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Abstract
The recognition community has long avoided bridging the
representational gap between traditional, low-level image
features and generic models. Instead, the gap has been ar-
tificially eliminated by either bringing the image closer to
the models, using simple scenes containing idealized, tex-
tureless objects, or by bringing the models closer to the im-
ages, using 3-D CAD model templates or 2-D appearance
model templates. In this paper, we begin by examining this
trend and track its evolution over the last 30 years. We ar-
gue for the need to bridge (not eliminate) this representa-
tional gap, and review our recent progress for the domain
of model acquisition. Specifically, we address the problem
of automatically acquiring a generic 2-D view-based class
model from a set of images, each containing an exemplar
object belonging to that class. We introduce a novel graph-
theoretical formulation of the problem, and demonstrate the
approach on real imagery.

1. Introduction
In the object recognition community, object representa-
tions have spanned a continuum ranging from prototyp-
ical models (often called class-based or generic models)
to exemplar-based model (often called template-based or
appearance-based models). Those advocating prototypical
models address the task of recognizing novel (never be-
fore seen) exemplars from known classes, whose defini-
tions strive to be invariant to changes in surface texture,
color, part articulation, and minor deformation in shape.
Those advocating exemplar models address the very differ-
ent task of recognizing particular instances of objects, such
as JFK’s face or a can of Coke. In a completely orthogo-
nal direction, prototypical models can be object-centered or
viewer-centered (or both [8, 10, 9]), provided that the 3-D
or 2-D features that comprise the model satisfy the above
invariance goals. Similarly, exemplar models can be object-
centered, specifying the exact 3-D geometry of an object,
e.g., a rigid CAD model “template”, or viewer-centered,
specifying the exact appearance of an object.
Interestingly, the evolution of object recognition over the

past 30 years has followed a path from prototypical mod-
els to exemplar models, as illustrated in Figure 1. Begin-
ning in the 1970’s, vision researchers aimed for prototyp-
ical vision systems, using complex volumetric parts, such
as generalized cylinders (e.g., [5, 1, 23, 7]), and later su-
perquadrics (e.g., [25, 13, 31, 15, 32, 19]) and geons (e.g.,
[4, 8, 10, 9, 3, 27, 6]). The main challenge to these early
systems was the representational gap that existed between
the low-level features that could be reliably extracted, and
the abstract nature of the model components. Rather than
addressing this representational gap, the community effec-
tively eliminated it by bringing the images closer to the
models. This was accomplished by removing object surface
markings and structural detail, controlling lighting condi-
tions, and reducing scene clutter. Edges in the image could
then be assumed to map directly to the limbs and surface
discontinuities of high-order volumetric parts making up the
models. The results left many unsatisfied, as the images and
objects were often contrived, and the resulting systems were
unable to deal with real objects imaged under real condi-
tions.
The 1980’s ushered in 3-D models that captured the

exact shape of the object. Such models, often in the
form of CAD models, were effectively 3-D templates, e.g.,
[16, 20, 14]). Provided that such a model could be acquired
for a real object, the community now found that it could
build object recognition systems that could begin to recog-
nize real (albeit restricted) objects. This time, the represen-
tational gap was eliminated by bringing the model closer to
the imaged object, requiring the model to capture the exact
geometry of the object. Moreover, since the presence of tex-
ture and surface markings seriously affected the computa-
tional complexity of these systems, they too selected objects
which were texture-free – objects for which a salient image
edge discontinuity mapped to a polyhedral edge. Again,
there was dissatisfaction, as the resulting systems were un-
able to recognize complex objects with complex surface
markings.
Recently, beginning in the 1990’s, appearance models

have replaced CAD models, and for the first time, recog-
nition systems were constructed that could recognize arbi-
trarily complex objects, e.g., [33, 21, 18]). Storing a dense
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Figure 1: Evolution of Object Recognition

set of images of the object from all possible viewpoints, the
appearance models were not limited by object geometric
complexity, texture, or surface markings. In this case, the
representational gap was eliminated by bringing the models
all the way down to the image. The resulting systems could
therefore recognize only exemplar objects – specific objects
that had been seen at training time. Despite a number of
serious limitations of this approach, including difficulties in
dealing with background clutter, object translation, rotation,
and scaling, the approach has gained tremendous popular-
ity.

