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3D Model Retrieval Using Medial Surfaces
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Abstract Graphs derived from medial representations have been used for 2D object
matching and retrieval with considerable success (Pelillo et al., 1999; Siddiqi et al.,
1999b; Sebastian et al., 2001). In this chapter we consider consider the use of graphs
derived from medial surfaces for 3D object matching and retrieval. The medial
reprsentation allows for a qualitative abstraction based on a directed acyclic graph of
components and also a degree of invariance to a variety of transformations including
the articulation of parts. The formulation discussed in this chapter uses the geo-
metric information associated with each node along with an eigenvalue labeling of
the adjacency matrix of the subgraph rooted at that node. Comparative retrieval
results are presented against the techniques of shape distributions (Osada et al.,
2002) and harmonic spheres (Kazhdan et al., 2003b) on 425 models representing 19
object classes. These results demonstrate that medial surface based graph matching
outperforms these techniques for objects with articulating parts.
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10.1 Introduction

The problem of object recognition is one of significant interest to the computer
vision community. It relates to the process of searching a database of models so as
to efficiently retrieve instances that are similar to a particular exemplar. The gen-
eral problem is difficult because objects can undergo signficant deformation and
articulation while retaining their identity. The challenge is to come up with repre-
sentations that provide a degree of invariance under such transformations and which
allow for matching algorithms to be applied. The medial models discussed in this
book provide a particularly attractive choice because they allow for a reduction of
the topology of an object to a graph indicating the relationship between its parts
and sub-parts, where each node carries detailed geometric information. As a con-
sequence, medial graphs have been used for 2D object matching and retrieval with
demonstrated success in handling part articulation and deformation.

Broadly speaking, there are three classes of existing techniques: (1) graph edit
distance based approaches (Sebastian et al., 2001, 2004), (2) sub-graph isomorphism
approaches (Pelillo et al., 1999) and (3) graph-spectral approaches (Siddiqi et al.,
1999b).1 These three approaches share the common view that a representation of the
2D medial axis as a graph of components can handle differences in part structure
as well as differences in part shapes. The part structure is reflected by the medial
axis branching structure and hence the connectivity of the graph, while part shape is
reflected in the geometric information associated with each branch. We begin with
a brief overview of these classes of methods. Details of each method are presented
in the associated references.

10.1.1 Graph Edit Distance Approaches

Graph edit distance approaches assume that similar objects have similar (but not
necessarily identical) part structures and part shapes. The essential idea is to use a
prescribed set of edit operations to transform one graph in to another. Each of these
operations is assigned a cost, and the distance between two objects is determined by
the lowest cost set of edit operations between their underlying graph representations.
Whereas the notion of edit distance faces a serious issue of computational complex-
ity for arbitrary graphs, polynomial time algorithms have been developed for the
case of shock graphs (see Chapter 2) (Klein et al., 2001), which are attributed tree
structures. An example of this approach is illustrated in Fig. 10.1, which is adapted
from (Sebastian et al., 2004). In this particular example the edit operations take one
graph to another by assigning costs to allowed medial axis transitions, as described
in Chapter 2. For these costs to be useful in practice, they must take into account

1 A fourth category for matching medial representations has been developed in detail in Chapter 9,
but it assumes that candidate objects can be described by a fixed m-rep topology. Thus, this type
of method is less applicable to the problem of 2D or 3D object retrieval, where some variation in
part structure for objects within the same category is expected to occur.
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Fig. 10.1 (Adapted from (Sebastian et al., 2004).) Examples of the optimal deformation path
between two shapes represented at the extremes of a sequence. The sequence shows operations
(symmetry transforms) applied to the medial axis, and the resulting intermediate shock graphs.
The boxed shock graphs, which have the same topology, are where the deformation of the two
shapes meet in a common simpler shape

both medial axis branching structure (graph connectivity) and medial axis geometry
(node attributes).

