However, instead of finding a
common abstraction when one-to-one feature correspon-
dence was absent among exemplars belonging to a given
class, feature disjunctions were learned. Following on this,
Ettinger learned hierarchical, structural descriptions from
images based on Brady’s curvature primal sketch features
[16]. The technique was successfully applied to traffic sign
recognition.

An algebraic approach to the automatic construction of
structural models was proposed by Nishida and Mori [38]
for the problem of learning structural descriptions of
characters. Skeletonized character strokes are described in
terms of primitive curve elements that meet at junctions and
a shape class is defined as a set of structures that can be
transformed continuously to each other (not unlike the
shape classes defined by Sebastian et al. [46]). An inductive
learning step recursively merges pairs of classes that satisfy
a set of generalization criteria. Xu et al. [55] address the
problem of dynamic learning in a content-based retrieval
environment. Given a scene graph in the form of a region
tree, combinations of regions are compared to a user-
defined template, with a matching combination giving rise
to a composite node (abstraction) added to the graph and
available for subsequent searches. In a dynamic learning
environment, the composite nodes are updated as new
templates become available.

On the topic of learning hierarchical structured models
from examples, Utans [51] incrementally constructs a
Bayesian network in which parts in a compositional
hierarchy are grouped into conditionally independent sub-
structrues. Nodes at the lowest levels of the hierarchy
represent parts in the input data, while nodes higher up
represent groupings of component features into substruc-
tures. In recent work, Wachsmuth et al. [52] attempt to learn
2D structural hierarchical descriptions from captioned
images. A learned translation model between structured
shapes and object nouns is used to guide a search through the
space of exemplar abstractions to yield a unifying abstraction
that, in turn, leads to a stronger translation model.

In the domain of graph algorithms and computer vision,
there have been efforts to generate a prototypical graph
from a set of examples. For example, Jiang et al. introduced
the concepts of the median graph and the set median graph
[23]. The set median of a set of graphs is defined as that
graph, drawn from the set, whose sum distance to the other
members (graphs) of the set is minimized, while the
median, a more general concept, is not constrained to come
from the set. Choosing a prototypical graph from a set of
graphs is an important problem in view-based object
recognition in which a prototypical graph must be chosen
to represent a region on the viewing sphere. Jiang et al. [23]

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

proposed a genetic algorithm for computing the generalized
median, while Luo et al. have explored the related problem
of graph clustering using a spectral embedding of graphs
[34]. It is important to note that these approaches assume
that graphs belonging to the same class are structurally
similar and do not accommodate the many-to-many
correspondences common to exemplars belonging to a
single class.

1.4 What’s Ahead

In the following sections, we begin by presenting a detailed
formulation of our problem and conclude that its solution is
computationally intractable. Next, we proceed to reformu-
late our problem by focusing on deriving abstractions from
pairs of input images through a top-down procedure that
draws on our previous work in generic 2D shape matching.
Given a set of pairwise abstractions, we present a novel
method for combining them to form an approximation to
the solution of our original formulation. We demonstrate
the approach by applying it to subsets of images belonging
to known classes.

2 PROBLEM FORMULATION

Returning to Fig. 3, let us now formulate our problem more
concretely. As we stated, each input image is processed to
form a region adjacency graph (we employ the region
segmentation algorithm of Felzenzwalb and Huttenlocher
[18]). Let us now consider the region adjacency graph
corresponding to one input image. We will assume, for now,
that our region adjacency graph represents an oversegmen-
tation of the image. (In Section 6, we will discuss the
problem of undersegmentation and how our approach can

accommodate it.) The space of all possible region adjacency
graphs formed by any sequence of merges of adjacent
regions will form a lattice, as shown in Fig. 4. The lattice size
is exponential in the number of regions obtained after initial
oversegmentation.6 Kropatsch [29] has studied the problem
of structure-preserving graph contraction, leading to tech-
niques that can be used for generating such a lattice.

Each of the input images will yield its own lattice. The
bottom node in each lattice will be the original region
adjacency graph. In all likelihood, if the exemplars have
different shapes (within-class deformations) and/or surface
markings, the graphs forming the bottom of their corre-
sponding lattices may bear little or no resemblance to each
other. Clearly, similarity between the exemplars cannot be
ascertained at this level for there does not exist a one-to-one
correspondence between the “salient” features (i.e., regions)
in one graph and the salient features in another. On the
other hand, the top of each exemplar’s lattice, representing
a silhouette of the object (where all regions have been
merged into one region), carries little information about the
salient surfaces of the object.

We can now formulate our problem more precisely,
recalling that a lattice consists of a set of nodes with each
node corresponding to an entire region adjacency graph.
Given N input image exemplars, E1; E2; . . . ; EN , let
L1; L2; . . . ; LN be their corresponding lattices and, for a
given lattice, Li, let Linj be its constituent nodes, each
representing a region adjacency graph, Gij. We define a
common abstraction, or CA, as a set of nodes (one per

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 5

Fig. 4. A Lowest Common Abstraction (LCA) of a set of input exemplars.

6. Indeed, considering the simple case of a long rectangular strip
subdivided into nþ 1 adjacent rectangles, the first pair of mergeable
adjacent regions can be selected in n ways, the second in n� 1, and so on,
giving a lattice size of n!.

lattice) L1nj1 ; L2nj2 ; . . . ; LNnjN such that, for any two nodes
Lpnjp and Lqnjq , their corresponding graphs Gpjp and Gqjq

are isomorphic. Thus, the root node (whose graph
consists of one node representing the silhouette region)
of each lattice is a common abstraction. We define a
lowest common abstraction, or LCA, as a common abstrac-
tion whose underlying graph has maximal size (in terms
of number of nodes). Given these definitions, our
problem can be simply formulated as finding an LCA
of N input image exemplars.

Intuitively, we are searching for a node (region segmen-
tation) that is common to every input exemplar’s lattice and
that retains the maximum amount of structure common to
all exemplars. If all the initial exemplars are oversegmented,
the desired abstraction can be reached from each initial
exemplar by a path corresponding to a sequence of region
merges. Unfortunately, the presence of a single, heavily
undersegmented exemplar (a single-node silhouette in the
extreme case) will drive the LCA toward the trivial
silhouette CA. In a later section, we will relax our LCA
definition to make it less sensitive to such outliers,
effectively allowing an abstraction to be reached from each
initial exemplar by a path corresponding to a sequence of
region merges and region splits.

