13

A Representation for Qualitative 3-D
Object Recognition Integrating Object-
Centered and Viewer-Centered Models

SVEN J. DICKINSON, ALEX P. PENTLAND, AND
AzriEL ROSENFELD

Introduction

In the context of computer vision, the recognition of three-dimensional objects
typically consists of image capture, feature extraction, and object model matching,
During the image capture phase, a camera senses the brightness at regularly spaced
points, or pixels, in the image. The brightness at these points is quantized into dis-
crete values; the two-dimensional array of quantized values forms a digital image,
the input to the computer vision system. During the feature extraction phase, vari-
ous algorithms are applied to the digital image to extract salient features such as
lines, curves, or regions. The set of these features, represented by a data structure,
is then compared to the database of object model data structures in an attempt to
identify the object. Clearly, the type of features that need to be extracted from the
image depends on the representation of objects in the database.

In most cases, the features extracted from the image are considerably less com-
plex than the object models with which they are compared; as a result, many
models may contain a particular type of feature. The comparison of sets of image
features to object models actually consists of two phases. In the bottom-up, or
indexing, phase each image feature serves as an index into the object model data-
base to select candidate object models containing that feature. In the top-down,
or verification, phase the candidate model(s) are used to verify feature interpre-
tations and to constrain further feature extraction.

In three-dimensional (3-D) object recognition by computer, two important
issues pertain to the representation of objects. The first issue is the choice
between object-centered and viewer-centered representations. Object-centered
representations model objects as constructions of 3-D primitives, such as planar
faces or generalized cylinders. Recognition consists of matching image features
to the predicted projections of specific 3-D model features, a process requiring
the determination of the object’s position and orientation with respect to the
camera. Viewer-centered representations model objects as a set of 2-D charac-
teristic views, or aspects. Recognition consists of matching image features
against the set of aspects; the view most closely resembling the features in the
image defines the object and its orientation. The major advantage of viewer-
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centered recognition is that it reduces the 3-D recognition problem to a 2-D rec-
ognition problem. However, with each model object having potentially many
aspects, matching becomes less efficient than with object-centered models.

The second issue in 3-D) object recognition concerns the amount of detail inher-
ent in object models. If a quantitative representation specifies the exact dimen-
sions and shape of an object, then simple model-based verification procedures
can be employed to confirm or reject object hypotheses. However, exact
representations of objects result in complex object models. If a qualitative repre-
sentation captures only the gross shape characteristics of an object, then model-
based verification will fail to predict the exact location of the object’s features.
Instead, the bottom-up stage of recognition must be extended to extract higher
order features with which to index into the database. The advantage of gualitative
models is that they are less complex than quantitative models, and are invariant
to minor changes in shape.

This chapter proposes a modeling paradigm for 3-D object recognition from
two-dimensional (2-D) images integrating object-centered and viewer-centered
models. Object models are constructions of 3-D volumetric primitives, offering
an efficient indexing mechanism for large object databases. The 3-D primitives,
in turn, are mapped into a set of viewer-centered aspects. During recognition,
image contours are matched to the contours comprising an aspect, defining the
primitive type and constraining its orientation. The 3-D primitive is then used to
index into the object database. When objects are composed of multiple primi-
tives, occluded primitives from a given viewpoint project to occluded, and hence
incomplete, aspects in the image. To accommodate the matching of occluded
aspects, we have developed a hierarchical aspect representation based on the visi-
ble faces of the primitives. At the top of the hierarchy lie connected face struc-
tures, while at the bottom lie contour features of the component faces. Thus,
aspect inferences can be made from incomplete projections.

