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3.1 Introduction

This paper provides a summary of the research conducted at the University of
Maryland during the past five years on problems associated with visual navi-
gation of ground vehicles This research has been driven by a variety of scien-
tific and engineering goals, including

1 the identification of principles of organization {or autenomous navigation
systems,

2. the identification of fundamental scientific problems that must be addressed
in the course of designing and developing visual navigation systems, and

3. the implementation of prototype visual navigation systems that operate in
the real world (ideally in real time) and demonstrate progress toward the
solution of a specific problem in visual navigation.

Qur research has focused primarily on the development of a complete system
for visual navigation of roads and road networks {described in detail in Refs
[22] and [10]). We call this systern MARF for MAryland Road Follower.
MARF was developed as part of the Autonomous Land Vehicle (ALV) pro-
gram sponsored between 1984 and 1988 by the Defense Advanced Research
Projects Agency. It was able to visually navigate a ground vehicle over unfa-
miliar roads. If a priori information was available in the form of a map, then
MARF was able to uge that information to navigate through intersections
whose geometries were coarsely specified in the map More important than
the actual navigation problem that MARF attempted to solve was the organi-
zation of the system. That organization emphasized the importance of focus
of attention (both to minimize computation time and to make maximal use of
accumulated expectations), explicit representation of visual search strategies
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(to support extensibility and ease of modification), and sensor integration at
the symbolic level.

An important dimension in the design of autonomous vehicles is the de-
composition of the system into moduies. The most prevalent decomposition
is a functional one (referred to by Brooks [4] as a horizontal decomposition),
So, for example, our road following system has modules for image proces-
sing, sensor control, inverse perspective, etc. Brooks [4] argues that such a
functional decomposition will lead to systems with very complex interfaces
between the modules that are, additionally, very difficult to modify or ex-
tend. Our experience with the initial implementation of our road following
system certainly supported Brooks contentions; however, our last implemen-
tation, based on a set of interacting blackboards with explicit representations
for objects and processes (described in detail in Dickinson and Davis [107),
allowed us to overcome many of these difficulties and, perhaps, could form
the basis for the design of even more general systems We describe this system
in some detail in Section 2

The problem of recovering an explicit model for the three-dimensional ge-
ometry of the road is especially important when the sampling interval for
the vehicle {time taken to acquire and process a frame of data) is large com-
pared to the speed of the vehicle. The most straightforward approach to re-
constructing the geometry of a road once its boundaries or lane markings
are detected is to assume that the road is {lat and that one can measure
(using either an inertial sensor or a range sensor) the orieatation and height
of the camera with respect to the road plane. However, small errors in the
estimation of these parameters, or small deviations of the road from flatness,
can result in extremely large errors in the recovered three-dimensional road
coordinates. If the road contains a curve, and the distance to the curve is
cither over- or underestimated because of such errors, then the vehicle might
be driven off the road. In Section 3, we describe a monocular inverse per-
spective algorithm developed by DeMenthon [8] This so-called “zero-bank
inverse perspective algorithm™ was tested extensively using reference road
reconstructions obtained by data fusion between range images and video
images from the Martin Marietta ALV [17]

While the ultimate goal of antonomous road following systems 13 to navi-
gate in the presence of other moving objects, it is also important to be able to
navigate around stationary obstacles on the road. The most straightforward
approach for identifying road obstacles is based on range images and in-
volves comparing the observed height of points [rom the range image against
the predicted height of road points. This approach suffers from two serious
problems:

1. Small errors in estimating the geometry of the road can lead to very large
errors in estimating the heights of road points.

2. Even if the road geometry is known, small errors in estimating the orienta-
tion of the range sensor with respect to the road can lead to very large
errors in height estimation.
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In Veatch and Davis [21], we proposed an obstacle detection algorithm
based on comparing the observed range derivatives of road pixels against the
predicted derivatives. We showed that such an approach is much less sensitive
to errors than algorithms based on height comparison or other similar ap-
proaches. Section 4 contains a description of the obstacle detection algorithm
and experimental results,

3.2 Maryland Road Follower

While the development of MARF involved the solution of many difficult
technical problems (image analysis algorithms for detecting road boundaries
and markings in color images of roads, robust inverse perspective algorithms
for road geometry reconstruction, algorithms for obstacle detection in range
imagery, etc ), we would like to focus here on the organization of the system at
a high level and describe the representations adopted that allow MARF to
reason about what to look for, which sensors to use, and how to recover from
failure.

Figure 3 | contains a road image taken from the Martin Marietta ALV at
their Denver, Colorado, test site. From images such as these, MARF con-
structs a partial model of its three-dimensional environment This scene model
contains the objects visually identified by MARF and forms the basis for
planning a path through the environment

For road following, the scene model contains objects from which the loca-
tion of the road can be determined Most simply, the scene model might
contain the locations of the left and right boundaries of the road. However, it
would also be possible to navigate the vehicle based on locating the right
boundary and the centerline, the centerline only, the location of a ditch that is
known to run parallel to the road at a given distance from the road, etc.

Generally, there are many cues in the environment that contain direct or

FiGure 3 1. Typical ALY road
tmage. Reprinted with permis-
sion from IEEE Tramsactions
on Robotics and Automation (“A
Flexible Tool for Prototyping
ALY Road Following Algo-
rithms” by Sven Dickinson and
Larry Davis, 6(2), 1990) ©
1990 IEEE
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indirect evidence concerning the location of the road. MARF must have some
basis for deciding which objects in the environment to search for and how to
search for them. These decisions can be based on information including the
recent history of object detection (ie., the right road boundary might have
been robustly detected recently because of high color contrast and so is a
good candidate for the current road tracking method), the current contents of
the scene model (i e, what has already been successfully detected in the cur-
tent frame and where), and information from a road map.

Detection, verification, and accurate delineation of these objects are them-
selves complex tasks involving sensor control, computationally demanding
sensor data processing algorithms, and fusion of either raw data or analyses
from multiple sensors Methods for performing such tasks evolve as the road
[ollowing problem becomes better understood. We would like to increase the
class of objects that the vehicle can use to determine its motion, include new
sensors on the vehicle, embed new sensor data processing algorithms into the
system, and modify and extend the navigation strategies employed by the
vehicle The successful evolution of such a system depends on the ability of
its control structure and knowledge representations to accommodate such
changes.