3 THE LCA OF TWO EXAMPLES

For the moment, we will focus our attention on finding the
LCA of two lattices, while, in the next section, we will
accommodate any number of lattices. Since the input
lattices are exponential in the number of regions, actually
computing the lattices is intractable.7 Clearly, we need a
means for focusing the search for the LCA that avoids
significant lattice generation. Our approach will be to
restrict the search for the LCA to the intersection of the
lattices. Typically, the intersection of two lattices is much
smaller than either lattice (unless the images are very
similar) and leads to a tractable search space. But, how do
we generate this new “intersection” search space without
enumerating the lattices?

Our solution is to work top-down, beginning with a node
known to be in the intersection lattice—the root node,
representing a single region (silhouette). If the intersection
lattice contains only this one node, i.e., one or both of the
region segmented images contain a single region, then the
process stops and the LCA is simply the root (silhouette).
However, in most cases, the root of each input lattice is
derived from an input region adjacency graph containing
multiple regions. So, given two silhouettes, each represent-
ing the apex of a separate, nontrivial lattice, we have the
opportunity to search for a lower abstraction (than the root)
common to both lattices. Our approach will be to find a
decomposition of each silhouette region into two subre-
gions such that: 1) The shapes of the corresponding
subregions are similar and 2) the relations among the
corresponding regions are similar. Since there are an infinite
number of possible decompositions of a region into two
component regions, we will restrict our search to the space
of decompositions along region boundaries in the original
region adjacency graphs. Note that there may be multiple

two-region decompositions that are common to both
lattices; each is a member of the intersection set.

The process is illustrated in Fig. 5. The silhouettes of
two blocks with their region adjacency graphs overlaid are
shown at the top. The best pair of corresponding cuts in the
two region adjacency graphs are shown in red such that the
two regions to the left of the cuts are similar in shape, the
two regions to the right of the cuts are similar in shape, and
the relations between the pairs of regions spanning the cuts
are similar. The process is repeated recursively, with the left
pair of regions decomposed once more, until no further
corresponding cuts can be made. The two regions to the
right of the top-level cuts are already primitive and cannot
be further decomposed. The union of the primitive (blue)
regions forms the lowest common abstraction between the
two region adjacency graphs. Note that the decomposition
is not necessarily unique.

Assuming that we have some means for ranking the
matching decompositions (if more than one exists), we pick
the best one (the remainder constituting a set of back-
tracking points) and recursively apply the process to each
pair of isomorphic component subregions.8 The process
continues in this fashion, “pushing” its way down the
intersection lattice until no further decompositions are
found. This lower “fringe” of the search space represents
the LCA of the original two lattices. In the following
sections, we will formalize this process and examine our
approach in detail. An illustration is given in Fig. 6.

3.1 Problem Definition

We define graph H to be an immediate decomposition of
graphG if G can be obtained fromH by merging two nodes.
Let L1 and L2 be two lattices and let G1 2 L1 and G2 2 L2 be
two graphs that are isomorphic. G1 (or G2, since they are

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 5. Finding a lowest common abstraction between two exemplars

through a coordinated, recursive decomposition of their silhouettes.

7. Thus, any approach that examines significant portions of the lattices,
including Frequent Itemset [21], will be computationally infeasible.

8. Each subregion corresponds to the union of a set of regions
corresponding to nodes belonging to a connected subgraph of the original
region adjacency graph.

sufficiently similar) is therefore in the intersection of L1 and
L2. Two graphs, H1 2 L1 and H2 2 L2, are common
immediate decompositions of G1 and G2, respectively, if
they are isomorphic immediate decompositions of the
respective graphs. Thus, our problem can be formulated
as follows: Given a pair of isomorphic graphs G1 and G2 in
L1 and L2, respectively, find a pair of isomorphic
immediate decompositions of G1 and G2, denoted by H1 2
L1 and H2 2 L2, if such a pair exists.

3.2 2D Shape Similarity

Two decompositions (in general, two region adjacency
graphs) are isomorphic if their corresponding regions have
similar shapes and similar relations. For corresponding
regions, it is imperative that we define a similarity metric
that accounts for coarse shape similarity. Since the
exemplars are all slightly different, so too are the shapes
of their abstracted regions. To compute the coarse shape
distance between two regions, we draw on our previous
approach to generic 2D object recognition that is efficient
and robust to occlusion and noise [48]. Specifically, a
silhouette (or region boundary, in our case) is decomposed
into a set of qualitative parts based on a coloring of the
shocks (singularities) of a curve evolution process acting on
simple closed curves in the plane [28]. Intuitively, the
taxonomy of shocks consists of four distinct types: the
radius function along the medial axis varies monotonically
at a 1, achieves a strict local minimum at a 2, is constant at a
3, and achieves a strict local maximum at a 4. We have
abstracted this system of shocks into a shock graph, where
vertices are labeled by their shock types and the shock
formation times direct the edges (see Fig. 7). The space of
such shock graphs is completely characterized by a small
number of rules which, in turn, permits the reduction of
each graph to a unique rooted tree. In prior work, we
developed an algorithm for matching two shock trees based
on both topological structure and geometric structure [48].

For relational (or arc) similarity, we must check the
relational constraints imposed on pairs of corresponding
regions. Such constraints can take the form of relative size,
relative orientation, or degree of boundary sharing. We
implicitly check the consistency of these pairwise con-
straints by computing the shape distance (using the same
distance function referred to above) between the union of
the two regions forming one pair (i.e., the union of a region
and its neighbor defined by the arc) and the union of the
two regions forming the other, as shown in Fig. 8. If the

constraints are satisfied, the distance will be small. In our
recursive decomposition framework, the relation between
two regions is accounted for by the fact that the parents (i.e.,
the unions) have already been successfully matched. If the
corresponding components match, their relational con-
straints are therefore satisfied by definition.

3.3 A Shortest Path Formulation

The decomposition of a region into two subregions defines
a cut in the original region adjacency subgraph defining the
region. Unfortunately, the number of possible two-region
decompositions for a given region may be large, particu-
larly for nodes higher in the lattice.9 One way we can reduce
the complexity is to restrict our search for cuts that span
two points on the region’s boundary, i.e., cuts that don’t
yield regions with “holes.”10 Despite this restriction, the
complexity is still prohibitive and we need to take further
measures to simplify our formulation.

We begin by transforming our two region adjacency
graphs into their boundary segment graphs, as shown in Fig. 9.
A boundary segment graph of a region adjacency graph has
internal (i.e., common to two original regions) boundary

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 7

Fig. 6. Abstraction lattices and their intersection. The abstraction lattices
of two region adjacency graphs are shown in dark gray. Their
intersection, which is significantly smaller, is shown in light gray. To
find the lowest common abstraction, we start at the top of the
intersection set and work our way down until no further common
decompositions are found.