It is important to note that in bringing the model closer
to the image, the appearance-based and CAD-based ap-
proaches have altered the problem definition from generic
to exemplar object recognition. The systems developed in
the 70’s cannot be compared to those developed today, for
their target domains are different. We must acknowledge
the efficacy of appearance-based recognition systems for
exemplar recognition; provided that the above limitations
can be overcome, this technique may emerge as the best
method for recognizing exemplars. However, it is impor-
tant to acknowledge that the prototypical recognition prob-

lem is an important one, and despite the vision community’s
distraction towards (and fascination with) appearance-based
methods, the hypothesis that these (or their analogous 3-D
template-based) methods can scale up to perform prototyp-
ical object recognition is dubious. What, then, has led us
away from the important problem of generic object recog-
nition?

Over the past 30 years, the three approaches to eliminat-
ing the representational gap (shown in Figure 1) are driven
by the same limiting assumption: there exists a one-to-one
correspondence between a “salient” feature in the image
(e.g., a long, high-contrast line or curve, a well-defined ho-
mogeneous region, a corner or curvature discontinuity or, in
the case of an appearance-basedmodel, the values of a set of
image pixels) and a feature in the model. This assumption
is fundamentally flawed, for saliency in the image does not
imply saliency in the model. Under this assumption, object
recognition will continue to be exemplar-based, and generic
recognition will continue to be rather contrived.

To make real progress on the problem of generic object
recognition, we must address the representational gap out-
lined in Figure 1. Not only must we continue to push the
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technologies of segmentation and perceptual grouping, we
must be able to generate image abstractions that may not
exist explicitly in the image, but which capture the salient,
invariant shape properties of a generic model. 1 We argue
that for the purpose of generic or prototypical object (or,
more specifically, shape) recognition, the process of image
abstraction must recover a set of “metaregions” that map to
the coarse surfaces (or volumetric primitives) on a prototyp-
ical model.

In light of this goal, the difficult challenge of image ab-
straction can therefore be cast as a two-fold problem, as
shown in Figure 2. First, we seek a (compile-time) method
for automatically acquiring a generic model from a set of
images (containing exemplars belonging to a known class)
that bridges the representational gap between the output of
an image segmentation module and the “parts” of a generic
model. Although in Figure 2, this is exemplified by a
generic, view-based model (a coffee cup), those advocat-
ing object-centered models could easily map the parts of
this view into a set of object-centered components, e.g.,
[8, 10, 9], leading to an object-centered model. Although
we make no claim as to the final form of the model (2-D
or 3-D), we believe that a parts-based approach to viewer-
centered representations can better accommodate the in-
tractable complexity associated with “whole object” views
of complex, articulating objects [10].

Next, from an image of a real exemplar, we seek a (run-
time or recognition-time) method that will recover a high-
level “abstraction” that contains the coarse features that
make up some model. In this paper, we will briefly re-
view our approach (described in [17]) to the first problem,
that of generic model acquisition, and speculate briefly on
our direction towards solving the second, and more diffi-
cult problem of generic object recognition. Some sections
of this paper have been taken directly from [17], while oth-
ers summarize algorithmic details given in [17]. Generic
object recognition is an essential task, whose lack of so-
lution confines object recognition to the laboratory, where
such conditions as lighting, clutter, occlusion, and object
domain can be tightly controlled. Granted, the generic ob-
ject recognition torch has continued to burn, albeit dimly,
with a number of researchers committed to the problem,
e.g., [29, 36, 2, 30, 24], to name just a few. We believe
the time has come for the pendulum to swing back towards
solving the problem of generic, prototypical, or class-based
modeling and recognition.

1Although a number of approaches extract regions or perceptual groups
as input to a recognition system, they typically assume that corresponding
regions or groups exist on the model.
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Figure 2: The Role of Image Abstraction in Both Model
Acquisition and Object Recognition

2. An Illustrative Example of Generic
Model Acquisition

Assume that we are presented with a collection of images,
such that each image contains a single exemplar, all exem-
plars belong to a single known class, and that the view-
point with respect to the exemplar in each image is similar.
Fig. 3(a) illustrates a simple example in which three differ-
ent images, each containing a block in a similar orientation,
are presented to the system (we will return to this example
throughout the paper to illustrate the various steps in our al-
gorithm). Our task is to find the common structure in these
images, under the assumption that structure that is common
across many exemplars of a known class must be definitive
of that class. Fig. 3(b) illustrates the class “abstraction” that
is derived from the input examples. In this case, the domain
of input examples is rich enough to “intersect out” irrele-
vant structure (or appearance) of the block. However, had
many or all the exemplars had vertical stripes, the approach
would be expected to include vertical stripes in that view of
the abstracted model.
Any discussion of model acquisition must be grounded

in image features. In our case, each input image will be
region-segmented to yield a region adjacency graph. Simi-
larly, the output of the model acquisition process will yield
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Figure 3: Illustrative Example of Generic Model Acquisi-
tion: (a) input exemplars belonging to a single known class;
(b) generic model abstracted from examples.

a region adjacency graph containing the “meta-regions” that
define a particular view of the generic model. Other views
of the exemplars would similarly yield other views of the
generic model. The integration of these views into an op-
timal partitioning of the viewing sphere, or the recovery of
3-D parts from these views, is beyond the scope of this pa-
per. For now, the result will be a collection of 2-D views that
describe a generic 3-D object. This collectionwould then be
added to the view-based object database used at recognition
time.