In the system to be described, the scene model is represented as a network
of frames, with each frame corresponding to a class of objects and encapsulat-
ing the relevant information pertaining to that class. The control structure
used to construct the network is based on a system of communicating produc-
tion systems that implement a structured blackboard. The blackboard is par-
titioned into regions, each of which corresponds to a specilic class of frames
and contains the rules that define the attributes of the class The system pro-
motes modularity and maintainability through a structured object represen-
tation and a structured control scheme

3.2.1 System Overview

A scene model is constructed in MARF through the cooperation of two
modules:

1 the scene model planner (Planner) is responsible for deciding what objects
to search for and where in the image to search for them, and

2. the scene model verifier (Verifier} is responsible for sensor control and sen-
sor data processing required to verify the scene predictions made by the
Planner.

The Planner determines its sequence of object predictions based on knowl-
edge about the current scene, the history of processing of recent frames, and
the poals associated with the current navigation task. The Verifier controls
the acquisition and analysis of data acquired from the sensors. For example,
if requested to locate the image of the road’s lelt boundary at a distance
of 10-15 m in front of the vehicle, it would choese an appropriate sensor
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based on map information and its current history of road boundary detection,
choose a sensor data processing algorithm, determine the appropriate point-
ing direction for the sensor based on estimates ol the vehicle’s position in the
world and its motion, acquire the sensor data, and process it. All of these
decisions are arrived at by the application of a rule-based system to struc-
tured databases ol facts and conjectures about the world, the vehicle, and its
$EN801S.

Here, we would like to present a detailed description of the Planner, and
we would specifically like to illustrate how the explicit representation of visual
search strategies in the Planner makes it relatively straightforward to experi-
ment with competing strategies.

The Planner is implemented as a frame whose slots point to the modules
with which the Planner communicates. There are currently slots for

1 the scene model,

2. the a priori road map,

3. the local navigation task, and
4. the Verifier

The unique feature of this framework is that it inherits the capabilities of a
YAPS [1], a production system providing a rule database, a factual database,
and a conflict resolution strategy. The Planner's principal goals are to choose
what objects in the world to search for, deduce the location of the road from
the detection of some subset of these objects {the Verifier may fail to detect
some of the objects sought by the Planner), and decide when to terminate
processing of a frame.

In our current implementation, the only local navigation task is to follow
the road. A road map is available that specifies the geometry of the road
network at a coarse level (i.e, where road intersections occur and how many
roads meet at those intersections). Detailed information about the road ge-
ometry between intersections is not provided.

In our originai road [ollowing system [22], a fixed search strategy was
employed to detect the road. [t operated by predicting where in a video image
the left (and right) boundaries at a fixed distance in {ront of the vehicle would
appear. This prediction was based om its accumulated three-dimensional
model of the road geometry and an estimate of the vehicle’s position in that
model. The system (1) placed windows in the image surrounding those points,
with the size of the window heuristically determined by estimates of the
prediction error; (2) applied simple image processing algorithms to those
windows (based on edge detection and line extraction) to locate the road
boundary; and (3) placed subsequent windows in the image that overlapped
the previous windows by a fixed percentage, oriented along the extrapolated
direction of the road. Because the strategy was implemented directly in code,
it was very difficuit to modify or extend

In MARF, these strategies are represented explicitly in the Planner as
rules, making it straightforward to specify the conditions under which a strat-
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egy should be employed, what new strategy to invoke should the current one
(or ones, since several could be pursued in parallel) fail, etc. We illustrate this
with a simple example.

Since the road patches seen in successive images taken {rom the vehicle
have a large intersection, one might imagine that for straight roads, at least, it
is not necessary to reprocess all those parts of the current image that corre-
spond to road segments identified in previous frames. For example, we might
want to experiment with a search strategy that, after having detected 10 m of
straight road, would skip over the image of the next 10 m of road, thus saving
the time required to process those parts of the image containing the skipped
10 m {of course, in order to do this, we must either have determined the
three-dimensional geometry of that 10-m patch from the analysis of previous
frames or we must make some simplifying assumptions, such as the road is
straight and {lat over that 10-m patch)

Among the rules that collectively define the road patch search strategy, the
following rule defines the search strategy as disconnected:

{defp define-disconnected-search-strategy
(hypothesized object -object)
(zoal {define search strategy for road patch -object)}
test(null (<- object “search-strategy))
(cond ({not (null { <- object priori-road-straightness)))
{>= (<- -object *priori-road-straightness}
MIN-ROAD-STRAIGHTNESS))
—
( <- -object "set-search-strategy disconnected)).

The antecedent of the rule (the conditions preceding the —>) is a conjunc-
tion of conditions that must be satisfied in order for the consequent {the
expression following the —>) to be executed. The first antecedent expression
matches a road patch hypothesis created by the Planner. The second expres-
sion represents the current goal of the Planner; in this case, the Planner is
attempting to define the search strategy of the road patch hypothesis. The
next two expressions, called test clauses, specify further conditions that must
be met; the search strategy must be previously undefined and the prior road
straightness must exceed the value of MIN-ROAD-STRAIGHTNESS. The
symbol <- indicates message passing between objects; for example, in the
first test condition, a message is passed to the road patch hypothesis, bound
to the variable-object, requesting the value of the search strategy attribute.
iIf both of these conditions are met, then the search strategy is defined as
disconnected

A second rule defines the search location of the road patch hypothesis:

{defp define-disconnected-search-location
(hypothesized object -object}
(zoal (define search location for road patch -object))
test(null {<- -object 'search focation)}
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{eq {<- -object *search strategy) 'disconnected)
—>

{ <- -object 'set-search-location

{list (<~ (<~ * yaps-db * 'scene-model}

"predict-extended-left-feature-seed

MAX-EXTENDED-SEARCH-DISTANCE)

(<-{<-* yaps-db * 'scene-model)

"predict-extended-right-feature-seed

MAX-EXTENDED-SEARCH-DISTANCEM.