10.1.2 Subgraph Isomorphism Approaches

Subgraph isomorphism approaches seek to find maximal common subgraphs bet-
ween two candidate graphs. In the context of matching 2D medial graphs, these
approaches have been developed in (Pelillo et al., 1999), using the version of the
shock graph developed in (Siddiqi et al., 1999b). The essential idea is to convert
the maximal common sub-tree problem into a maximum clique problem on an asso-
ciation graph, and to solve the latter combinatorial problem by converting it to a
related optimization problem. The optimization problem is solved by using discrete
or continuous time replicator equations. These are differential equations developed
in mathematical biology, which have the advantage that they are straightforward to
simulate numerically. In these approaches part geometry can be considered in the
form of attributes on nodes, leading eventually to a generalization of the maximum
clique problem to a maximum weighted clique problem. However, the similarity
between part structures, which is reflected in the connectivity of the association
graph, is essentially separated from the similarity between part geometries, which
is reflected in the weights on association graph nodes.

10.1.3 Graph Spectral Approaches

In graph spectral approaches the essential idea is to create a low-dimensional vec-
tor that reflects the topology of the graph. In the context of matching 2D medial
directed acyclic graphs (DAGs), one such measure proposed in (Siddiqi et al.,
1999b) is based on efficient techniques for computing the sum of the eigenvalues
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of the adjacency matrix of the DAG. This approach allows geometric similarity
between nodes, which may be interpreted as the similarity between part shapes,
to be combined with a topological signature vector that captures an object’s over-
all part structure. This combination is then used for both matching and indexing
(Shokoufandeh et al., 1999, 2005).

The subject of this chapter is the application of medial graph matching to 3D
object recognition. With regard to the choice of method, the sub-graph isomorphism
approach carries the disadvantage that for graphs with a large number of nodes
and possibly complicated topology, computational efficiency becomes an issue. The
graph edit distance approach is an attractive one to pursue, given an appropriate
measure of edit distance in 3D. To our knowledge creating such a measure, a chal-
lenging task, has not yet been reported. Therefore, in this chapter we focus on an
extension of the third approach based on graph spectra.

10.2 3D Model Retrieval

With an explosive growth in the number of 3D object models stored in web reposi-
tories and other databases, the computer vision and computer graphics communities
have begun to address the important and challenging problem of 3D object retrieval
and matching. Although this problem traditionally falls in the domain of computer
vision research, it is also of interest to those interested in applications in the areas
of solid modeling and computer-aided design. Recent advances include query-based
search engines (Funkhouser et al., 2003) which employ promising measures includ-
ing spherical harmonic descriptors and shape distributions (Osada et al., 2002). Such
systems can yield results on databases including hundreds of 3D models, in a matter
of a few seconds.

Thus far the emphasis has broadly been on the use of qualitative measures of
shape that are typically global. Such measures are robust in the sense that they can
deal with noisy and imperfect models, and at the same time they are simple enough
so that efficient algorithmic implementations can be sought. However, an inevitable
cost is that such measures are inherently coarse and are sensitive to deformations of
objects or their parts. As a motivating example, consider the 3D models in Fig. 10.2.
These four exemplars of an object class were created by articulations of parts and
changes of pose. For such examples, the very notion of a center of mass or a rigid
reference point (Alt et al., 1994), which is crucial for the computation of descriptions
such as shape histograms (sectors or shells) (Ankerst et al., 1999) or spherical extent
functions (Vranic and Saupe, 2001), can be nonintuitive and arbitrary. In fact, the
centroid of such models may actually lie in the background. To complicate matters,
it is unclear how to obtain a global alignment of such models, and hence signatures
based on a Euclidean distance transform (Borgefors, 1984; Funkhouser et al., 2003)
have limited power in this setting. As well, measures based on reflective symmetries
(Kazhdan et al., 2003a), and signatures based on 3D moments (Elad et al., 2001) or
chord histograms (Osada et al., 2002) are not invariant under such transformations.
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Fig. 10.2 Exemplars of the object class “human” created by changes in pose and articulations of
parts (top row). The medial surface (or 3D skeleton) of each is computed using the algorithm of
(Siddiqi et al., 2002) (bottom row). The medial surface is automatically partitioned into distinct
parts, each shown in a different color

The computer vision community has grappled with the problem of generic or
category-level object recognition by suggesting representations based on volumet-
ric parts, including generalized cylinders, superquadrics and geons (Binford, 1971;
Marr and Nishihara, 1978; Pentland, 1986; Biederman, 1987). Such approaches
build a degree of robustness to deformations and movement of parts, but their rep-
resentational power is limited by the vocabulary of geometric primitives that are
selected. Motivated in part by such considerations, there have been attempts to
encode 3D shape information using probabilistic descriptors. These allow intrinsic
geometric information to be captured by low dimensional signatures. An elegant
example of this is the geodesic shape distribution of (Hamza and Krim, 2003),
where information theoretic measures are used to compare probability distribu-
tions representing 3D object surfaces. In the domain of graph theory there have also
been attempts to address the problem of 3D shape matching using representations
based on Reeb graphs (Shinagawa et al., 1991; Hilaga et al., 2001). These allow for
topological properties to be captured, at least in a coarse sense.