3. Related Work
Automatic model acquisition from images has long been as-
sociated with object recognition systems. One of the advan-
tages of appearance-based modeling techniques, e.g., [21],
is that no segmentation, grouping, or abstraction is neces-
sary to acquire a model. An object is simply placed on a
turntable in front of a camera, the viewing sphere is sampled
at an appropriate resolution, and the resulting images (or
some clever representation thereof) are stored in a database.
Others have sought increased illumination-, viewpoint-, or
occlusion-invarianceby extracting local features as opposed
to using raw pixel values, e.g., [26, 28, 22, 34]. Still, the
resulting models are very exemplar-specific due to the ex-
treme locality at which they extract and match features (e.g.,
one pixel or at best, a small neighborhoodaround one pixel).
The resulting models are as far from generic as one can get.
In the domain of range images, greater success has been

achieved in extracting coarse models. Generic shape primi-
tives, such as restricted generalized cylinders, quadrics, and
superquadrics have few parameters and can be robustly re-
covered from 3-D range data [25, 31, 32]. Provided the
range data can be segmented into parts or surfaces, these
generic primitives can be used to model the coarse shapes of
the parts, effectively abstracting away structural detail. Un-
like methods operating on 2-D data, these methods are in-
sensitive to perceived structure in the form of surface mark-
ings or texture.
In the domain of generating generic models from 2-D

data, there has been much less work. The seminal work

of Winston [35] pioneered learning descriptions of 3-D ob-
jects from structural descriptions of positively or negatively
labeled examples. Nodes and edges of graph-like structures
were annotated with shapes of constituent parts and their re-
lations. As some shapes and relations were abstractions and
decompositions of others, the resulting descriptions could
be organized into a specificity-based hierarchy. In the 2-D
shape model domain, Ettinger learned hierarchical, struc-
tural descriptions from images, based on Brady’s curvature
primal sketch features [11]. The technique was successfully
applied to traffic sign recognition and remains one of the
more elegant examples of feature abstraction and generic
model acquisition.

4. Problem Formulation
Returning to Fig. 3, let us now formulate our problem more
concretely. As we stated, each input image is processed
to form a region adjacency graph (we employ the region
segmentation algorithm of Felzenzwalb and Huttenlocher
[12]). Let us now consider the region adjacency graph cor-
responding to one input image. We will assume, for now,
that our region adjacency graph represents an oversegmen-
tation of the image. (In Section 8, we will discuss the prob-
lem of undersegmentation, and how our approach can ac-
commodate it.) The space of all possible region adjacency
graphs formed by any sequence of merges of adjacent re-
gions will form a lattice, as shown in Fig. 4. The lattice size
is exponential in the number of regions obtained after initial
oversegmentation.2
Each of the input images will yield its own lattice. The

bottom node in each lattice will be the original region adja-
cency graph. In all likelihood, if the exemplars have differ-
ent shapes (within-class deformations) and/or surface mark-
ings, the graphs forming the bottom of their correspond-
ing lattices may bear little or no resemblance to each other.
Clearly, similarity between the exemplars cannot be ascer-
tained at this level, for there does not exist a one-to-one cor-
respondence between the “salient” features (i.e., regions) in
one graph and the salient features in another. On the other
hand, the top of each exemplar’s lattice, representing a sil-
houette of the object (where all regions have been merged
into one region), carries little information about the salient
surfaces of the object.
We can now formulate our problem more precisely,

recalling that a lattice consists of a set of nodes, with
each node corresponding to an entire region adjacency
graph. Given input image exemplars, ,
let be their corresponding lattices, and for
a given lattice, , let be its constituent nodes, each