Fig. 7. An illustrative example of a silhouette (top) and its shock graph

(bottom).

9. Consider, for example, a checkerboard image and its corresponding
region adjacency graph. The root will be a single square region, but there
will be many decompositions of this square region into two component
regions because there are many ways the original checkerboard image can
be divided into two along region boundaries. For a checkerboard graph
with ðnþ 1Þ2 vertices, the number of monotonic paths from the upper left
corner to the lower right corner is equal to the number of binary sequences
of length n, which is exponential.

10. This assumes that a “hole” in a region does not correspond to a
salient model surface.

segments as its nodes and an edge from boundary
segment b1 to b2 if b1 and b2 share an endpoint. Note that,
if region A lies entirely within region B, the single boundary
segment that is common to A and B is not included in the
boundary segment graph. This is due to the fact that we are
looking for cuts that yield regions without holes. Note also
that nodes in this subgraph can potentially be connected by
multiple edges, corresponding to multiple boundary frag-
ments between adjacent regions. This case does not present
any difficulties for subsequent stages of our approach.

The transformation to the boundary segment graph
allows us to reformulate the search for corresponding cuts
in two region adjacency graphs as a search for correspond-
ing paths in their boundary segment graphs.11 However,
this has not affected the complexity of our problem, as there
could be an exponential number of paths in each boundary
segment graph (recall our checkerboard example). Rather
than enumerating the paths in each boundary segment
graph and then enumerating all pairs, we will cast our
problem as a search for the shortest path in a product graph
of the two boundary segment graphs.

The product graph G ¼ G1 �G2 ¼ ðV ;EÞ of graphs G1 ¼
ðV1; E1Þ; G2 ¼ ðV2; E2Þ is defined as follows:

V ¼ fðv1; v2Þ : v1 2 V1; v2 2 V2g ¼ V1 � V2;

E ¼
fððu1; u2Þ; ðv1; v2ÞÞ : ðu1; v1Þ 2 E1; ðu2; v2Þ 2 E2 g[
fððv1; u2Þ; ðv1; v2ÞÞ : v1 2 V1; ðu2; v2Þ 2 E2 g[
fððu1; v2Þ; ðv1; v2ÞÞ : ðu1; v1Þ 2 E1; v2 2 V2g:

The node set of the product graph is the product of the
node sets of the initial graphs. To define the edge set of the
product graph correctly, notice that the simple product of
the edge sets (the first term in the union) may result in a
disconnected graph. The other two terms of the union
(which can be viewed as the product of the node set of
one graph with the edge set of the other graph) ensure that
the product of two connected graphs will be connected. The
essential property of the product graph that we will exploit
is that a simple path ðu1;v1Þ ! ðu2;v2Þ ! � � � ! ðun;vnÞ in the
product graph corresponds to two sequences of nodes in
the initial graphs, u1 ! u2 ! � � � ! un and v1 ! v2 ! � � � !
vn which, after the elimination of successive repeated nodes,
will result in two paths (whose lengths may be different) in
the initial graphs, as shown in Fig. 10.

Each path in our product graph corresponds to a pair of
possible cuts in two regions. Consequently, our goal is to
find a path that yields the best matching subregions and
relations. Here is where we face a problem. This objective
function can only be evaluated once a complete path is found
since only a complete path defines a pair of closed regions
whose shapes and relations can be matched. However, a

given edge in the product graph represents a pair of
corresponding boundary fragments from two regions. Glob-
ally, we are comparing regions, while, locally, we are
comparing contours. How then do we define local edge
weights and a local objective function so that a shortest path
algorithm will yield an approximation to the global
optimum?

Let us begin with the edge weights. If we align the two
regions (from which we seek corresponding cuts) through
our region matching algorithm [48], then we can assume
that both external and internal boundary segments are
approximately aligned. Under this assumption, edge
weights in the product graph can be chosen to reflect the
shape similarity of their component boundary segments. In
our implementation, to compute edge weights, we employ a
simple Hausdorff-like distance between the two boundary
segments, yielding a local approximation to the global
similarity of the regions.

As a result, in the product of two boundary segment
graphs, smaller edge weights correspond to pairs of more
similar boundary segments. This leads to a number of very
natural choices for an objective function if we interpret
edge weights as edge lengths. The total path length,
tlðpÞ ¼

P
pi2p lðpiÞ, is a well-studied objective function [9].

Fast algorithms for generating successive (i.e., next opti-
mal) shortest and simple shortest paths are given in [15],
[25]. However, the above objective function tends to prefer
shorter paths over longer ones, assuming path edges are of
equal average length. For our problem, smaller paths will
result in smaller regions being cut off, which is contrary to
our goal of finding the lowest common abstraction.12

To overcome this problem, we turn to a different
objective function that measures the maximum edge weight
on a path, mlðpÞ ¼ maxpi2p lðpiÞ. A well-known modifica-
tion13 of Dijkstra’s algorithm [9] finds paths of minimal
maximum edge weight (minmax paths) between a chosen
node and all other graph nodes and has the same complex-
ity, OðjEj þ jV j log jV jÞ, as the original algorithm. However,
efficient algorithms for finding successive (next optimal)
minmax paths are not readily available. Leaving develop-
ment of such an algorithm for the future, we will employ a
mixed strategy. Namely, we find pairs of nodes providing
near-optimal values of the minmax objective function and,
along with the minmax path between the nodes, we also
generate several successive shortest paths between them.
For this, we use Eppstein’s algorithm [15], which generates
k successive shortest paths between a chosen pair of nodes
in OðjEj þ jV j log jV j þ k log kÞ time. The mixed strategy,
whose overall complexity is OðjV jðjEj þ jV j log jV jÞÞ for
small k, has proven to be effective in empirical testing.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 8. Checking the relation between two regions. The relation is said to be satisfied if the corresponding regions match and their respective unions

match.

11. Thus, our boundary segment graph can be thought of as a weaker
version of the dual graph [20].

13. Instead of summing up edge weights when determining the distance
to a node, it takes their maximum.

12. A small region is unlikely to be common to many input exemplars.

3.4 Algorithm

Having defined the edge weights and objective function, we
can now summarize our algorithm for finding the “best”
common decomposition of two abstraction nodes, as shown
in Algorithm 1. This algorithm, in turn, is embedded in our
solution to the problem of finding the LCA of two examples,
which computes an approximation to the intersection of their
respective lattices in a top-downmanner. Beginningwith the
two root nodes (the sole member of the initialized intersec-
tion set), we recursively seek the “best” common decom-
position of these nodes and add it to the intersection set. The
process is recursively applied to each common decomposi-
tion (i.e., member of the intersection set) until no further
common decompositions are found. The resulting set of
“lowest” common decompositions represents the LCA of the
two lattices. The description is formalized in Algorithm 2.