In this rule, the consequent defines the search location as a value resulting
from sending two queries to the scene model, requesting points extrapolated
from the left and right road patch segments, respectively, of the last patch in
the scene model

Suppose, now, that we wanted to change this strategy by having the vehicle
look further and further ahead as it identifies more and more road patches.
So, if the strategy initially attempts to skip 5 m of road, then if it were success-
ful, it might next try to skip 10 m of road. To accommodate this new “dynamic
search strategy,” we add the following rule to the Planner:

{defp define-dynamicaily-disconnected-search-strategy
hypothesized object -object)
(goal {define search strategy for road patch -object))
test{null { <- -object "search strategy))
{cond ((not (null (<~ -object "prior-road-straightness)))
(>= (<~ -object "prior-road-straightness)
MIN-ROAD-STRAIGHTNESS))}
(eq (<- {<- (<~ * yaps-db * 'scene model)
"retrieve-most-recent-road-patch) ‘search-strategy)
"disconnected)
e e
{ <- -object 'set-search-strategy 'dynamically-disconnected)).

In the test clauses, we check that the search strategy of the road patch
hypothesis is undefined, and we make sure that we have accumulated a suffi-
cient amount of straight road in the scene model In addition, we check that
the previously verified road patch was verified using the disconnected search
strategy. If all of these conditions hold, the search strategy is defined to be
dynamically disconnected. To define the search location for this new strategy,
we add the following rule:

{defp define-dynamically-disconnected-search-iocation
{hypothesized object -object}
{goal (define search location for road patch -object))
test(null ( <- -object "search-location))
(eq { <- -object 'search-strategy) 'dynamically disconnected)
e
(<- -object 'set-search-location
(list (<~ { <~ * yaps-db * "scene-model}
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FiGure 3 2. Tracking a straight
road. Reprinted with permis-
sion from IEEE Transactions
on Robotics and Automation (“A
Fiexible Tool for Prototyping
ALV Road Following Algo-
rithims” by Sven Dickinson and
Larry Davis, 6(2), 1990). ©
1990 IEEE

" predict-extended-left-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)
(<- (<- yaps-db 'scene-model}
"predict-extended-right-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)))

In this rule, the rule consequent defines the search location to be MAX-
EXTENDED-SEARCH-DISTANCE from the last road patch in the scene
model By controlling the value of this parameter, we can control the extent of
road skipped by the road detection strategy.

We illustrate the results of these search strategies with an image [rom the
Martin Marietta test site. Figure 3.2 is an image of a straight segment of road.
Initial search windows are placed near the bottom of the image based on the
predicted location of the road in the image Using these initial search win-
dows, the connected search strategy is invoked until 10 m of road have been
inserted into the scene model, At that time, the disconnected search strategy is
invoked, and 10 m of road are skipped in the image. Since the road is straight,
the search strategy is successful in identifying the road boundaries in the
next pair of windows With approximately 20 m of straight road in the scene
model, the disconnected search strategy is again invoked; however, when the
three-dimensional search location of the next road patch is mapped to the
current image, the search windows are out of bounds (off the top of the image).

3.3 Recovery of Three-Dimensional Road Geometry

We now present an algorithm for reconstructing the road shape from a single
image, providing the three-dimensional profile of the road in front of the
vehicle, often up to the point where the road becomes hidden. Reconstructing
the road over a large distance presents several advantages The reconstruc-
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tions from several video frames can be overlapped, and the evidence from
each reconstruction can be combined for added reliability. The road recon-
struction can be registered to a stored map of the road network and contrib-
ute to locating the position of the vehicle on the map. Finally, a system that
makes estimations of turns well in advance can adjust its speed accordingly.
This long-range observation of the road does not preclude the use of a shorter
range road analysis in the control loop of the vehicle steering [11]

Once the images of the road boundaries are computed, road reconstruc-
tion can be posed as a “shape from contour” problem. The problem is,
of course, underconstrained—an infinite number of world curves can corre-
spond to each road image boundary unless additional assumptions are made
about the three-dimensional geometry of the road.

The simplest assumption one can make is that the earth is [lat, and that the
vehicle is supported on the ground plane The three-dimensional location of
any image point is then simply the intersection of the line of sight through this
point and the known ground plane. Reconstruction from the flat earth model
is very fast, and it is not sensitive to slight misplacements of the road bound-
aries in the image. However, it is very sensitive to errors in estimating the
camera tilt angle with respect to the ground plane While the rocking of the
vehicle on its suspension can be measured, changes of ground slopes of several
degrees within the field ol view are common. If the camera is situated at a
height H above the ground and sees a point at a distance L from the vehicle
(Figure 3 3), then if the ground plane is overestimated by an angle ¢, the
estimated value L' of L will be

L' = LJ{1 — (L/H) tan £].

For a camera mounted on a vehicle with H = 3.5 m, a world point 30 m in
front of the vehicle will be located 55 m in {ront of the vehicle if the ground
plane angle is overestimated by 3° and at 21 m if it is underestimated by
3°—an error range of over 1009

In an attempt to overcome the limitations of the Flat Earth method,
authors have added constraints to the road model, assuming that a road
generally keeps an approximately constant width [20] or that directions of
road edges may be parallel and may be deduced from their vanishing points

Figure 3.3 Error in distance estimales due 10 ground stope in the Flat Earth geometry
model.
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[16, 19] A problem with applying these constraints is that one must find
which pairs of points are separated by a distance equal to the road width and
which pairs of points have parallel edge directions in straight or curved parts
of the road. We call the problem of locating the correct pairs of points in the
image the matching point problem.

The constant road width constraint is not sufficient. We find that another
constraint must be added for the reconstruction to be possible. We have
chosen the zero-bank constraint, specifying that the road does not tilt side-
ways. A road model combining constant width and zero bank was originally
suggested in Ozawa and Rosenfeld [ 18]

In previous work, we had developed an incremental road reconstruction
method based on these constraints [7] in which a new pair of edge points
could be found if we had already found a neighboring pair of edge points: the
road edges were reconstructed incrementally from edge points close to the
vehicle to edge points in the distance. This method was fragile because any
increment of construction depended on the previous elements in the chain.

This incremental method used a discrete approach. Incremental road re-
constructions based on a differential approach can be found in Kanatani and
DeMenthon [12] and Kanatani and Watanabe [14]). An interesting alterna-
tive to the global dynamic programming optimization proposed in the pre-
sent paper can be feund in Kanatani and Watanabe [13].

331 Summary
The proposed algorithm can be decomposed into the following steps:

1. Ina preliminary step, not detailed here, appropriate image processing tech-
niques have isolated the two curves of the edges in the image, and a polygo-
nal approximation has been found for each edge curve.