With a large database of objects, we might expect there to be a great variety of
primitive shapes and sizes. Representing every single primitive with a different
set of aspects would make matching image contours to primitive aspects intracta-
ble. To minimize the size of the aspect set, we constrain the aspects to be invariant
to minor changes in primitive shape, forcing the primitives to be gualitative in
nature. The size of the resulting aspect set depends only on the size of the set of
primitives, not on the number of object models or on object model complexity.
The primitives that we have selected are based on Biederman's geons (Bieder-
man, 1983), offering a rich vocabulary with which to construct objects,

A qualitative recognition paradigm has advantages over and above that of res-
tricting the number of aspects we require to represent our primitives. Such a sys-
tem would be of great value in many robotic vision applications requiring object
identification. For example, the sorting of distinct objects by a robot may reguire
only that the objects be classified; position and pose determination may be
unnecessary. Or, for an autonomous vehicle, quickly identifying the objects in
the field of view may guide the vision system to select a course of action. For
example, noticing a tree on the side of the road may not alarm the system, while
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noticing another vehicle may invoke modules to estimate its velocity Finally, a
qualitative object recognition engine could provide a coarse front end to a more
quantitative recognition engine; identification of the object’s generic class could
be used to invoke specific modules to distinguish among instances of subclasses.
A coarse-to-fine approach to object recognition incurs the cost of extracting finer
detail only when necessary.

In this chapter, we present only our object modeling paradigm; techniques
for primitive extraction and model matching will not be presented. The second
section discusses some of the issues in selecting an object modeling scheme
and gives the motivation for our choice. The third section presents the object-
centered component of our representation, while the fourth section presents
the viewer-centered component. In the fifth section, we tie together the two
representations with some probabilistic results based on an extensive analysis of
the primitives over the viewing sphere; the sixth section evaluates the integrated
representation. In the seventh and eighth sections we discuss related work and
draw conclusions about this approach.

Object Modeling for 3-D) Recognition

Many object modeling techniques have been applied to the task of 3-D object rec-
ognition (e.g., Requicha, 198(; Srihari, 1981; Binford, 1982; Besl and Jain, 1985;
Chin and Dyer, 1986). In any object modeling scheme, an object is composed of
one or more features or primitives; examples include lines, vertices, surface
patches, generalized cylinders, and superquadrics. Models may be object-centered
constructions of 3-D primitives, or viewer-centered constructions of 2-D primi-
tives. In the former, the model is independent of viewpoint, while in the latter,
each distinct view of the model generates a unique representation. When selecting
a modeling technique for 3-D object recognition, a number of trade-offs must be
considered. For example, complex primitives such as generalized cylinders are
more difficult to extract from an tmage than simple primitives such as lines and
curves. However, it is more efficient to search a database of objects, each com-
posed of a relatively smali number of complex primitives, than a database of
objects, each composed of a relatively large number of simple primitives. Figure
13.1 illustrates the trade-offs in selecting a representation scheme

Many approaches to 3-D object recognition {e.g., Lowe, 1985; Huttenlocher
and Ullman, 1987; Thompson and Mundy, 1987; Lamdan et al., 1988) limit the
bottom-up feature extraction process to 2-D primitives such as line segments,
corners, zeroes of curvature, and 2-D perceptual structures. These features are
appealing due to their viewpoint invariance; however, they suffer the shortcom-
ing of requiring complex models. Since a model in these representations typically
consists of a Jarge number of very similar primitives, searching a large model
database becomes inefficient. As a result of this limitation, these recognition sys-
tems have only been successfully applied to object databases containing one or
two objects. In addition, the simplicity and 2-I) nature of the indexing primitives



400  S7I Dickinson, A P Pentland, and A, Rosenfeld

noticing another vehicle may invoke modules to estimate its velocity. Finally, a
gualitative object recognition engine couid provide a coarse front end to a more
quantitative recognition engine; identification of the object’s generic class could
be used to invoke specific modules to distinguish among instances of subclasses.
A coarse-to-fine approach to object recognition incurs the cost of extracting finer
detail only when necessary.