An alternative approach is to use 3D medial loci. As pointed out by Blum, this
offers the advantage that a graph of parts can be inferred from the underlying local
mirror symmetries of the object (Blum, 1973). A formal abstraction of this type
based on the generic singularities of the grassfire flow in 3D has already been dis-
cussed in Chapter 2 (see also Leymarie and Kimia, 2003). To further motivate this
idea, consider once again the human forms of Fig. 10.2. A medial surface-based
representation (bottom row) provides a natural decomposition, which is largely
invariant to the articulation and bending of parts.

In this chapter, we build on the technique to compute medial surfaces covered in
Chapter 4 (see also Siddiqi et al., 2002) by proposing an interpretation of its output
as a directed acyclic graph (DAG) of parts. We then use refinements of algorithms
based on graph spectra (Shokoufandeh et al., 2005) to tackle the problems of index-
ing and matching 3D object models. Graph matching algorithms have already shown
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promise in the computer vision community for category-level view-based object
indexing and matching using 2D skeletal graphs (Siddiqi et al., 1999b; Shokoufan-
deh et al., 1999; Pelillo et al., 1999; Sebastian et al., 2001). They have also been
demonstrated in the context of matching 3D object models with tubular parts, using
a centerline approximation of the 3D skeleton (Sundar et al., 2003). We demon-
strate their significant potential for medial surface-based 3D object retrieval with
experimental results on a database of 320 models representing 13 object classes,
including exemplars of both rigid objects and ones with significant articulation of
parts. Comparative results using the information retrieval notion of precision ver-
sus recall demonstrate that this method significantly outperforms the techniques
of shape distributions (Osada et al., 2002) and harmonic spheres (Kazhdan et al.,
2003b) for objects with articulating parts.

10.3 Medial Surfaces and DAGs

A number of algorithms for computing 3D medial loci and related representations
have been covered in this book. These include the average outward flux-based and
object angle extension skeletons of Chapter 4 and the related algorithms based on
continuous properties of the Euclidean distance function; the methods based on dig-
ital distance tranforms of Chapter 5; methods based on Voronoi diagrams (Chapters
6 and 7); methods for computing m-reps (Chapter 8) and methods which combine
constructs from computational geometry with wavefront propagation such as the
shock-scaffold technique (Leymarie and Kimia, 2003). See also the applications
discussed in Chapter 11. For several of these algorithms the segmentation of the 3D
skeleton into its constituent medial manifolds remains a challenge. In this chapter
we choose to employ the method of Chapter 4 since it has the advantage that the dig-
ital classification of Malandain et al. (1993) allows for the taxonomy of generic 3D
skeletal points (Giblin and Kimia, 2004) to be interpreted on a rectangular lattice,
leading to a graph of parts.

Under the assumption that the initial model is given in triangulated form, we
begin by scaling all the vertices so that they fall within a rectangular lattice of fixed
dimension and resolution. We then sub-divide each triangle to generate a dense inter-
section with this lattice, resulting in a binary (voxelized) 3D model. The average
outward flux of the Euclidean distance function’s gradient vector field is computed
through unit spheres centered at each rectangular lattice point, using the algorithm of
Chapter 4 (Section 2.3). As explained in that chapter, this quantity has the property
that it approaches a negative number at skeletal points and goes to zero elsewhere
(Siddiqi et al., 2002), and thus it can be used to drive a digital thinning process. Fur-
thermore, the limiting average outward flux values for the case of shrinking discs
reveals the object angle, and thus this quantity may be viewed as a type of flux
invariant for both obtaining the medial locus and for determining the geometry of
the bounding surface implied by it (Dimitrov et al., 2003; Dimitrov, 2003). The thin-
ning process has to be implemented with some care, as described in Chapter 4, so
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that the topology of the object is not changed. As mentioned above, this process uses
the digital classification of points due to Malandain et al. (1993) to label points on
the digital medial locus according to the Am

k classification given in Chapters 1 and
2, i.e., as surface points, rim points, junction points or curve points. See also Table
4.3 of Chapter 4. We refer to this as a medial surface representation. This suggests
the following 3-step approach for segmenting the (voxelized) medial surface into a
set of connected parts:

1. Identify all manifolds comprised of 26-connected surface points and border
points.

2. Use junction points to separate these manifolds, but allow junction points to
belong to all manifolds that they connect.