2. Picking image points anywhere on one image edge curve, we are able to
find the points that are candidates for being matching points on the other
image edge curve (Two image points are called matching points if they are
images of the endpoints of cross segments of the 3-D road). This matching
is made possible by making reasonable hypotheses about the shape of the
road, which add enough constraints to make the problem solvable. Specifi-
cally, the road is modeled as a space ribbon defined by a centerline spine
and horizontal cross segments of constant length cutting the spine at their
midpoints at a normal to the spine. We further assume that tangents to the
ribbon edges at endpoints of cross segments are approximately parallel
{Section 3.3.2). We find an expression that must be satisfied by the two
image points located on the facing image edge curves and the tangents to
the edge images in order for the two points to be matching points (Section
333) If a, and a, are matching points and a) and a), are the tangent
directions to the image edges in these points, the following refation holds:

[V x{a; xa,)] [{a, x a)) x (a, x a3)] =0,
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where V is the vertical direction. For edge curves approximated by polygo-
nal lines, the matching point 4, can be on a line segment, and its position
between the endpoints of the line segmenl can be expressed by a number
between O and I, whereas its tangent vector a5 is constant; or the matching
point a, can be at an endpoint of a line segment with a constant position
but with a tangent angle that can be expressed by a number between 0 and
1 within the range of angles of the two adjacent line segments (Section 3.3.8)
For each point chosen from one image edge, we check for each of the line
segments of the other image edge to determine if a matching point belongs
to that line segment, that is, if our expression gives a hnear coordinate
between 0 and 1 for this line segment. Then, we look for matching points at
the nodes of the polygonal line by checking that the expression gives a
number between 0 and I for the tangent angle.

3 For each point chosen from one edge image, the previous step may give
several matching points on the other edge image. One of the reasons is that
the images of the edges can be very rough and wiggly. Another reason is
that the condition used is only a necessary condition for two points to
be matching points in the image of the road. This condition is local and
we must still choose the matching points pairs that are the most globally
consistent and discard the other pairs. The criteria of optimization are
three dimensional (Section 3.3.9); thus, at this step of the algorithm, from
the pairs of matching points, the corresponding three-dimensional cross
segments must be found This correspondence is unique if the cross seg-
ments are assumed horizontal® and of known constant length {Section 3.3.2)
The constant length is the width of the road, and it cannot be defined by
this method. The assumed road width is a scaling factor in the reconstruc-
tion, whereas the optimization is based on angular considerations, which
are independent of scaling. For driving a vehicle, the road width must
eventually be obtained from other methods, such as stored data about the
road, the Flat Earth method, or close-range methods, such as stereoscopy
or time-of-flight ranging

4. The group of matching point pairs corresponding to a single point chosen
on one edge is the image of a group of world cross segments obtained at the
previous step, and the world road can go through at most one of these cross
segments {Section 3.39). If a sequence of points along one road edge is
taken, a sequence of groups of cross segments is obtained, and the world
road must go through at most one of the cross segments of each group, in
the same order as the sequence of points chosen on the first road image
edge. Each cross segment can be represented as a node in a graph. A path
must be found in the graph that visits each group in the proper sequence
and goes through at most one node of each group and that maximizes an

' The vehicie reconstructs horizontal cross segments on the basis of its knowledge of
the vertical direction, and therelore, it must be equipped with a vertical direction
SEBSOT.
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image piane

FIGURE 34. Reconstructing positions of world railroad ties from their images
Reprinted with permission from I EEE Transactions on Robotics and Automation (“Re-
construction of 2 Road by Local Image Matches and Global 3D Optimization™ by
Daniet DeMenthon and Larry Davis). © 1990 IEEE.

evaluation function that characterizes a “good road.” The total evaluation
function is the sum of the functions of each of the arcs of the graph. The
evaluation function for an arc is the sum of weighted criteria, which grade
the choices of individual cross segments and the neighborhood of consecu-
tive cross segments based on angular considerations.

3.3.2 The Matching Point Problem

Consider the image of a railroad track and its railroad ties and assume that
some appropriate image processing techniques have reduced the images of
the rails to curves and the images of the ties to line segments between these
curves (Figure 3.4}, The positions of the endpoints of the tie segments on the
curves of the rail are the matching points in the image. The reconstruction of
the shape of the railroad track in 3-I> space uses the matching points and is
straightforward once three hypotheses are made.

1. The width w of the railroad track is constant and known.

2. The coordinates of the vertical unit vector V are known in the camera
coordinate system.

3. The railroad ties are approximately horizontal.

Note that the last hypothesis does not mean that the railroad itself should
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be horizontal. Similarly, the stairs in a spiral staircase have horizontal step
edges, but the ruled surface defined by these step edges is far [rom horizontal.
Consider two matching points 2, and a,, the exdpoints of the image of a
tie. The corresponding vectors from the viewpoint O to these image points
will be denoted by a, and a,. The corresponding world points 4, and A4, are
defined by
A, = A;a,, A, = Aaa,y

since world points and their images are on the same line of sight.
The world line segment is assumed horizontal; the two parameters 2, and

A, are then related by
;{z = "111 4

with
m=a,-¥fa, V.

The requirement that the distance between A and A, be equal to the width w
completely constrains the parameters:

A, = wj{a? + m?a3 — 2ma, -a,)'"*? (3.1)

Thus, the two curves of the rails in the scene can be, in general, uniquely
reconstructed from their images up to a scale factor if the ties are assumed
horizontal and of constant length. Problems cccur only if the railroad image
crosses the horizon, as noted in Kanatani and Watanabe [13]. In this case,
the ties are horizontal on the horizon line, and their range cannot be deter-
mined, as can be seen from the previous equations.

Consider now the problem of reconstructing a road from its image, once
some appropriate image processing techniques have isolated the curves corre-
sponding to the road edges in the image. Now, of course, we do not have the
images of railroad tie segments to help us. The method we propose involves
first finding the endpoints of line segments that correspond to images of rail-
road tie segments and then doing the 3-I) reconstruction of the endpoints
of the images of these segments by the method just described for the rail-
road We call these world segments corresponding to railroad ties cross seg-
ments, and their endpoints opposite points. The images of these points are the
matching points. The main problem of road reconstruction from an image
can then be stated: Given a point on one edge of the road image, where is the
matching point on the other edge?