Algorithm 1. A generic algorithm for finding a common

decomposition.

1. Let A1, A2 be subgraphs of the original region adjacency

graphs that correspond to isomorphic vertices of the

abstraction graphs.

2. Let G1, G2 be boundary segment graphs of A1, A2.

3. Form the product graph G ¼ G1 �G2 as described
above.

4. Choose an objective function f (see text for discussion),

compute edge weights wi (see text for discussion), and

select a threshold " > 0.

5. Let Pf be the optimal path with respect to ðf; fwigÞ with

value F ðPfÞ.
6. Let P ¼ Pf

7. while jfðP Þ � fðPfÞj < " do

8. LetP1 andP2 be the paths inG1,G2 corresponding toP .

9. Let ðV1;W1Þ and ðV2;W2Þ be the resulting cuts in A1,A2

10. if region V1 is similar to region V2 and region W1 is

similar to region W2 and arcs ðV1; U
i
1Þ, ðV2; U

i
2Þ are

similar for all isomorphic neighbors Ui
1, U

i
2 of V1, V2,

respectively, and arcs ðW1; U
i
1Þ, ðW2; U

i
2Þ are similar for

all isomorphic neighbors Ui
1, U

i
2 of W1, W2,

respectively, then
11. output decompositions ðV1;W1Þ and ðV2;W2Þ.
12. return

13. end if

14. Let P be the next optimal path with respect to

ðf; fwigÞ.

15. end while

16. output “no nontrivial decomposition is found.”

Algorithm 2. Finding the maximal common abstraction of

two region adjacency graphs.

1. Let A1, A2 be the initial region adjacency graphs.

2. Let G1, G2 denote abstraction graphs belonging to

abstraction lattices, L1 and L2, respectively.

3. Let G0
1, G

0
2 be the topmost nodes of the lattices.

4. Let G1 ¼ G0
1, G2 ¼ G0

2.

5. while there are unexplored isomorphic nodes u1 2 G1,
u2 2 G2 do

6. Let U1 and U2 be the corresponding subgraphs ofA1,A2.

7. if there is a common decomposition U1 ¼ V1 [W1 and

U2 ¼ V2 [W2 then

8. Split the nodes u1 2 G1, u2 2 G2 by forming the

decomposition graphs H1 ¼ ðG1 � fu1gÞ [fv1; w1g,
H2 ¼ ðG2 � fu2gÞ [fv2; w2g with edges established

using A1, A2.
9. Let G1 ¼ H1, G2 ¼ H2.

10. else

11. Mark u1 and u2 as explored.

12. end if

13. end while

14. output G1, G2.

4 THE LCA OF MULTIPLE EXAMPLES

So far, we have addressed only the problem of finding the
LCA of two examples. How then can we extend our
approach to find the LCA of multiple examples? Further-
more, when moving toward multiple examples, how do we
prevent a “noisy” example, such as a single, heavily
undersegmented silhouette from derailing the search for a

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 9

Fig. 10. The product graph. The product graph of the two graphs in (a) is

shown in (b). The pair of red paths shown in the original graphs

corresponds to the black path shown in the product graph.

Fig. 9. A region decomposition and its boundary segment graph. Green
nodes correspond to boundary segments that touch the background.
Yellow nodes correspond to boundary segments that do not touch the
background. A cut in the region decomposition corresponds to a path
between a pair of green nodes.

meaningful LCA? To illustrate this effect, consider the
inputs shown in Figs. 11a, 11b, 11c, and 11d. If the definition
of the pairwise LCA is directly generalized, thus requiring
the search for an element common to all abstraction lattices,
the correct answer will be the input Fig. 11d. However,
much useful structure is apparent in inputs Figs. 11a, 11b,
and 11c; input Fig. 11d can be considered to be an outlier.

To extend our two-exemplar LCA solution to a robust,
multi-exemplar solution, we begin with two important
observations. First, the LCA of two exemplars lies in the
intersection of their abstraction lattices. Thus, both exemplar
region adjacency graphs can be transformed into their LCA
by means of sequences of region merges. Second, the total
number of merges required to transform the graphs into
their LCA is minimal among all elements of the intersection
lattice, i.e., the LCA lies at the lower fringe of the lattice.

Our solution begins by constructing an approximation to
the intersection lattice of multiple exemplars. Consider the
closure of the set of the original region adjacency graphs
under the operation of taking pairwise LCAs. In other
words, starting with the initial region adjacency graphs, we
find their pairwise LCAs, then find pairwise LCAs of the
resulting abstraction graphs, and so on (note that duplicate
graphs are removed). We take all graphs, original and LCA,
to be nodes of a new closure graph. If graph H was obtained
as the LCA of graphs G1 and G2, then directed arcs go from
nodes corresponding to G1, G2 to the node corresponding to
H in the closure graph.

Next, we will relax the first property above to accom-
modate “outlier” exemplars, such as undersegmented input
silhouettes. Specifically, we will not enforce that the LCA of
multiple exemplars lie in the intersection set of all input
exemplars. Rather, we will choose a node in our approx-
imate intersection lattice that represents a “low abstraction”
for many (but not necessarily all) input exemplars. More
formally, we will define the LCA of a set of exemplar region
adjacency graphs to be that element in the intersection of
two or more abstraction lattices that minimizes the total

number of edit operations (merges or splits) required to

obtain the element from all the given exemplars. If a node in

the intersection lattice lies along the lower fringe with

respect to a number of input exemplars, then its sum

distance to all exemplars is small. Conversely, the sum

distance between the silhouette outlier (in fact, the true

LCA) and the other input exemplars will be large,

eliminating that node from contention.
Note that a graph may not be directly linked to all of its

abstractions in the closure graph. However, if H is an

abstraction of G, then there is a directed path between the

nodes corresponding to G and H. Thus, any abstraction is

reachable from any of its decompositions by a directed

path. Such a path may move upward from an exemplar

through zero or more successive region merges to a node in

the closure graph, then downward through zero or more

successive region splits to reach the abstraction. Each edge

in the closure graph is assigned a weight equal to the merge

edit distance that takes the decomposition to the abstrac-

tion. The edit distance is simply the difference between the

numbers of nodes in the decomposition graph and the

abstraction graph. As a result, we obtain a weighted

directed acyclic graph. An example of such a graph, whose

edges are shown directed from region adjacency graphs to

their LCAs, is given in Fig. 12.
Given such a graph, the robust LCA of all inputs will be

that node that minimizes the sum of shortest path distances

from the initial adjacency graphs. In other words, we are

looking for the “median” of the graph as computed by

Algorithm 3. Note that the closure graph is an approxima-

tion to the intersection lattice. On one hand, it may contain

pairwise LCAs which are not contained in the intersection

lattice, while, on the other hand, it may not contain nodes in

the intersection lattice that are not LCAs. While it will

contain the true LCA, our median formulation may lower

the LCA fringe below the true LCA.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 11. The straightforward computation of a Lowest Common
Abstraction of exemplars (a)-(d) gives the exemplar in (d). However,
(c) is a Lowest Common Abstraction of exemplars (a)-(c) and, therefore,
is more representative.