2Indeed, considering the simple case of a long rectangular strip subdi-
vided into adjacent rectangles, the first pair of adjacent regions able
to be merged can be selected in ways, the second in , and so on,
giving a lattice size of .
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Figure 4: The Lowest Common Abstraction of a Set of Input Exemplars

representing a region adjacency graph, . We define a
common abstraction, or CA, as a set of nodes (one per lat-
tice) such that for any two nodes

and , their corresponding graphs and
are isomorphic. Thus, the root node (whose graph

consists of one node representing the silhouette region) of
each lattice is a common abstraction. We define the low-
est common abstraction, or LCA, as the common abstrac-
tion whose underlying graph has maximal size (in terms of
number of nodes). Given these definitions, our problem can
be simply formulated as finding the LCA of input image
exemplars.
Intuitively, we are searching for a node (region segmen-

tation) that is common to every input exemplar’s lattice and
that retains the maximum amount of structure common to
all exemplars. Unfortunately, the presence of a single heav-
ily undersegmented exemplar (a single-node silhouette in
the extreme case) will drive the LCA towards the trivial sil-
houette CA. In a later section, we will relax our LCA defi-
nition to make it less sensitive to such outliers.

5. The LCA of Two Examples
For the moment, we will focus our attention on finding the
LCA of two lattices, while in the next section, we will ac-
commodate any number of lattices. Since the input lattices
are exponential in the number of regions, actually comput-
ing the lattices is intractable. Clearly, we need a means for
focusing the search for the LCA that avoids significant lat-

tice generation. Our approach will be to restrict the search
for the LCA to the intersection of the lattices. Typically,
the intersection of two lattices is much smaller than ei-
ther lattice (unless the images are very similar), and leads
to a tractable search space. But how do we generate this
new “intersection” search space without enumerating the
lattices?

Our solution is to work top-down, beginning with a node
known to be in the intersection lattice – the root node, repre-
senting a single region (silhouette). If the intersection lattice
contains only this one node, i.e., one or both of the region
segmented images contain a single region, then the process
stops and the LCA is simply the root (silhouette). How-
ever, in most cases, the root of each input lattice is derived
from an input region adjacency graph containing multiple
regions. So, given two silhouettes, each representing the
apex of a separate, non-trivial lattice, we have the opportu-
nity to search for a lower abstraction (than the root) com-
mon to both lattices. Our approach will be to find a decom-
position of each silhouette region into two subregions, such
that: 1) the shapes of the corresponding subregions are sim-
ilar, and 2) the relations among the corresponding regions
are similar. Since there are an infinite number of possible
decompositions of a region into two component regions, we
will restrict our search to the space of decompositions along
region boundaries in the original region adjacency graphs.
Note that there may be multiple 2-region decompositions
that are common to both lattices; each is a member of the
intersection set.
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Assuming that we have some means for ranking the
matching decompositions (if more than one exists), we pick
the best one (the remainder constituting a set of backtrack-
ing points), and recursively apply the process to each pair of
isomorphic component subregions.3 The process continues
in this fashion, “pushing” its way down the intersection lat-
tice, until no further decompositions are found. This lower
“fringe” of the search space represents the LCA of the orig-
inal two lattices.
The specific algorithm for choosing the optimal pair of

decompositions is given in [17], and can be summarized as
follows:

1. Map each region adjacency graph to its dual boundary
segment graph, in which boundary segments become
nodes and edges capture segment adjacency.

2. Form the product graph (or association graph) of the
two boundary segment graphs. Nodes and arcs in the
product graph correspond to pairs of nodes and arcs,
respectively, in the boundary segment graphs. A path
in the product graph therefore corresponds to a pair of
paths in the boundary segment graphs which, in turn,
correspond to a pair of decompositions of the region
adjacency graphs.

3. With appropriate edge weights, along with a suitable
objective function, the optimal pair of corresponding
decompositions corresponds to the shortest path in the
product graph.

4. The optimal pair of decompositions is verified in terms
of satisfying the criteria of region shape similarity and
region relation consistency.

6. The LCA of Multiple Examples
So far, we’ve addressed only the problem of finding the
LCA of two examples. How, then, can we extend our ap-
proach to find the LCA of multiple examples? Furthermore,
when moving towards multiple examples, how do we pre-
vent a “noisy” example, such as a single, heavily under-
segmented silhouette, from driving the solution towards the
trivial silhouette? To extend our two-exemplar LCA solu-
tion to a robust, multi-exemplar solution, we begin with two
important observations. First, the LCA of two exemplars
lies in the intersection of their abstraction lattices. Thus,
both exemplar region adjacency graphs can be transformed
into their LCA by means of sequences of region merges.
Second, the total number of merges required to transform
the graphs into their LCA is minimal among all elements of

3Each subregion corresponds to the union of a set of regions corre-
sponding to nodes belonging to a connected subgraph of the original region
adjacency graph.