We choose a road model similar to the railroad model: the road is modeled
as a space ribbon generated by a centerline spine and horizontal cross seg-
ments of constant length cutting the spine at their midpoints at a normal to
the spine. This modeling gives cross segments the properties of railroad ties.

Cross segments are horizontal, that is, perpendicular to the vertical {on the
ALV the vertical was detected by trim sensors).

Cross segments have constant length (the road width).

Cross segments are perpendicular to both road edges, that is, locally perpen-
dicular to the centerline of the road.
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Saying that cross segments are normal to both road edges means that
they are normal to the tangents to the edges at their endpoints. Note that this
does not generally mean that the tangents to opposite points are parallel. In
DeMenthon [8], however, we show that assuming the tangents to opposite
points to be approximately parallel is a reasonable assumption in most con-
[igurations. This assumption considerably simplifies the recovery of opposite
points from the image. 1t is added to our road model and used in the following

section.

3.3.3 Conditions for Two Image Points to Be Matching Points

Consider a world road defined by two 3-D curves E, and E, and the road
image defined by two image curves e; and e, Assume that two opposite
points 4, and 4, on road edges E, and E, have been found. Their images are
a, and a, (Figure 3.5), and the following properties are dictated by the world
road model.

Horizon

Y P, e
i
: ‘ ¥ ay
Ay
b E
) 2
A,
,.

A

1

FIGURE3 5 The cross segment of the world road is assumed horizontal and perpendic-
ular to the tangents at its endpoints. The tangents are asswmed parallel A condition
satisfied by the matching points in the image that also involves the image tangents and
the vertical direction is deduced. Reprinted with permission from TEEE Transactions
on Robotics and Automation (“Reconstruction of 2 Road by Local Image Matches and
Global 3D Optimization” by Daniel DeMenthon and Larry Davis). © 1990 IEEE.
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I. The segment A, 4, is horizontal,

2 The tangents to the road edges at A, and 4, are perpendicuiar to 4, 4,.

3 Thetangents to A, and A, are approximately parallel

4 The tangent a} to the image edge ¢, at a, is the image ol the tangent A to
the world edge E, at A,; the tangent a}, to the image edge e, at a, is the
image of the tangent A5 to E, in A,. This is a general property of projected
curves and tangents.

1a deriving the following consequences, we make use of the property that the
direction of the intersection of two planes is perpendicular to the normais of
each plane and can be obtained by the cross product of the two normals.

3.3.4 Directions of Tangents to Opposite Points

H a, and a, are matching points and a and a), are the tangents to the image
edges at these points, the direction of the corresponding world tangents is

(a; x a}) x (a; x a}})

Proof: If a, and a, are images of opposite points, the world tangents to the
world edges are parallel. Since the images of the world tangents are a} and
a4, the world tangents lie on the planes (Qa, a|} and {Qa,, a}), respectively.
These planes are not parallel since they share the point 0, and they do not
coincide. Since the tangents are parallel, they must be parallel to the intersec-
tion of these planes. The direction of this intersection is given by the previous
expression.

3.3.5 Direction of a Cross Segment

if a, and a, are matching points and V is the vertical vector, the direction of
the world cross segment is ¥V x (a, x a,).

Proof: 4,4, belongs to a horizontal plane since it is horizontal Since
a,a, is the image of 4, 4,, A, A, also belongs to the plane (0, Ga,). This
piane is generally not horizontal. Thus, the direction of the segment 4, 4, is
given by the intersection of a horizontal plane with the plane (Oa,, Oa,). The
normal to the horizontal plane is the vertical vector V. The direction of the
normal to the plane (Oa,, Oa,) is given by the cross product (a; x a,). Thus,
the directionof 4, 4, isgiven by V x (a; x a,}

3.3.6 Matching Condition

If a, and a, are matching points and a'| and a; are the tangent directions to
the image edges in these points, the following relation holds:

[V x(a, x a,)] [(a; x a}) x fa; x 25)] =0 (3.2)

Proof: 1l a; and a, are images of opposite points, the direction of the cross
segment 4, 4, is perpendicular to the direction of the parallel tangents.
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3.3.7 Local Normal to the Road

i a; and a, are matching points and a) and a} are the tangents to the image
edges at these points, the local normal to the world road has the direction
given by

N=[V x (a, x a,)] x [{a;, xa})} x{a; x a},)]. (3.3)

Proof: The local planar patch of the world road is defined by 4, 4, and by
the paraliel tangents at A, and 4,. The direction of the normal to this planeis
the cross product of the directions of the cross segment and the tangents.

To summarize, when a point a, and the tangent a} to the road image are
given, Equation (3.2) becomes an equation that must be satisfied by the coor-
dinates of a, and the slope of the tangent to the edge in a, in order for a, to be
amatching point to a,. We can also find the direction of the normal along the
corresponding world cross segment A, A,.

3.3.8 Search for a Matching Point of a Given Image Point

If a point a, is chosen on one edge image and if the other edge image is a
polygonal line, the matching point a, can be located on one of the line seg-
ments of the polygonal line or at one of the vertices between the segments. Alj
the line segments and all the vertices are checked, because a single point a,
can have several matching point candidates due, for example, to edge irregu-
larities Other reasons are considered in DeMenthon [8]. For each line seg-
ment and for each vertex, the equations developed in the next two subsections
are applied

SEARCH FOR A MATCHING POINT ON A LINE SEGMENT
Assume that the segment being considered is the segment p,g, The matching
point a, s on this segment if

a; = p; + Apalsz, (3.2}
with 4 between 0 and 1. The point a, must also, with its tangent to the edge,
satisfy Equation (3.2). The tangent aj to the edge image in a, is appmximatgd
by the vector p,q,. We replace a3, a, by their values p,q;, and p, + Ap,q, in

Equation (3 2), and transform cross product combinations into dot products
by the well-known identity

ax{bxc)={aeb—(abe
The resulting value for 4 is
(Voo }(K-py) — (K-a,){V-p,)
(V-a ) (K- paq;) — (K-a, )V pyg,)’

where K = (a; x a}} x (p, x q,) If 2 is between O and 1, the intersection is
between the endpoints of line segment p,q,, and the value of 4 specifies the

A= — (34)
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position of a, on p,q,. The search also takes place among the vertices be-
tween the line segments

SEARCH FOR A MATCHING POINT AT A VERTEX

We can think of a point g, linking two line segments p, g, and g,r, as a point
at which the slope of the tangent to the edge changes from the slope of the
segment p,q, to the slope of the segment ¢,r,. An approach similar to the
previous subsection is followed. A matching point a. is at the vertex g, if

ah = pag; + u{q:¥2 — P29z), (32)

with u between 0 and 1. For this point to be a matching point to a,, it must
also satisfy Equation (3.2). This produces the following value for .