3. Form connected components with the remaining curve points, and consider these
as parts as well.

This process of automatic skeletonization and segmentation is illustrated for two
object classes, a chair and a human form, in Fig. 10.3.

We now propose an interpretation of the segmented medial surface as a directed
acyclic graph (DAG). We begin by introducing a notion of saliency which captures
the relative importance of each component. Consider that the envelope of maxi-
mal inscribed spheres of appropriate radii placed at all skeletal points reconstructs
the original object’s volume (Blum, 1973). The contribution of each component
to the overall volume can thus be used as a measure of its significance. Since the
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Fig. 10.3 A voxelized human form and chair (left) and their segmented medial surfaces (middle). A
hierarchical interpretation of the medial surface, using a notion of part saliency, leads to a directed
acyclic graph DAG (right). The nodes in the DAGs have labels corresponding to those on the
medial surface, and the saliency of each node is also shown
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spheres associated with adjacent components can overlap, an objective measure of
component j’s saliency is given by

Saliencyj =
Voxels j

∑N
i=1 Voxelsi

,

where N is the number of components and Voxelsi is the number of voxels uniquely
reconstructed by component i.

The above notion is a reasonable choice for a saliency measure in the context
of 3D model retrieval, but is certainly not the only one. In fact, more principled
saliency measures could be developed by using the metric measure introduced by
Damon in Chapter 3, or by computing appropriate boundary and regional integrals
via their analogous medial integral versions, as discussed in that chapter. At present
the development of such saliency measures, as well as computational approaches to
approximiate them, remains the subject of future work.

We now propose the following construction of a DAG, using each component’s
saliency. Consider the most salient component as the root node (level 0), and place
components to which it is connected as nodes at level 1. Components to which these
nodes are connected are placed at level 2, and this process is repeated in a recursive
fashion until all nodes are accounted for. The graph is completed by drawing edges
between all pairs of connected nodes, in the direction of increasing levels, hence
avoiding the occurrence of any cycles. However, to allow for 3D models comprised
of disconnected parts we introduce a single dummy node as the parent of all DAGs
for a 3D model.

This process is illustrated in Fig. 10.3 (right column) for the human and chair
models, with the saliency values shown within the nodes. Note how this representa-
tion captures the intuitive sense that the human is a torso with attached limbs and a
head, a chair is a seat with attached legs and a back, etc. This DAG representation
of the medial surface is quite different than the graph structure that follows from
a direct use of the taxonomy of 3D skeletal points in the continuum presented in
Chapter 2 (Giblin and Kimia, 2004). Our motivation is to be able to exploit the hier-
archical structure-indexing and structure-matching algorithms reported in Siddiqi
et al. (1999b); Shokoufandeh et al. (2005). However, this conversion can also lead
to some limitations; we shall return to a discussion of these at the end of this chapter.

10.4 Indexing

A linear search of the 3D model database, i.e., comparing the query 3D object model
to each 3D model and selecting the closest one, is inefficient for large databases. An
indexing mechanism is therefore essential to select a small set of candidate models
to which the matching procedure is applied. When working with hierarchical struc-
tures in the form of DAGs, indexing is a challenging task that can be formulated
as the fast selection of a small set of candidate model graphs that share a subgraph
with the query. But how do we test a given candidate without resorting to subgraph
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isomorphism and its intractability? The problem is further compounded by the
fact that due to perturbation and noise, no significant isomorphisms may exist
between the query and the (correct) model. Yet, at some level of abstraction, the
two structures (or two of their substructures) may be quite similar. Thus, our index-
ing problem can be reformulated as finding model (sub)graphs whose structure is
similar to the query (sub)graph.

Choosing the appropriate level of abstraction with which to characterize a DAG
is a challenging problem. We seek a description that, on the one hand, provides
the low dimensionality essential for efficient indexing, while on the other hand, is
rich enough to prune the database down to a tractable number of candidates. In
recent work (Shokoufandeh et al., 2005) we draw on the eigenspace of a graph to
characterize the topology of a DAG with a low-dimensional vector that will facilitate
an efficient nearest-neighbor search in a database.