the intersection lattice, i.e., the LCA lies at the lower fringe
of the lattice.
Our solution begins by constructing an approximation to

the intersection lattice of multiple examples. Consider the
closure of the set of the original region adjacency graphs un-
der the operation of taking pairwise LCA’s. In other words,
starting with the initial region adjacency graphs, we find
their pairwise LCA’s, then find pairwise LCA’s of the result-
ing abstraction graphs, and so on (note that duplicate graphs
are removed). We take all graphs, original and LCA, to be
nodes of a new closure graph. If graph was obtained as
the LCA of graphs and , then directed arcs go from
nodes corresponding to , to the node corresponding
to in the closure graph.
Next, we will relax the first property above to accom-

modate “outlier” exemplars, such as undersegmented, input
silhouettes. Specifically, we will not enforce that the LCA
of multiple exemplars lie in the intersection set of all input
exemplars. Rather, we will choose a node in our approxi-
mate intersection lattice that represents a “low abstraction”
for many (but not necessarily all) input exemplars. More
formally, we will define the LCA of a set of exemplar re-
gion adjacency graphs to be that element in the intersection
of two or more abstraction lattices that minimizes the total
number of edit operations (merges or splits) required to ob-
tain the element from all the given exemplars. If a node in
the intersection lattice lies along the lower fringe with re-
spect to a number of input exemplars, then its sum distance
to all exemplars is small. Conversely, the sum distance be-
tween the silhouette outlier (in fact, the true LCA) and the
input exemplars will be large, eliminating that node from
contention. Our algorithm for computing this “median” of
the closure graph, along with an analysis of its complexity,
is given in [17].

7. Experiments
In Figures 5 and 6, we illustrate the results of our approach
applied to two sets of three coffee cup images, respectively.
In each case, the lower row represents the original images,
the next row up represents the input region segmented im-
ages (with black borders), while the LCA is shown with an
orange border. In each case, the closure graph consists of
only four members, with the same pairwise LCA emerging
from all input pairs. While in Fig 5, the solution captures
our intuitive notion of the cup’s surfaces, the solution in
Fig 6 is less intuitive. A strip along the bottom is present
in each exemplar, and understandably becomes part of the
solution. However, due to region segmentation errors, the
larger blue region in the middle cup extends into the han-
dle. Consequently, a cut along its handle (as is possible on
the other cups) is not possible for this exemplar, resulting
in a “stopping short” of the recursive decomposition at the
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Figure 5: Computed LCA (orange border) of Three Exam-
ples

large white region in the solution (LCA).
In Figure 7, we again present three exemplars to the sys-

tem. In this case, the closure graph has many nodes. Unlike
Figures 5 and 6, in which all pairwise LCA’s were equal
(leading to a somewhat trivial solution to our search for the
global LCA), each pair of input exemplars leads to a differ-
ent LCA which, in turn, leads to additional LCA’s. Contin-
uing this process eventually results in the inclusion of the
silhouette in the closure graph. The solution, according to
our algorithm, is again shown in orange, and represents an
effective model for the cup.

8. Conclusions
The quest for generic object recognition hinges on an ability
to generate abstract, high-level descriptions of input data.
This process is essential not only at run-time, for the recog-
nition of objects, but also at compile time, for the automatic
acquisition of generic object models. In this paper, we ad-
dress the latter problem – that of generic model acquisition
from examples. We review our novel formulation of the
problem, in which the model is defined as the lowest com-
mon abstraction of a number of segmentation lattices, rep-
resenting a set of input image exemplars [17]. To manage
the intractable complexity of this formulation, we focus our
search on the intersection of the lattices, reducing complex-
ity by first considering pairs of lattices, and later combining
these local results to yield an approximation to the global
solution.
We have shown some very preliminary results that com-

pute a generic model from a set of example images belong-
ing to a known class. Although these results are encour-
aging, further experimentation is necessary and a number

Figure 6: Computed LCA (orange border) of Three Exam-
ples

of limitations need to be addressed. For example, we cur-
rently assume an oversegmented image, thereby requiring
only region merge operations. However, our region repre-
sentation explicitly encodes a finite number of region split
points [30], allowing us to accommodate region splitting
within our framework.
Our next major step is the actual recognition of the de-

rived models from a novel exemplar. Our efforts are cur-
rently focused on the analysis of the conditions under which
two regions are merged. If we can derive a set of rules for
the perceptual grouping of regions, we will be able to gen-
erate abstractions from images. Given a rich set of training
data derived from the model acquisition process (recall that
the LCA of two examples yields a path of region merges),
we are applying machine learning methods to uncover these
conditions. Combined with our model acquisition proce-
dure, we can close the loop on a system for generic object
recognition which addresses a representational gap that has
been long ignored in computer vision.
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