_ (M- q,)(n;"para) ~ (9 " q2) (M- pory) (35)
(M-qz)[n, - (qzr; — P292)] — (0, q2) IM - (g1 — P2q2) 1

wheren, = a, x ajandM =V x (a, x q,)

If the resulting value of p is between 0 and 1, a matching point a, to the
point a, is located at the vertex g

In the following, we provide a detailed description of how the sets of all
matching points for a point on one road boundary edge are determined We
then describe the dynamic programming optimization algorithm and illus-
trate its applications to some simple examples

H“—‘H

339 Dynamic Programming Road Reconstruction

Given a point from one road boundary edge, the shape-lrom-contour algo-
rithm identifies several potential matching points from the other road bound-
ary edge. This group of matching point pairs is the image of a group of world
cross segments, and the world road can pass through at most one of these
cross segments. Il a sequence of points along one road edge is taken, then a
sequence of groups of cross segments is obtained, and the world road must
pass through at most one of the cross segments {rom each group. Once an
optimization criteria is defined, it is then straightforward to find the “optimal”
path through the set of groups of cross segments, Consider a directed acyclic
graph (DAG) in which the nodes at level { correspond to the cross segments
constructed from the matching pairs for the ith boundary point on one road
edge, and arcs connect all pairs of nodes on consecutive levels. We seek a path
through this DAG from a level 0 node to 2 level n node, where there are n + |
levels in the DAG, We append a special node to each level, a null node, to
allow us to skip over a level that for numerical reasons, for example, might
yield no correct cross segments. We next define a merit function on the arcs of
the DAG. Let 4 = A, A, be a cross segment [rom a node at level k and B, B,
be a cross segment from level k + 1. Then, the merit function for the arc
connecting A, 4, to B, B, is the weighted sum of three criteria C, defined as
[ollows.
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1. The local normal to 4 (Equation 3.3) should be nearly vertical, so we set of
to be the dot product between the vertical and the normal to 4.

2. The slope of the patch containing the two cross segments must be close to
vertical. We define that slope to be 4, B, x 4,B,, and we define C, to be
the dot product between the unit vector in the direction of this cross prod-
uct and the vertical.

3. The average direction of the two cross segments must be perpendicular to
the line joining their midpoints; C; measures how well this condition holds.

When the value of any one of these criteria falls below a threshold, the arc is
eliminated from the DAG.

The dynamic programming algorithm then simply maintains a set of opti-
mal paths through k levels and extends them to the (k + 1} level by consider-
ing the nodes one at a time at the (k + 1) level and retaining only the path
from the kth level that is extended with maximal overall merit to the current] y
considered node on the (k + 1) level So, at any stage of the optimization, we
are only retaining as many paths as there were nodes on the previously con-
sidered level (in practice, no more than 4 or 5) The null nodes allow us to skip
levels; arcs to null nodes are assigned sufficiently low merit values to deter the
optimization from ignoring good cross segments.

3.3.10 Experimental Results

Here, we present the resuits of road reconstruction using synthetic data only.
Additional experimental results on real road images are presented in
DeMenthon [8]. Figure 3.6 shows a top and side view of a synthetically
generated road. The nominal road width is 4 m, and the road centerline
profile (see the side view) is an element from a sinusoid from a crest to a
trough. The road slope is modified by varying the sinusoid amplitude. The
term road slope refers to the slope at the midpoint of the straight segment
between the two turns. For the synthetic road, the road slope is H/38.9, where
H is the difference in meters between the lowest and highest points of the road.
In the top view shown in Figure 3.6, the road has a short straight segment,
then takes a 45° right turn and then a left turn separated by a short straight
segment. The camera’s position, orientation and parameters, also shown in
the figure, were taken equal to those of the ALV camera at Martin Marietta.
A benchmark was developed for measuring the performance of the pro-
posed matching point algorithm and other road reconstruction algorithms. A
reconstructed road is called navigable if the tracks of a vehicle of known width
(2 m in our examples) following the centerline of the reconstructed road stay
within the edges of the actual road over the entire reconstruction and never
cross these edges. This requires that no cross segment is shifted sideways by
more than one quarter of its width. Notice, that nonnavigable reconstructions
are still usable if they are not too far from the actual road. Indeed, a suffi-
ciently fast processor could generate reconstructions in a fixed coordinate
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Figure 3.6 Synthetic road geometry with two 45° turns and camera position (a) Top
views. {b) Side view showing the £-period sinusoidal profile of the centerline over the
length L. Reprinted with permission from TEEE Transactions on Rebotics and Auto-
mation {“Reconstruction of a Road by Local Image Matches and Global 3D Optimiza-
tion" by Daniel DeMenthon and Larry Davis). ) 1990 IEEE.

system quickly enough such that the composite reconstruction from =z se-
quence of [rames is navigable, even though constituent reconstructions may
not be. With this in mind, a reconstruction is called usable if the centerline
of the reconstructed road stays within the edges of the actual road. In other
words, a usable reconstruction is a reconstruction in which no cross seg-
ment is off the actual road by more than one half of its width. Considering
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a large number of synthetically generated roads with random variations in
their geometry, percentages of navigable and usable reconstructions are com-
puted and characterized by statistics such as the percentage of usable
reconstruction.

Specifically, random variations are introduced about the nominal values of
road width (4 m) and the road bank {0°). The random width and bank varia-
tions are described by Gaussian distributions, and several standard devia-
tions for the Gaussian were employed in the experiments. Five road slopes
were chosen: — 10%, — 5%, 0%, 5%, 10%. Forty roads were produced for 25
combinations of stopes and standard deviations, and the results for these 40
roads were averaged to yield the points plotted in the following graphs.