Fig. 12. Embedding region adjacency graphs and their pairwise LCAs in

a weighted directed acyclic graph. The three nodes at the bottom, as

well as the undersegmented “outlier” at the top, are the four input

exemplars. Although the true LCA is the top node, the center node is the

median, as its distance sum value is 3þ 1þ 2þ 2 ¼ 8, while the sum is

5þ 3þ 4þ 0 ¼ 12 for the topmost node.

Algorithm 3. Finding the median of the closure graph.

1. Let the sink node, s, be the topmost node in the closure

graph.
2. Solve the “many-to-one” directed shortest path problem

on the graph with the source nodes being the original

adjacency graphs and with the specified edge weights.

Find the distance sum, DS(s), for the sink node.

3. Similarly, find distance sums, DSðsiÞ, for all unexplored
si 2 NðsÞ.

4. if miniðDSðsiÞÞ � DSðsÞ then
5. return s

6. else

7. Let s ¼ argmini DSðsiÞ.
8. goto 2.

9. end if

To analyze the complexity of the algorithm, notice that
the first step, i.e., finding the distance sum to the topmost
node, can be performed in linear time in the graph size
since the closure graph is a directed acyclic graph and the
single source shortest path problem in such graphs can be
solved in OðjV j þ jEjÞ time [9]. Since the algorithm can
potentially examine a constant fraction of the graph nodes
(consider the case of a line graph), the total running time
can be as high as OðjV jðjV j þ jEjÞÞ. The average case
complexity will depend on the particular distribution of
the initial data and is beyond the scope of this paper. In
practice, the algorithm converges in a few iterations.

5 EXPERIMENTS

In this section, we apply our approach to three different
object domains. The domains of coffee cups, books, and
dispenser bottles were chosen since they can be effectively
modeled as collections of surfaces in 3D, different exemplars
belonging to a class exhibit minor within-class shape
deformation and the different exemplars have significantly
different low-level appearance in terms of color, texture, and
surface markings. In Fig. 13 and Fig. 14, we illustrate the
results of our approach applied to two sets of three coffee
cup images, respectively. In each case, the lower row

represents the original images, the next row up represents
the input region segmented images (with black borders),
while the LCA is shown with an orange border.14 In each
case, the closure graph consists of only four members, with
the same pairwise LCA emerging from all input pairs.
While, in Fig. 13, the solution captures our intuitive notion of
the cup’s surfaces, the solution in Fig. 14 merges the regions
corresponding to the surfaces defined by the cup’s body and
handle. A strip along the bottom is present in each exemplar
and understandably becomes part of the solution. The same
is true of the elliptical region at the top of each exemplar.
However, due to region segmentation errors, the larger blue
region in the middle cup extends into the handle. Conse-
quently, a cut along its handle (as is possible on the other
cups) is not possible for this exemplar, resulting in a
“stopping short” of the recursive decomposition at the large
white region in the solution (LCA).

In Fig. 15, we again present three exemplars to the
system. In this case, the closure graph has many nodes.

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 11

Fig. 13. Computed LCA (orange border) of three examples.
Fig. 14. Computed LCA (orange border) of three examples.

14. All region segmented images are the actual outputs of the implementa-
tion that accompanied [18]. In particular, smaller regions are sometimes
subsumed by larger regions, resulting in nonintuitive segmentations.

Fig. 15. Computed LCA (orange border) of three examples. Each
nonleaf node in the closure graph is the LCA of the two nodes from
which edges are directed to it.

Unlike Fig. 13 and Fig. 14, in which all pairwise LCAs were
equal (leading to a somewhat trivial solution to our search
for the global LCA), each pair of input exemplars leads to a
different LCA which, in turn, leads to additional LCAs.
Continuing this process eventually results in the inclusion
of the silhouette in the closure graph. The solution
according to our algorithm is again shown in orange and
represents an effective model for the cup.

To test our approach more systematically, we applied it
to subsets of the cup images shown in Fig. 16. Specifically,
we randomly selected four subsets, with three to four
images each. A typical result is shown in Fig. 17. Based on
the results of this and other experiments, it turned out that
all but one segmentation had the four-region LCA as its
abstraction, while no other region adjacency graph was an
abstraction of more than two exemplars. This means that
the LCA of these four cup images is also the LCA of the
whole set.

This observation suggests another approach to finding
the abstraction of a large number of exemplars: Generate
the LCA of a small subset (two to four) of exemplars and
check (by finding pairwise LCAs) whether the LCA is an
abstraction of many other exemplars. It can be shown that
an abstraction of more than half the initial exemplars is also
an abstraction of their LCA. Moreover, the largest such
“small subset” LCA (found, for example, by exhaustive
search among all “small subset” LCAs) will be isomorphic
to the one found with the current exhaustive approach. This
alternative sample-based approach (similar to robust
statistical estimation or to learning from representative
samples) will not require the computation of the full closure
graph, which is the main bottleneck of our current
approach. Its implementation is left for future work.

To illustrate the fact that the LCA of the entire set of
exemplars can be equal to the LCA of just two exemplars,
we turn to the domain of books, a set of eight exemplars of
which is shown in Fig. 18; as before, for each book, we
include the original image and the segmented version that
serves as input to our algorithm. In Fig. 19, the computed
LCA (orange border), which is a pairwise LCA of the left
two exemplar region adjacency graphs, is in fact the LCA of
the entire eight-image set. This is due to the fact that a
stripe-like region at the top of the “horizontal” surface
patch is present in all but two book images. On the other
hand, all other regions on the “horizontal” surface patch of
the book model disappear once sufficiently many exem-
plars are shown to the system. The resulting LCA suggests
that many such computer science texts share a horizontal
stripe at the top of one of their covers.