In this chapter, we present only our object modeling paradigm; techniques
for primitive extraction and model matching will not be presented. The second
section discusses some of the issues in selecting an object modeling scheme
and gives the motivation for our choice. The third section presents the object-
centered component of our representation, while the fourth section presents
the viewer-centered component. In the fifth section, we tie together the two
representations with some probabilistic resuits based on an extensive analysis of
the primitives over the viewing sphere; the sixth section evaluates the integrated
representation. In the seventh and eighth sections we discuss related work and
draw conclusions about this approach. '

Object Modeling for 3-D Recognition

Many object modeling techniques have been applied to the task of 3-ID object rec-
ognition (e.g., Requicha, 1980; Srihari, 1981; Binford, 1982, Besl and Jain, 1985;
Chin and Dyer, 1986). In any object modeling scheme, an object is composed of
one or more features or primitives; examples include lines, vertices, surface
patches, generalized cylinders, and superquadrics. Models may be object-centered
constructions of 3-D primitives, or viewer-centered constructions of 2-D primi-
tives. In the former, the model is independent of viewpoint, while in the latter,
each distinct view of the model generates a unique representation. When selecting
a modeling technique for 3-D object recognition, a number of trade-offs must be
considered. For example, complex primitives such as generalized cylinders are
more difficult to extract from an image than simple primitives such as lines and
curves. However, it is more efficient to search a database of objects, each com-
posed of a relatively small number of complex primitives, than a database of
objects, each composed of a relatively large number of simple primitives. Figure
13.1 iliustrates the trade-offs in selecting a representation scheme.

Many approaches to 3-D object recognition (e.g., Lowe, 1985; Huttenlocher
and Ullman, 1987; Thompson and Mundy, 1987; Lamdan et al., 1988) limit the
bottom-up feature extraction process to 2-D primitives such as line segments,
corners, zeroes of curvature, and 2-D perceptual structures. These features are
appealing due to their viewpoint invariance; however, they suffer the shortcom-
ing of requiring complex maodels. Since a model in these representations typically
consists of a large number of very similar primitives, searching a large model
database becomes inefficient. As a result of this limitation, these recognition sys-
tems have only been successfully applied to object databases containing one or
two objects. In addition, the simplicity and 2-D nature of the indexing primitives
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noticing another vehicle may invoke modules to estimate its velocity. Finally, a
gualitative object recognition engine could provide a coarse front end to a more
quantitative recognition engine; identification of the object’s generic class could
be used to invoke specific modules to distinguish among instances of subclasses.
A coarse-to-fine approach to object recognition incurs the cost of extracting finer
detail only when necessary.

In this chapter, we present only our object modeling paradigm; techniques
for primitive extraction and model matching will not be presented. The second
section discusses some of the issues in selecting an object modeling scheme
and gives the motjvation for our choice The third section presents the object-
centered component of our representation, while the fourth section presents
the viewer-centered component. In the fifth section, we tie together the two
representations with some probabilistic results based on an extensive analysis of
the primitives over the viewing sphere; the sixth section evaluates the integrated
representation. In the seventh and eighth sections we discuss related work and
draw conclusions about this approach.

Object Modeling for 3-D Recognition

Many object modeling techniques have been applied to the task of 3-D object rec-
ognition (e.g , Requicha, 1980; Srihari, 1981; Binford, 1982; Besl and Jain, 1985;
Chin and Dyer, 1986). In any object modeling scheme, an object is composed of
one or more features or primitives; examples include lines, vertices, surface
patches, generalized cylinders, and superquadrics. Models may be object-centered
constructions of 3-D primitives, or viewer-centered constructions of 2-D primi-
tives. In the former, the model is independent of viewpoint, while in the latter,
each distinct view of the model generates a unigue representation. When selecting
a modeling technique for 3-D object recognition, a number of trade-offs must be
considered. For example, complex primitives such as generalized cylinders are
more difficult to extract from an image than simple primitives such as lines and
curves. However, it is more efficient to search a database of objects, each com-
posed of a relatively small number of complex primitives, than a database of
objects, each composed of a relatively large number of simple primitives. Figure
13.1 illustrates the trade-offs in selecting a representation scheme.