In Figure 3.7, results are shown for the matching point algorithm. The
algorithm produces 100% navigable roads when the road has no irregularities
of width and bank, regardless of slope. The rate drops to 5% for the max-
imal width and bank. Other diagrams display how much navigable length
is recovered in reconstructions that are completely navigable and in recon-
structions that are only partially navigable Comparisons have also been
conducted between the matching points algorithm, the original iterative zero-
bank algorithm, and the new matching points algorithm. Not surprisingly,
the Flat Earth model gives 100%, reconstruction success if the road is flat, but
cannot produce navigable or usable road reconstructions once any road slope
is allowed. On synthetic data, the principie advantage of the matching points
algorithm (its ability to recover from local catastrophic errors caused by,
for example, image processing errors in localizing road boundaries) is not
much in evidence, although it still led to a higher percentage of usable
reconstruction. Details are available in DeMenthon [8], and DeMenthon
and Davis [9].

3.4 Detection of Stationary Obstacles on Roads

Here, we provide a description of the obstacle detection algorithim proposed
by Veatch and Davis, and we present some experimental results. A more
complete description of the implementation (that addresses problems of
mixed pixels) can be found in Veatch and Davis [21].

‘What is an obstacle? Generally, an obstacle is a region that a vehicle can-
not or should not traverse. Avoiding regions that a vehicle is physically capa-
ble of traversing but for some reason should not go (such as not driving the
wrong way down a one-way street} would require a level of artificial inteili-
gence that is beyond the scope of this work.

Excluding places that a vehicle can go but should not, one is left with
regtons that can be defined by their shape and material properties. Rocks,
street signs, and steep slopes are all obstacles whose delining characteristics
are their shapes. Swamps and ice patches on the other hand may have suffi-
ciently flat surfaces for navigation but their material properties make them
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FiGure 3.7. Comparison of the matching point algorithm with the step-by-step zero-
bank algorithm and the flat earth algorithm. Results for different road slopes were
averaged In this figure, a navigable reconstructed road is such that a 2-m-wide vehicle
following its centerline will not cross the edges of the actual road. (a) Percentage of
navigable reconstructions [or various combined width and bank variations (b} Navi-
gable reconstructed road length.

obstacles for a land vehicle that is not specially equipped. Although material
properties are important for determining navigability, they are not readily
measured by current remote sensing devices on autonomous vehicles. Here,
we make the simplifying assumption that regions can be adequately catego-
rized by their geometry alone.

Given the presumption that obstacles will be defined by their shape, the
next issue is how a region’s geometry can best be determined by an autono-
mous vehicle. Perceiving geometry is essentially a depth perception prob-
Jern. Approaches for creating depth (range) images generally fall into three
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calegories: duplicating human visual ranging methods, contriving lighting
methods, such as structured light sensors, and applying direct, active ranging
technologies.

Direct range sensing methods do not provide insight into human visual
understanding, but they are superior to indirect methods for creating fast,
accurafe range images. The ALV project used the Environmental Research
Institute of Michigan (ERIM) [15] range scanner. Figure 3.8 illustrates the
spherical coordinate system {8, 4, p) that naturally describes range images.
The scanner, which was mounted on the ALV, approximately 9 ft above the
ground, is at the origin (0) of the system. The positive Y axis points directly
down toward the ground. The positive Z axis points out in the direction that
the ALV is currently traveling The length of the line segment QM is the range
{p} to the point M.

The right triangle Qcb is in the YZ plane. Angle cOb forms the vertical scan
angle ¢. Each row in a range image is taken from a plane that contains the X
axis and is ¢ degrees beneath the Z axis. The rectangle OaMb is in this plane.
Angle aQM forms the horizontal scan angle 8. Each column in a range image
corresponds to a particular 8 This geometry results in the following relation-
ships:

x == p cos{f), (3.6)
y = p sin(f) sin{(¢), (3.7)
z = p sin(0) cos{g). 38

The 64 rows of the image are at equally spaced values of g, and the 256
columns are at evenly spaced values of 8. An ERIM range image has a 30°
vertical field of view in which ¢ goes from approximately 6° to 36°. The 80°
horizontal field of view extends from a & o 130° to a # of 50°. Although the
total magnitudes of the fields of view are fixed, the orientations can be altered
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either by internal controls in the scanner or by moving the external platform
on which the scanner is mounted.

The ERIM scanner has a vertical sampling interval of 0.3125° and a hori-
zontal sampling of 0.46875°. Since the laser beam has an angular divergence
of 0.5°, a scene is densely sampled. This removes the need for sophisticated
interpolation techniques, such as those proposed by Boult and Kender [3] or
Choi and Kender [5] for sparse range data.

Multiple objects at various ranges may occur within the 0.5° solid cone
that forms a single pixel’s field of view. The signal that returns to the scanner
will indicate a range that is a complex average of all the ranges encoun-
tered within the cone. For example, if half of a cone intercepts a tree and the
other half travels on to the ground, then the returning signal would yield a
value that is somewhere between the distance to the tree and the most distant
ground that is within the cone This is called the mixed pixel problem. A
strategy for avoiding range errors resulting from mixed pixels is presented in
Vealch and Davis [21].

Because of the ambiguity effect, output range values are all between 0 and
64 ft. They are quantized into three-in. units, so that the final output of the
ERIM scanner is a 64 x 256 array of 8-bit values ranging from 0 to 255.

The fastest of the ALV obstacle detection algorithms, range differencing,
simply subtracts the range image of an actual scene from the expected range
image of a flat plane. While rapid, this technique is not very robust. Small
errors in the orientation of the scanner or a mild slope in the land will resuit in
false indications of obstacles. We propose using the first derivatives of the
range with respect to the vertical and horizontal scan angles as an improved,
fast obstacle detector.