The eigenvalues of a graph’s adjacency matrix encode important structural prop-
erties of the graph, characterizing the degree distribution of its nodes. Moreover, we
have shown that the magnitudes of the eigenvalues are stable with respect to minor
perturbations of graph structure due to, for example, noise, segmentation error, or
minor within-class structural variation (Shokoufandeh et al., 2005).

We can now proceed to define an index based on the eigenvalues. One simple
structural abstraction would be a vector of the sorted magnitudes of the eigenval-
ues of a DAG’s adjacency matrix.2 However, for large DAGs, the dimensionality
of the index would be prohibitively large (for efficient nearest-neighbor search),
and the descriptor would be global, prohibiting effective indexing of query graphs
with added or missing parts. This problem can be addressed by exploiting eigen-
value sums rather than the eigenvalues themselves, and by computing both global
and local structural abstractions (Siddiqi et al., 1999b). Let V be the root of a DAG
whose maximum branching factor is ∆ , as shown in Fig. 10.4. Consider the sub-

Fig. 10.4 Forming a Low-Dimensional Vector Description of Graph Structure. At node a, we
compute the sum of the magnitudes of the k1 largest eigenvalues of the adjacency sub-matrix
defined by the subgraph rooted at a. The sorted sums Si become the components of χ(V ), the
topological signature vector (or TSV) assigned to V

2 Since the eigenvalues of an antisymmetric matrix are complex we utilize the magnitude of an
eigenvalue.
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Fig. 10.5 Indexing Mechanism. Each non-trivial node (whose TSV encodes a topological abstrac-
tion of the subgraph rooted at the node) votes for models sharing a structurally similar subgraph.
Each object accumulator Oi is a bin that stores the number of votes received for object model i.
Object models receiving strong support are candidates for a more comprehensive matching process.
Adapted from (Shokoufandeh et al., 2005)

graph rooted at node a, the first child of V , and let the out-degree of a be k1. We
compute the sum S1 of the magnitudes of the k1 largest eigenvalues of the adjacency
sub-matrix defined by the subgraph rooted at node a, with the process repeated
for the remaining children of V . The sorted Si’s become the components of a ∆ -
dimensional vector χ(V ), called a topological signature vector (TSV), assigned to
V . If the number of Si’s is less than ∆ , the vector is padded with zeroes. We can
recursively repeat this procedure, assigning a vector to each nonterminal node in the
DAG, computed over the subgraph rooted at that node.

Indexing now amounts to a nearest-neighbor search in a model database, as
shown in Fig. 10.5. The TSV of each non-leaf node (the root of a graph “part”)
in each model DAG defines a vector location in a low-dimensional Euclidean space
(the model database) at which a pointer to the model containing the subgraph rooted
at the node is stored. At indexing time, a TSV is computed for each non-leaf node,
and a nearest-neighbor search is performed using each “query” TSV. Each query
TSV “votes” for nearby “model” TSVs and these votes are stored in object accumu-
lator bins, with a distinct bin for each object. In this fashion evidence for models that
share the substructure defined by the query TSV is accumulated. Indexing could, in
fact, be accomplished by indexing solely with the root of the entire query graph.
However, in an effort to accommodate large-scale perturbation (which corrupts all
ancestor TSVs of a perturbed subgraph), indexing is performed locally (using all
non-trivial subgraphs, or “parts”) and evidence combined. The result is a small set
of ranked model candidates which are verified more extensively using the matching
procedure described next.

10.5 Matching

Each of the top-ranking candidates emerging from the indexing process must be
verified to determine which is most similar to the query. If there were no noise, our
problem could be formulated as a graph isomorphism problem for vertex-labeled
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graphs. With limited noise, we would search for the largest isomorphic subgraph
between query and model. Unfortunately, with the presence of significant noise,
in the form of the addition and/or deletion of graph structure, large isomorphic
subgraphs may simply not exist. This problem can be overcome by using the
same eigen-characterization of graph structure we use as the basis of our indexing
mechanism (Siddiqi et al., 1999b).