Many approaches to 3-D object recognition (e.g., Lowe, 1985; Huttenlocher
and Ullman, 1987; Thompson and Mundy, 1987; Lamdan et al., 1988} limit the
bottom-up feature extraction process to 2-D primitives such as line segments,
corners, zeroes of curvature, and 2-D perceptual structures. These features are
appealing due to their viewpoint invariance; however, they suffer the shortcom-
ing of requiring complex models. Since a model in these representations typically
consists of a large number of very similar primitives, searching a large model
database becomes inefficient. As a result of this limitation, these recognition sys-
tems have only been successfully applied to object databases containing one or
two objects. In addition, the simplicity and 2-D nature of the indexing primitives
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FiGuRre 13.1. The trade-offs in choosing modeling primitives.

require a complex verification procedure involving the determination of the
object’s pose with respect to the image. Indexing with weak hypotheses shifis
the burden of recognition to verification, resulting in a top-down system. Our
approach is to extend the bottom-up process to the point of inferring 3-D volu-
metric primitives with which we index into the database. Since our primitives
capture more information than simple point or line primitives, they provide more
discriminating indices to less complex models. These higher order indices pro-
vide a foundation for a more bottom-up unexpected-object recognition system
(Rosenfeld, 1986).

A 3-D recognition system based on the bottom-up extraction of 3-D volumetric
indexing primitives raises the obvious question: How do we extract the primitives
from the image? To meet this requirement, we employ a viewer-centered aspect
representation to model an object's primitives. This differs from traditional
aspect-based recognition systems where the entire object is modeled as a set of
aspects (e.g., Chakravarty and Freeman, 1982; Ikeuchi and Kanade, 1988). The
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advantage of aspect representations is that they reduce the 3-D matching proble
to a 2-D matching problem; each 2-D aspect defines the object’s identity and 3-
pose. The disadvantage of aspect representations is that they incur a high cost «
matching as each 3-D object must be represented by many different view
Moreover, as the complexity of an object increases, so do the number of view
required to represent it. To restrict the number of aspects representing the modi
primitives, we model primitive classes rather than primitive instances. Thus, f
each primitive, we define a set of aspects that is invariant to minor changes ;
primitive shape. More specifically, we define our aspects to be invariant 1
changes in line length, curvature, and angle. Consequently, a primitive ms
undergo changes in surface dimension and surface curvature without introducir
new aspects This constrains our primitives to possess a qualitative nature, cal
turing only the gross shape characteristics of the object.

The integration of object-centered and viewer-centered models combines th
advantages of each scheme while avoiding their disadvantages. The extraction «
3-D volumetric primitives provides a highly selective index into a database «
compact object representations. Extraction of the primitives from the image
performed by matching image contours to the contours comprising a set of 2-
aspects; pose determination is inherent in the 2-D matching process. To restri
the explosion of primitive aspects, we represent each primitive class, rather tha
each primitive instance, with a set of aspects. Unlike traditional aspect-based rex
ognition systems, the resulting number of aspects is constant and independent (
the size of the model database. In the following sections, we discuss the represe:
tation in more detail.

The Object-Centered Modeling Component

The goal of the object-centered modeling component is to define a set of thre
dimensional volumetric primitives that, when assembled together, comprise
large set of concrete objects in the world. The constraints on these primitive
are two-fold: they must be rich enough to describe real objects, yet simple enoug
to be reliably extracted from a contour image. The primitives, in turn, wi
be mapped into a set of viewer-centered aspects. Any selection of modelin
primitives would support our approach; however, we seek a set of primitive
whose aspect set will remain stable under minor changes in primitive shap
For example, the aspects should be invariant to changes in the primitive’s scal
dimensions, and curvature (if the primitive is curved) Otherwise, the resul
ing large aspect set introduces the same matching inefficiency as tradition:
aspect-based recognition systems. To meet these requirements, we have chose
an object representation based on Biederman’s Recognition by Componen
© (RBC) theory {Biederman, 1985). RBC suggests that from nonaccidental reh:
tions in the image, a set of contrastive dichotomous (e.g., straight vs. curved axi:
and trichotomous (e.g., constant vs. tapering vs. expanding/contracting cros:
sectional sweep) 3-D primitive properties cap be determined. The values of thes
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properties give rise to a set of 36 shapes, called geons. Biederman claims that
these geons constitute a rich set of primitive volumetric components that, when
assembled together, can be used to model real world objects for the purpose of
fast object recognition.