34.1 The Range Derivative Algorithm for Obstacle Detection

When deciding il a surface is an obstacle or not, the pertinent feature is the
change in height across the surface. I[ the change is too rapid, then the surface
is unnavigable. A surface normal contains the necessary information on the
change in height, but calculating surface normals is computationally inten-
sive, The surface normal at a point is a function of dy/éx and &y/dz. Simply
calculating the slope, dy/dz, would provide significant information concern-
ing a surface’s navigability. However, computing the slope directly [rom a
range image is not much easier than calculating a surface normal. What can
be done very quickly, though, is linding 8p/86 and 6p/@¢. The foliowing deri-
vation first shows how dp/d¢ can be closely linked to dy/@z and then how
#p/08 can be a measure of dy/8x Using our knowiedge of how range deriva-
tives reflect changes in height across a surface, we can then design a rapid
obstacle detection aigorithm.
The differential of a function ¥{4, p, §) can be written as

dy dy dy
dy = -2 - 2246,
y d¢ + apdp + 35 I {(39)
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If 8 is held constant so that the d6 term is 0, then Equation {3.9) applied to
Equation (3.7) gives

Ay = psin 8 cos ¢ Ag + sin 8 sin gAp, (310
where the infinitesimal terms dy, d¢, and dp have been replaced by their finite

A equivalents. In a similar fashion, Equation (3.8) can be differentiated to
yield

Az = —p sin 0 sin ¢ Ag + sin 6 cos ¢ Ap. (3110
Dividing Ay and Az yields
Ay cos ¢ Ad +sin ¢ Ap _ [(Bp/p){tan ¢/A¢) + 1] 61
Az ~psing Ag +cos¢ Ap  [(Ap/p)(1/Ad) — tan ¢]
If ¢ is held constant, then Equation (3.9) becomes
Ay = sin 8 sin ¢ Ap — p sin ¢ cos § A6, (3.13)
and Equation (3.6) can be differentiated to obtain
Ax = cos B Ap — psin 8 Af. {314
Dividing Equation (3.13) by Equation (3.14) and regrouping yields
éz _ [(Ap/p)(tan 6/A0) sin ¢ ~ sin ¢] (3.15)

Ax [(Ap/p)(1/AB) — tan 8]

Excluding the terms in Equations (3 12) and (3.15) that we know a priori,
we see that the changes in height in the x and z directions are a function of
Ap/p. 1 we used some approximation of p, we would have a direct refation-
ship between the easily calculated Ap for a fixed # or ¢ at a pixel and the slopes
at that pixel. Our experiments with real range data suggest that the following
is an adequate approximation:

p ~ H/sin 8 sin ¢, {3.16)

where H is the height ol the range scanner above the ground. Equation (3 16)
comes from substituting H for y in Equation (3.7). In hilly terrain, this approx-
imation is probably not adequate, but it works well for many scenes, and a
table will show that the derivative algorithm that uses this approximation is
less sensitive to orientation errors than other algorithms of similar simplicity
and speed.

Using Equation (3.16), we can calculate what Ap would be at each pixel if
the slopes were zero. The difference between this predicted Ap and the actual
Ap found in a range image is 2 measure of the actual slope. Large differences
between predicted and actual Ap’s will be formed by edges of objects as well
as surfaces with steep slopes. Thresholding the absolute values of these differ-
ences vields pixels that are likely to be on obstacles.

One could, of course, simply threshold the actual Ap’s without first sub-
tracting the expected Ap’s and assume that large Ap’s indicate surfaces that
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TabLE 3.1. Comparison of obstacle detection algorithms for
sensitivity to rotation errors”

Magnitude of errors

Perturbation a ¢ Height Range
3 degree horizontal 0.8 15 51 24.7
03 04 i.6 64
3 degree rolt 37 136 212 1033
11 28 6.0 231
3 degree verticai 11 173 254 1237
03 138 254 GBS
3 degrees in each 97 533 722 3514
26 213 3RS i20.7
“© 1990 IEEE

have steep slopes and hence are not navigable This approach, however,
would severely reduce one’s capability to detect obstacles. A perfectly flat
surface will yield a Ap of about 10 if it is 60 ft away, but the same surface at a
range of 10 ft only has a Ap of about 0.3 This wide range in Ap’s leaves any
thresholding algorithm in a bind. Small thresheld levels would find nearby
obstacles, but more distant flat surfaces would be falsely labeled as obstacles.
Conversely, larger threshold levels would hide significant obstacles that are
near the range scanner. What is needed is a variable threshold setting. This
approach points out another way of looking at the range derivative algo-
rithm: we are, in essence, creating a variable threshold that changes across an
image based on expected Ap's. While this simplistic view is a useful descrip-
tion, the derivative algorithm is founded on the mathematical relationships
between Ap and a surface’s slopes and is not a randomly chosen heuristic for
setting variable threshold levels.

Table 3.1 reveals the advantages of this approach over height or range
prediction. The table contains two entries for each combination of algorithm
and perturbation of road orientation (horizontal, vertical, and roll). The top
entry is the largest absolute value in the entire image and represents a worst
case scenario. In many scenes, however, the road will be near the center of the
image's horizontal field of view, and large errors at the periphery are not
critical. This is captured by the betiom entry, which is the largest absolute
errar within the central 30° of the image.

Several important trends emerge from Table 3.1. The ¢ derivatives were
insensitive to all four rotational perturbations. When the entire image was
considered, the maximum ¢ errors for each rotation were always at least 25%
less than the maximum height difference errors. Within the central 30° of
the horizontal field of view, the maximum ¢ derivative errors were 45--75%,
less than the maximum height errors. The range difference algorithm was
very sensitive to all rotations. In several instances, the range difference errors
were a full order of magnitude larger than the derivative errors. These results
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clearly show that the derivative algorithms are more robust under rotational
uncertainties than either the height difference or range difference algorithms

3.5 Conclusion

This paper provided a summary of the research conducted at the University
of Maryland on problems associated with visual navigation of ground vehi-
cles. We focused on algorithms for three modules of the system, the scene
model planner, the road reconstruction module from video images, and the
obstacle detection module. One of the roles of the scene model planner is to
intelligently locate windows of focus of attention in video images. Strategies
are represented explicitly as rules, which are easy to modify and extend. For
example, some rules would locate the windows [arther apart in the image
when the road is straight than when it is curved The road reconstruction
module uses points detected in these windows as road edges to build three-
dimensional road models. Image points corresponding to endpoints of cross
segments of the road are found, and these cross segments are reconstructed. A
dynamic programming algorithm weighs the mutual consistency of the cross
segments and rejects the cross segments that do not contribute to a consistent
road. The obstacle detection module uses images from the vehicle range scan-
ner. It detects local changes of heights in the scene by directly interpreting
gradients of range along the range image rows and columns This method is
more direct than approaches based on computing surface normals in the
scene and is robust under rotational and vertical perturbations.

Over the past few years, our research has shifted from road navigation to
more general navigation problems, with a long-term practical emphasis on
cross-country navigation. This has led us to consider many new and interest-
ing problems in the design and organization of autonomous systems. Pre-
liminary results of our research on two navigation systems—RAMBO and
Medusa-—can be found in Davis et al. {6] and Aloimonos [2]
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