As we know, each node in a graph (query or model) is assigned a TSV, which
reflects the underlying structure in the subgraph rooted at that node. If we simply
discarded all the edges in our two graphs, we would be faced with the problem of
finding the best correspondence between the nodes in the query and the nodes in
the model; two nodes could be said to be in close correspondence if the distance
between their TSVs (and the distance between their domain-dependent node labels)
was small. In fact, such a formulation amounts to finding the maximum cardinality,
minimum weight matching in a bipartite graph spanning the two sets of nodes. In a
modification of Reyner’s algorithm (Reyner, 1977), we combine the above bipartite
matching formulation with a greedy, best-first search in a recursive procedure to
compute the corresponding nodes in two rooted DAGs which, in turn, yields an
overall similarity measure that can be used to rank the candidate. Details of the
algorithm can be found in Siddiqi et al. (1999b); Macrini (2003).

10.5.1 Node Similarity

The above matching algorithm requires a node similarity function that compares the
shapes of the 3D parts associated with two nodes. A variety of the measures used in
the literature as signatures for indexing entire 3D models could be used to compute
similarities between two parts (nodes) (Osada et al., 2002; Ankerst et al., 1999;
Vranic and Saupe, 2001; Elad et al., 2001; Kazhdan et al., 2003a). Some care would
of course have to be taken in the implementation of methods which require a form
of global alignment. In the experiments carried out in this chapter we have opted for
a much simpler 1D signature vector, which is based on the use of a mean curvature
histogram. The essential idea is to compute a distribution of mean curvature values
over all the level sets of the Euclidean distance function within the interior of a part.
This is implemented as follows.

First, consider the volumetric part that a node i represents, along with its Eucli-
dean distance function D. At any point within this volume, the mean curvature of the
iso-distance level set is given by div( ∇D

||∇D|| ). On a voxel grid with unit spacing the

observable mean curvatures are in the range [−1,1] because the smallest principal
curvature that can be measured corresponds to a sphere having radius 1. We compute
a histogram of the mean curvature over all voxels in the volumetric part, over this
range, using a fixed number of bins N. A mean curvature histogram vector Mi is
then constructed with entries representing the fraction of total voxels in each bin.
The similarity between two nodes i and j is then based on an L2 distance between
their mean curvature histogram vectors:
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Similarity(i, j) = [1−
√

N

∑
k=1

[Mi(k)−M j(k)]2]︸ ︷︷ ︸
Distance(i, j)

.

By construction, this similarity function is in the interval [0,1]. This measure could
be further modified to take into account overall part sizes. In the experiments
described in the following section we choose not to do this since our object models
have undergone a global size normalization.

10.6 Experimental Results

In order to test our 3D object retrieval algorithms we have used selected models from
the Princeton Shape Benchmark (Shilane et al., 2004). This standardized database,
which contains 1,814 3D object models organized by class, is an effective one for
comparing the performance of a variety of methods including those in (Kazhdan
et al., 2003a; Osada et al., 2002; Ankerst et al., 1999; Vranic and Saupe, 2001; Elad
et al., 2001). However, this database contains only a limited number of models with
articulating parts and hence we have supplemented it with a set of articulated models
that we have created. The resulting database, which we call the McGill Shape Bench-
mark, includes 455 exemplars of which we have used 425 in our experiments. The
full database can be viewed under http://www.cim.mcgill.ca/∼shape. The exemplars
span 19 basic level object classes (hands, humans, teddy bears, spectacles, ants,
octopuses, snakes, crabs, spiders, tables, chairs, cups, airplanes, birds, dolphins,
dinosaurs, four-legged animals, fish). These classes are divided into two categories,
those with significant part articulation, and those with moderate or no part articu-
lation. In our experiments we merge the categories “four-legged” and “dinosaurs”,
treating them as a single category “four-limbs” Fig. 10.6 depicts 5 exemplars from
each of the object classes.

To obtain a fully satisfactory set of exemplars, one would have to sample from
a large population of models to be recognized, both with and without articulating
parts. We have attempted heuristically to accomplish this in a small way, but care-
fully achieving that goal is currently beyond the scope of our experimental work.
The results which follow must be interpreted with this caveat.