Many 3-D object recognition systems employ 3-D volumetric primitives to con-
struct objects. Biederman's geons are a restricted class of generalized cylinders
(e.g., Binford, 1971; Agin and Binford, 1976; Nevatia and Binford, 1977; Brooks,
1983) whose cross-section, axis, and sweep properties are arbitrary functions.
Superquadrics (Gardiner, 1965) provide a volumetric representation requiring
fewer parameters than generalized cylinders. Pentland (1986) first applied super-
quadrics to primitive modeling for object recognition, while Pentland {1987a) and
Solina (1987) have achieved considerable success in deriving superquadric primi-
tives from range data. Terzopoulos et al. (1987) propose symmetry-seeking defor-
mable 3-D shape models, which they have successfully applied to the recovery of
3-D shape and nonrigid motion from natural imagery (Terzopoulos et al., 1988).
Although generalized cylinders, superquadrics, and active models provide a rich
language for describing parts, their extraction from the image is computationally
complex. Biederman’s geons, requiring only a few parameters, are an appropriate
selection for the purposes of qualitative object modeling.

The Primitives

A generalized cylinder is defined by a cross-section function, an axis function,
and a sweeping function; its shape results from sweeping the cross-section along
the axis. Biederman (1985) mapped these three continuous functions to dichoto-
mous and trichotomous properties. His 36 geons result from the Cartesian
product of the possible values of these properties, which are defined as follows:

1. Cross-Section Shape: The cross-section shape can be either straight edged or
curved edged.
2. Cross-Section Symmetry: The cross-section shape can be either rotationally
symmetric, reflectively symmetric, or asymmetric
. Axis Shape: The axis can be either straight or curved.
4. Cross-Section Sweep: The cross-section can either remain constant, increase
in size, or increase and then decrease in size as it is swept along the axis

Lt

As a basis for initial investigation, we have defined a set of 10 primitives
representing a restricted subset of Biederman's geons:

1. rectangular cross-section, straight axis, and constant cross-section size

2. rectangular cross-section, straight axis, and linearly increasing cross-section
size not starting from a point

3. rectangular cross-section, straight axis, and linearly increasing cross-section
size starting from a point

4. rectangular cross-section, curved axis, and constant cross-section size

5. elliptical cross-section, straight axis, and constant cross-section size
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6. elliptical cross-section, straight axis, and linearly increasing cross-section
size not starting from a point

7. elliptical cross-section, straight axis, and linearly increasing cross-section
size starting from a point

8. elliptical cross-section, straight axis, and ellipsoidally increasing then
decreasing cross-section size, neither starting nor ending with a point

9. elliptical cross-section, straight axis, and ellipsoidally increasing then
decreasing cross-section size, starting and ending with a point

10. elliptical cross-section, curved axis, and constant cross-section size

Qur three-property characterization resembles Biederman’s four-property tax-
onomy; however, we have imposed additional restrictions in an effort to reduce
the number of aspects and simplify the investigation. Nevertheless, the above
primitive set forms a basis from which we can model a significant number of
objects. The 10 primitives have been modeled using Pentland’s SuperSketch 3-D
modeling tool (Pentland, 1987b), and are illustrated in Figure 13 2. More primi-
tives can easily be added to enrich the vocabulary.

Primitive Attachment

Having defined a set of modeling primitives, we must decide how to connect them
to construct objects, We adopt a convention based on a labeling of each primitive’s
attachment surfaces. For example, the truncated cone primitive (primitive 6) hias
three attachment surfaces: the small end, the large end, and the side. Similarly,
the curved block primitive (primitive 4) has six attachment surfaces: the concave
side, the convex side, the two planar sides, and the two planar ends. The attach-
ment surface labels for the 10 primitives can be found in Dickinson et al. (1989).
We restrict any junction of two primitives to involve exactly one attachment sut-
face from each primitive. Figure 13.3 presents an example object and its repre-
sentation.

Both the primitive description and the interconnection description have been
oversimplified to demonstrate the approach. Many enhancements are possible
that would provide a much richer vocabulary for describing objects. For example,
although not viewpoint invariant, additional properties such as cross-section
extent, axis extent, and axis curvature provide important cues for recognition.
Although these properties are quantitative, we could treat them as symbolic,
based on a qualitative partitioning of the property range. For example, an axis
might be “slightly curved” or “strongly curved” depending on its average curva-
ture value.