To illustrate the fact that the LCA of a relatively large
subset (in this case, three of eight) of input exemplarsmaynot
necessarily be the LCAof the entire set (of eight), consider the
computed LCA of the three book exemplars shown in Fig. 20.
Due to the presence of a heavily oversegmented exemplar
(the rightmost node), the resulting LCA (orange border) is
skewed toward having too many regions. The apparent
regularity of such a structure renders it salient. This “skew”
can be corrected by either choosing a different subset of
images or by adding more exemplars to the subset. To
illustrate the effect on the LCAof adding exemplars, consider
the domain of dispenser bottles, as shown in Fig. 21. The
closure graphs of sets of three and four dispenser bottles are
shown in Fig. 22 and Fig. 23, respectively. In Fig. 22, even
though the desired three-region LCA of the three exemplars
appears in the closure graph (topnode), the computedLCA is
the undesirable four-region abstraction. This is due to the fact
that the accidental alignment of nonsalient structure in the
right two exemplars renders the leftmost exemplar an
“outlier.” The addition of a fourth exemplar overcomes this
problem, leading to the desired LCA, as shown in Fig. 23.

In concluding this section, it is worth addressing the
issue of background in the model acquisition process. As is
evident in the above experiments, all exemplars were
imaged against simple, mostly uniform backgrounds (in
some cases, the table on which the cup was sitting was
segmented from the background). What if each exemplar
appeared against a cluttered background? If the cluttered
background was consistently seen in many of the images,
the algorithm would, of course, not be able to distinguish
this regularly occurring structure from that of the object. If
the backgrounds were inconsistent and we could assume
that the object’s silhouettes were the most salient regions in
the images, then a pair of large, similar regions could be
extracted from a pair of images by an application of the
product graph technique as follows. Recalling that a region

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 16. The set of eight cup images (and their region segmentations) used in the experiments.

Fig. 17. Computed LCA (orange border) of four examples. Each nonleaf
node in the closure graph is the LCA of the nodes from which edges are
directed to it. Each edge label indicates the edit distance between the
region adjacency graphs corresponding to the two nodes that span the
edge. The computed LCA is an abstraction of seven out of eight initial
exemplars.

in the image corresponds to a cycle in the boundary
segment graph, a pair of similar regions corresponds to a
pair of cycles in the boundary segment graphs which, in
turn, corresponds to a single “optimal” cycle in the product
graph. To find the optimal cycle in the product graph, we
can apply the minimum mean cycle algorithm [9]. Once the
foreground objects have been separated from their back-
grounds, our “standard” procedure can be applied.

6 CONCLUSIONS

The quest for generic object recognition hinges on an ability
to generate abstract, high-level descriptions of input data.
This process is essential not only at runtime for the
recognition of objects, but also at compile time for the
automatic acquisition of generic object models. In this
paper, we address the latter problem—that of generic
model acquisition from examples. We have introduced a
novel formulation of the problem in which the model is
defined as the lowest common abstraction of a number of
segmentation lattices, representing a set of input image
exemplars. To manage the intractable complexity of this
formulation, we focus our search on the intersection of the
lattices, reducing complexity by first considering pairs of
lattices and later combining these local results to yield an
approximation to the global solution.15

We have demonstrated the framework on three separate
domains (cups, books, and dispenser bottles) in which a
generic, view-based model (for the canonical view) is
computed from a small set of exemplars. Although these
results are encouraging, it should be noted that we have
made a very important assumption that region segmenta-
tion errors exist in the form of oversegmentation. Although
most region segmentation algorithms can be “pushed”
toward oversegmentation, undersegmentation cannot be
avoided altogether, requiring some means for splitting
regions. Unfortunately, for any region, there are an infinite
number of ways of splitting the region. Fortunately, our
region representation (a shock graph [48]) explicitly en-
codes a small, finite number of region split points, allowing
us to accommodate region splitting within our framework
in a tractable way. But where should such splitting occur in
the process? One possibility would be to generate addi-
tional input exemplars from existing ones by splitting
regions in various ways. A more efficient approach would
be to incorporate the splitting process into the recursive
decomposition of two input exemplars. In the case where

one region is primitive and its corresponding region is not,

the decomposition would normally terminate. However, if

the primitive region can be split (among its finite split

possibilities) so that decomposition can continue, the split is

retained. We plan to explore region splitting in future work.

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 13

15. Although we solved the original intractable problem only approxi-
mately, the resulting approximate solution gives an effective object model
that can be used in subsequent object recognition. Our reformulation can be
compared with that used in machine learning: The search for the best
classifier is often intractable, but the approximately best models are used for
the actual classification with good results.

Fig. 18. The set of eight book images (and their region segmentations) used in the experiments.

Fig. 19. Computed LCA (orange border) of three examples. The solution

is also the LCA of the entire set of eight book images.

Fig. 20. Computed LCA (orange border) of three examples. The
solution, influenced by the heavily oversegmented exemplar (rightmost
node), is a decomposition of the desired LCA (top node).

Very little world knowledge is currently used to constrain
the abstraction process. In certain domains, particular region
shapes may be prominent while others are impossible. Any
such knowledge, in the form of known region shape or
region adjacency constraints, can be used to prune the
search space of possible cuts in a region adjacency graph.
Perhaps even an object class’s known functionality can be
used to constrain the abstraction process in terms of its
mapping to underlying shape constraints [43]. Object
appearance might also be exploited when general constraints
are known on object color and/or texture.

We have focused on the generic model acquisition
problem, leaving the more difficult problem of generic
object recognition to future work. Toward the more
restricted goal of finding a particular target object in an
image, our approach to finding pairs of similar regions
can be easily adapted as follows (assuming a region
oversegmentation of the image): Given a region adjacency
graph representing an object model, we first try to find in
the image the object’s silhouette. This can be accomplished
by finding the minimum mean cycle in the product of the
model’s silhouette graph and the image’s boundary
segment graph. Having found the best match for the
object’s silhouette, we compute product graphs and
minimum mean cycles at the level of individual regions.
If matches are established at all levels, the model is
detected in the image. Thus, through an application of our
model acquisition technique, target models can be de-
tected in an image.

Our next major step is the less constrained problem of
unexpected object recognition of a novel exemplar from our
acquired object classes. Our efforts are currently focused on
the analysis of the conditions under which two regions are
merged. If we can derive a set of rules for the perceptual
grouping of regions, we will be able to generate abstractions
from images. Given a rich set of training data derived from
the model acquisition process (recall that the LCA of
two examples yields a path of region merges along with a
set of “no-merges”), we are currently applying machine
learning methods to uncover these conditions. Combined
with our model acquisition procedure, we can close the
loop on a system for generic object recognition which
addresses a representational gap that has typically been
ignored in computer vision.