10.6.1 Matching Results

On a large database we envision running the indexing strategy first to obtain
a smaller subset of candidate 3D models and to match the query only against
these. However, given the moderate size of our database we were able to gen-
erate the 425 × 425 = 180,625 pairs of matches in a matter of 25–30 minutes
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significant articulation moderate or no articulation

Fig. 10.6 The McGill Shape Benchmark: 5 exemplars are shown from each of the 19 object
classes. Exemplars from classes on the left have significant part articulation, whereas those on
the right have moderate to no part articulation. The full database of 455 models can be viewed at
http://www.cim.mcgill.ca/∼shape/benchMark/

on a 3.0 GHz desktop PC. We compared the results using medial surfaces (MS)
with those obtained using harmonic spheres (HS) (Kazhdan et al., 2003b) and
shape distributions (SD) (Osada et al., 2002). For both HS and SD we used as
input a mesh representation of the bounding voxels of the voxelized model used
for MS. The pair-wise distances between models using harmonic spheres were
obtained using Michael Kazhdan’s executable code (http://www.cs.jhu.edu/∼misha)
and those using shape distributions were based on our own implementation of the
algorithm described in Osada et al. (2002). For this latter implementation we took
care to sample points uniformly and randomly on each outward face of each bound-
ary voxel so that the signature curves were faithful. In particular, we were able to
reproduce several of the D2 shape distributions in Fig. 3 of Osada et al. (2002).
The comparisons between the three techniques were performed using the standard
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Fig. 10.7 Precision (y axis) versus Recall (x axis): Objects with articulating parts. The results
using medial surfaces (MS) are shown with red circles, those using harmonic spheres (HS) with
blue squares and those using shape distributions (SD) with green crosses. Top row: Ants, crabs,
snakes. MS gives superior results. Second row: Hands, humans, spectacles. MS gives superior
results. Third row: Octopuses, spiders, pliers. MS gives superior results. Fourth row: Teddy bears.
HS gives slightly better results than MS

information retrieval notion of precision versus recall, where curves shifted upwards
and to the right indicate superior performance.

The results for objects with articulating parts are presented in Fig. 10.7. For the
category teddy bears both MS and HS give excellent results. However, for all other
categories MS outperforms the other two techniques. For most of these models part
structure is largely preserved, but parts articulate and deform. A particularly inter-
esting case is the category snakes, whose exemplars consist of a single tube like
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Fig. 10.8 Precision (y axis) versus Recall (x axis): Objects with moderate or no articulation. The
results using medial surfaces (MS) are shown with red circles, those using harmonic spheres (HS)
with blue squares and those using shape distributions (SD) with green crosses. Top row: Tables,
cups. MS gives superior results. Second row: Chairs, airplanes, dolphins. MS and HS give com-
parable results for chairs and airplanes. For dolphins HS gives superior results. Third row: Birds,
four-limbed, fishes. The results are comparable for birds. For four-limbed and fishes MS and SD
give superior results

structure that is deformed in a variety of ways, causing significant difficulty for both
HS and SD.

Figure 10.8 shows the results for objects with moderate or no part articulation.
For categories in the top row MS gives superior results. For categories in the mid-
dle row HS and MS give comparable results, with the exception of dolphins for
which HS gives superior results. For categories in the third row the results are com-
parable for birds, but for four-limbs and fish, both HS and SD outperform MS.
The HS technique does particularly well on these categories, taking advantage of
the pose alignment of the four-limbed models, and the “flat” mass distribution of
the fish models. The MS technique would requires a degree of regularization to han-
dle categories with changing part structure; we shall discuss this limitation further
in Section 10.7.
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10.6.2 Indexing Results

In order to test our indexing algorithm, which utilizes only the topological structure
of medial surface-based DAGs, we carried out two types of experiments, using 320
models from the McGill Shape Benchmark (we excluded the categories ants, octo-
puses, snakes, crabs and spiders). In the first we evaluated percentage recall. For
a number of rank thresholds the percentage of models in the database in the same
category as a query (not including the query itself) with higher indexing rank, are
shown in Fig. 10.9. The results indicate that on average 70% of the desired models
are in the top 80 (25% of 320) ranks. In the second experiment we examine the aver-
age ranks according to object classes. For all queries in a class the rank of all other
objects in that class is computed. The ranks averaged across that class are shown in
Fig. 10.10. The results indicate that for 9 of the 13 object classes the average rank
is in the top 80 (25% of 320). The higher average ranks for the remaining classes
are due to the fact that certain categories have similar part decompositions. In such
cases topological structure on its own is not discriminating enough, and part shapes
also have to be taken into account.