ACKNOWLEDGMENTS

The authors would like to thank Allan Jepson for his
insightful comments and feedback on this work, as well as
the three reviewers, whose comments have improved the
presentation. The authors would also like to gratefully
acknowledge the generous financial support of the US
Army Research Office, the US National Science Foundation,
the Natural Sciences and Engineering Research Council of
Canada, and the Province of Ontario (PREA).

REFERENCES

[1] R. Basri, L. Costa, D. Geiger, and D. Jacobs, “Determining the
Similarity of Deformable Shapes,” Proc. Int’l Conf. Computer Vision
Workshop Physics-Based Modeling in Computer Vision, pp. 135-143,
1995.

[2] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.

[3] R. Bergevin and M.D. Levine, “Generic Object Recognition:
Building and Matching Coarse Descriptions from Line Drawings,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no 1,
pp. 19-36, Jan. 1993.

[4] I. Biederman, “Human Image Understanding: Recent Research
and a Theory,” Computer Vision, Graphics, and Image Processing,
vol. 32, pp. 29-73, 1985.

[5] R. Brooks, “Model-Based 3-D Interpretations of 2-D Images,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 5, no. 2,
pp. 140-150, 1983.

[6] G. Carneiro and A. Jepson, “Local Phase-Based Features,” Proc.
European Conf. Computer Vision, 2002.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

Fig. 21. The set of four dispenser bottle images (and their region

segmentations) used in the experiments.

Fig. 22. Computed LCA (orange border) of three examples. Accidental

alignment of nonsalient structure in the rightmost two exemplars leads to

an undesirable LCA.

Fig. 23. Computed LCA (orange border) of four examples. The

additional exemplar results in the desirable LCA.

[7] D. Comaniciu and P. Meer, “Robust Analysis of Feature Spaces:
Color Image Segmentation,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 750-755, 1997.

[8] J. Connell and M. Brady, “Generating and Generalizing Models of
Visual Objects,” Artificial Intelligence, vol. 31, pp. 159-183, 1987.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, chapter 25. MIT Press, 1993.

[10] S. Dickinson, H. Christensen, J. Tsotsos, and G. Olofsson, “Active
Object Recognition Integrating Attention and Viewpoint Control,”
Computer Vision and Image Understanding, vol. 67, no. 3, pp. 239-
260, Sept. 1997.

[11] S. Dickinson and D. Metaxas, “Integrating Qualitative and
Quantitative Shape Recovery,” Int’l J. Computer Vision, vol. 13,
no. 3, pp. 1-20, 1994.

[12] S. Dickinson, D. Metaxas, and A. Pentland, “The Role of Model-
Based Segmentation in the Recovery of Volumetric Parts from
Range Data,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 3, pp. 259-267, Mar. 1997.

[13] S. Dickinson, A. Pentland, and A. Rosenfeld, “From Volumes to
Views: An Approach to 3-D Object Recognition,” Computer
Graphics, Vision, and Image Processing: Image Understanding,
vol. 55, no. 2, pp. 130-154, 1992.

[14] S. Dickinson, A. Pentland, and A. Rosenfeld, “3-D Shape Recovery
Using Distributed Aspect Matching,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 14, no. 2, pp. 174-198, Feb. 1992.

[15] D. Eppstein, “Finding the k Shortest Paths,” SIAM J. Computing,
vol. 28, no. 2, pp. 652-673, 1999.

[16] G. Ettinger, “Large Hierarchical Object Recognition Using
Libraries of Parameterized Model Sub-Parts,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 32-41, 1988.

[17] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual
Models from Few Training Examples: An Incremental Bayesian
Approach Tested on 101 Object Categories,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, June 2004.

[18] P. Felzenszwalb and D. Huttenlocher, “Image Segmentation Using
Local Variation,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 98-104, 1998.

[19] F. Ferrie, J. Lagarde, and P. Whaite, “Darboux Frames, Snakes,
and Super-Quadrics: Geometry from the Bottom Up,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 15, no. 8, pp. 771-784,
Aug. 1993.

[20] R. Gould, Graph Theory, pp. 170-172. Benjamin/Cummings, 1988.
[21] J. Han and M. Kamber, Data Mining: Concepts and Techniques,

p. 228. Morgan Kaufmann, 2001.
[22] D. Huttenlocher and S. Ullman, “Recognizing Solid Objects by

Alignment with an Image,” Int’l J. Computer Vision, vol. 5, no. 2,
pp. 195-212, 1990.

[23] X. Jiang, A. Munger, and H. Bunke, “On Median Graphs:
Properties, Algorithms, and Applications,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, no. 10, Oct. 2001.

[24] J.-M. Jolion, “The Deviation of a Set of Strings,” Pattern Analysis
and Applications, vol. 6, no. 3, pp. 224-231, 2003.

[25] N Katoh, T. Ibaraki, and H. Mine, “An Efficient Algorithm for k
Shortest Simple Paths,” Networks, vol. 12, pp. 411-427, 1982.

[26] Y. Keselman and S. Dickinson, “Bridging the Representation Gap
between Models and Exemplars,” Proc. IEEE Workshop Models
versus Exemplars in Computer Vision, Dec. 2001.

[27] Y. Keselman and S. Dickinson, “Generic Model Abstraction from
Examples,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 856-863, Dec. 2001.

[28] B.B. Kimia, A. Tannenbaum, and S.W. Zucker, “Shape, Shocks,
and Deformations I: The Components of Two-Dimensional Shape
and the Reaction-Diffusion Space,” Int’l J. Computer Vision, vol. 15,
pp. 189-224, 1995.

[29] W.G. Kropatsch, “Building Irregular Pyramids by Dual Graph
Contraction,” Proc. IEEE Vision, Image and Signal Processing,
vol. 142, no. 6, pp. 366-374, 1995.

[30] B. Leibe and B. Schiele, “Analyzing Appearance and Contour
Based Methods for Object Categorization,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2003.

[31] A. Leonardis and H. Bischof, “Dealing with Occlusions in the
Eigenspace Approach,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 453-458, June 1996.

[32] D. Lowe, Perceptual Organization and Visual Recognition. Kluwer
Academic, 1985.

[33] D. Lowe, “Object Recognition from Local Scale-Invariant Fea-
tures,” Proc. Int’l Conf. Computer Vision, pp. 1150-1157, 1999.

[34] B. Luo, R. Wilson, and E. Hancock, “Spectral Embedding of
Graphs,” Pattern Recognition, 2004.

[35] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-Based
Object Detection in Images by Components,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, Apr.
2001.