It should be emphasized that the indexer is a fast screener which can quickly
prune the database down to a much smaller set of candidates to which the matcher
can be applied. Furthermore, the eigen-characterization used to compute the index
is also used at matching time, so the same eigen-structure calculation is exploited
for both steps. The systems against which we have evaluated the matcher in the
previous section (SD and HS) run a linear search on the entire database for each

Indexing Results : Percentage Recall Averaged Across Classes
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Fig. 10.9 Indexing results: percentage recall. For several rank thresholds, N = 10, 20, ..., we plot
the percentage of models in the database in the same category as the query (not including the query
itself) with indexing rank ≤ N. The results averaged across all classes are shown along with error
bars depicting +/−1 standard deviation
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Indexing Results : Average Rank For Each Class
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Fig. 10.10 Indexing results: average ranks. For all queries in a class the rank of all other objects
in that class are computed. The ranks averaged across that class are shown, along with error bars
depicting +/−1 standard deviation

query. That approach may not scale well, since the indexing problem is essentially
ignored.

10.7 Discussion and Conclusion

Medial representations have the potential to advance the state-of-the-art in 3D object
model retrieval, particularly for databases in which exemplars within the same
object class undergo significant part articulation (assuming moderate changes to
the part structure). In this chapter, using the method for computing and segmenting
medial surfaces of Chapter 4, we have proposed a DAG representation that captures
a notion of part saliency. We have then built on algorithms in the computer vision
literature to address the problem of 3D model indexing and matching in a uniform
framework and have presented retrieval results on a databse including models with
articulating parts.

The major current limitations of this approach include (1) the assumption that
the original object models can be voxelized, (2) the coarse nature of the part simi-
larity measure based on mean curvature histograms, (3) the assumption that objects
with complex part topologies can yield stable graph structures using medial surface
decompositions on a digital lattice. We discuss each of these weaknesses in turn.

First, it is feasible to make voxelization possible by “patching” models with a few
missing triangles. However, for models with incomplete surfaces and large holes,
and hence no well defined notion of an interior and an exterior, medial surface-
based DAGs would not be appropriate. In current research we are incorporating
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computational geometry techniques for computing the Euclidean distance function
directly from a mesh, which provides the additional advantage that the points on
the shrinking sphere used to measure the average outward flux can be sampled very
densely using a coarse-to-fine algorithm (Stolpner and Siddiqi, 2006). It might also
be fruitful to explore Voronoi methods, discussed in Chapters 6 and 7, for computing
medial surface-based DAGs that could in principle be applied directly to point
clouds, provided that the sampling density is high enough (Amenta et al., 2001b)
or to use the shock scaffold technique (Leymarie and Kimia, 2003).

With regard to the limitations of the part similarity measure, we expect that the
performance of graph theoretic algorithms for comparing medial surface based rep-
resentations will improve with more discriminating measures, and any one of a
number suggested in the literature can be investigated.

The instability for complex objects of the graph structures we compute, as exem-
plified by the poorer results on the four-limbed animals and the fish, has a variety of
aspects. One aspect has to to do with the assumption that we have made in convert-
ing a medial surface to a DAG, that an object has a well-defined part hierarchy. Such
an assumption can fail for objects which have several main parts of comparable sizes
(e.g., a caterpillar). Since this property would in turn be reflected in component parts
with approximately the same node saliency, such models could at least be flagged. A
second aspect has to do with instabilities in the branching topology of a medial sur-
face based DAG, e.g., the precise manner in which the limbs attach to the torso can
change with part deformation and movement. This latter aspect can be dealt with,
at least in part, by exploring coarser representations based on the medial surface,
e.g., by using Damon’s metric measure along with the medial integrals developed
in Chapter 4 to develop and incorporate a notion of ligature (Blum, 1973) in 3D. A
third aspect has to do with the sensitivity of segmentation techniques that use only
digital labelings on a rectangular lattice. These can suffer from discretization arti-
facts. As mentioned above, we are currently carrying out research in the direction of
using computational geometry approaches to apply the average outward flux imple-
mentation in 3D directly to a mesh, as well as to refine the sampling (Stolpner and
Siddiqi, 2006). Preliminary evidence suggests that the medial surfaces so obtained
are more precise and that they may allow for estimates of the differential geometry,
specifically the expectation that at medial surface junctions there is a discontinuity
in the tangent plane, to be used to improve the segmentation process.
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