[36] H. Murase and S. Nayar, “Visual Learning and Recognition of 3-D
Objects from Appearance,” Int’l J. Computer Vision, vol. 14, pp. 5-
24, 1995.

[37] R. Nelson and A. Selinger, “A Cubist Approach to Object
Recognition,” Proc. IEEE Int’l Conf. Computer Vision, Jan. 1998.

[38] H. Nishida and S. Mori, “An Algebraic Approach to Automatic
Construction of Structural Models,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 15, no. 12, pp. 1298-1311, Dec. 1993.

[39] M. Pelillo, K. Siddiqi, and S. Zucker, “Matching Hierarchical
Structures Using Association Graphs,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 21, no. 11, pp. 1105-1120,
Nov. 1999.

[40] A. Pentland, “Perceptual Organization and the Representation of
Natural Form,” Artificial Intelligence, vol. 28, pp. 293-331, 1986.

[41] A. Pentland, “Automatic Extraction of Deformable Part Models,”
Int’l J. Computer Vision, vol. 4, pp. 107-126, 1990.

[42] A. Pope and D. Lowe, “Learning Object Recognition Models from
Images,” Proc. IEEE Int’l Conf. Computer Vision, pp. 296-301, 1993.

[43] E. Rivlin, S. Dickinson, and A. Rosenfeld, “Recognition by
Functional Parts,” Computer Vision and Image Understanding,
vol. 62, no. 2, pp. 164-176, 1995.

[44] C. Schmid and R. Mohr, “Combining Greyvalue Invariants with
Local Constraints for Object Recognition,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 872-877, June 1996.

[45] S. Sclaroff and A. Pentland, “Modal Matching for Correspondence
and Recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 17, no. 6, pp. 545-561, June 1995.

[46] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Recognition of Shapes
by Editing their Shock Graphs,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 5, pp. 550-571, May 2004.

[47] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 1997.

[48] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker, “Shock
Graphs and Shape Matching,” Int’l J. Computer Vision, vol. 30,
pp. 1-24, 1999.

[49] F. Solina and R. Bajcsy, “Recovery of Parametric Models from
Range Images: The Case for Superquadrics with Global Deforma-
tions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12,
no. 2, pp. 131-146, Feb. 1990.

[50] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[51] J. Utans, “Learning in Compositional Hierarchies: Inducing the
Structure of Objects from Data,” Advances in Neural Information
Processing Systems, J.D. Cowan, G. Tesauro, and J. Alspector, eds.,
vol. 6, pp. 285-292, Morgan Kaufmann, 1994.

[52] S. Wachsmuth, S. Stevenson, and S. Dickinson, “Towards a
Framework for Learning Structured Shape Models from Text-
Annotated Images,” Proc. HTL-NAACL03 Workshop Learning Word
Meaning from Non-Lingustic Data, May 2003.

[53] M. Weber, M. Welling, and P. Perona, “Unsupervised Learning of
Models for Recognition,” Proc. Sixth European Conf. Computer
Vision, vol. 1, pp. 18-32, 2000.

[54] P.H. Winston, “Learning Structural Descriptions from Examples,”
The Psychology of Computer Vision, chapter 5, pp. 157-209, McGraw-
Hill, 1975.

[55] Y. Xu, E. Saber, and A. Tekalp, “Dynamic Learning from Multiple
Examples for Semantic Object Segmentation and Search,” Compu-
ter Vision and Image Understanding, vol. 95, pp. 334-353, 2004.

[56] S. Zhu and A.L. Yuille, “Forms: A Flexible Object Recognition and
Modelling System,” Int’l J. Computer Vision, vol. 20, no. 3, pp. 187-
212, 1996.

KESELMAN AND DICKINSON: GENERIC MODEL ABSTRACTION FROM EXAMPLES 15

Yakov Keselman received the BS degree in
mathematics and computer science from the
Urals State University in 1991, the MS degree in
mathematics from the University of Georgia in
1994, and the PhD degree in computer science
from Rutgers University in 2005. He was a
recepient of Rutgers University internal fellow-
ships in digital libraries (1998–1999) and and in
cognitive science (2000–2001). Since 2001, he
has been an instructor at the School of

Computer Science, Telecommunications, and Information Systems,
DePaul University. To increase his exposure to various aspects of
computing, he has taught courses in computer science, software
engineering, information systems, and electronic commerce. His
research interests include content-based image retrieval, applied
discrete optimization, and data-driven decision making. He is a member
of the IEEE and the IEEE Computer Society.

Sven Dickinson received the BASc degree in
systems design engineering from the University
of Waterloo in 1983 and the MS and PhD
degrees in computer science from the University
of Maryland in 1988 and 1991, respectively. He
is currently an associate professor of computer
science at the University of Toronto. From 1995-
2000, he was an assistant professor of computer
science at Rutgers University, where he also
held a joint appointment in the Rutgers Center

for Cognitive Science (RuCCS) and membership in the Center for
Discrete Mathematics and Theoretical Computer Science (DIMACS).
From 1994-1995, he was a research assistant professor in the Rutgers
Center for Cognitive Science and, from 1991-1994, a research associate
at the Artificial Intelligence Laboratory, University of Toronto. He has
held affiliations with the MIT Media Laboratory (visiting scientist, 1992-
1994), the University of Toronto (visiting assistant professor, 1994-
1997), and the Computer Vision Laboratory of the Center for Automation
Research at the University of Maryland (assistant research scientist,
1993-1994, visiting assistant professor, 1994-1997). Prior to his
academic career, he worked in the computer vision industry, designing
image processing systems for Grinnell Systems Inc., San Jose,
California, 1983-1984, and optical character recognition systems for
DEST, Inc., Milpitas, California, 1984-1985. His major field of interest is
computer vision, with an emphasis on shape representation, object
recognition, and mobile robot navigation. Dr. Dickinson was cochair of
the 1997, 1999, and 2004 IEEE Workshops on Generic Object
Recognition, while, in 1999, he cochaired the DIMACS Workshop on
Graph Theoretic Methods in Computer Vision. In 1996, he received the
US National Science Foundation CAREER award for his work in generic
object recognition and, in 2002, he received the Government of Ontario
Premiere’s Research Excellence Award (PREA), also for his work in
generic object recognition. From 1998-2002, he served as an associate
editor of the IEEE Transactions on Pattern Analysis and Machine
Intelligence, in which he also coedited a special issue on graph
algorithms and computer vision which appeared in 2001. He currently
serves as associate editor for the journal,Pattern Recognition Letters.
He is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 7, JULY 2005