In addition to specifying the two surfaces participating in the junction of two
primitives, we could specify the position of the join on each surface. For exam-
ple, a primitive attached to a rectangular planar surface may be attached near the
middle, the sides, the corners, or the ends of the surface. A primitive attached to
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Figure 13 2. The 10 object modeling primitives.
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Prirnitive 5 : Primitive 10
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Figure 13 3. Example object and its representation.

an ellipsoidal primitive may be attached near the middle, the sides, or the ends
of the ellipsoid. Again, we seek a qualitative localization of interconnection; we
want to avoid an exact quantitative specification. Another enhancement to our
vocabulary would be to describe the relative sizes of the primitives and the angles
at which they join. For example, relative size measures such as “much larger
than,” “slightly larger than,” or “roughly equal,” and join angles such as “acute” or
“perpendicular,” are additional interprimitive relations that enhance the descrip-
tion of the object. The resolution of these descriptors would depend on the
similarity of the objects in the database; perhaps having both coarse and fine
descriptors would maximize matching efficiency.

Viewer-Centered Modeling Component

For each of the 10 primitive classes, we define a set of 2-D characteristic views,
or aspects, Each aspect represents a set of topologically equivalent views of the
primitive. To extract instances of the primitives from the image, we match image
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Figure 13.4. The aspect hierarchy.

contours against the set of aspects; a match not only identifies the primitive but
qualitatively specifies its orientation. Unfortunately, if a primitive is occluded
from a given 3-D viewpoint, ity projected aspect in the image will also be
occluded. In addition, the intersection of two primitives may alter the projected
aspect of either primitive. To accommodate the matching of partial aspects to the
set of aspects, we introduce a representation called the aspect hierarchy.

The aspect hierarchy consists of three levels, based on the faces appearing
in the aspect set. A face is defined to be a closed cycle of image contours, e.g.,
a polygon, containing no other cycles. At the top level of the aspect hierarchy,
we have the set of aspects, which we call face structures. Ideally, we would
like to match image contours directly to the face structures. However, due to
occlusion, it is unlikely that complete face structures will be visible. Some com-
ponent faces of a face structure may be completely occluded, others partially
occhuded. The set of component faces of all face structures represents the middle
level of the aspect hierarchy. Hence, we reduce face structure extraction to face
extraction. However, we again run into the problem of occlusion, resulting in
faces appearing in the image that are not included in the face level. Nevertheless,
there may be subsets of face contours that survive occlusion and offer a mechan-
ismn for matching. Thus, at the bottom level of the aspect hierarchy, we have the
face features that comprise the set of faces. Figure 13.4 illustrates a portion of the
aspect hierarchy, while the following subsections describe the levels of the aspect
hierarchy in more detail.
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Figure 13.5. Examples of face features

Face Features

The face features represent all subsets of lines and curves comprising the faces.
Figure 13.5 illustrates a few of the 31 face features based on our 10 primitives;
the complete set of face features can be found in Dickinson et al. {1989). The
relations between face feature components (lines and curves) represent nonac-
cidental properties of lines including parallelism, symmetry, and cotermination.
These relations, described by Biederman {1985) as a basis for the extraction of
geons, are a subset of the nonaccidental properties suggested by Lowe (1985) and
Witkin and Tenenbaum (1983). The important characteristic of the face features
is that they represent gualitative relationships among qualitative lines; exact
lengths of lines, distances between lines, angles between lines, curvature, etc.,
are not represented.
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FiGure 13.6 Examples of faces.

Faces

The faces represent the set of polygons appearing in the aspects. Figure 13.6 illus-
trates a few examples of our 16 faces; the complete set of faces can be found in
Dickinson et al. (1989). As mentioned earlier, the faces form the backbone of the
aspect hierarchy. Each differs in the number of constituent lines, the types of
lines, or the nonaccidental relations between the lines. Since a face definition is
invariant to changes in constituent line length and angle (provided the defining
line relationships still hold), each face in Figure 13.6 represents only one of many
possible instances defining the class.

Face Structures

The face structures represent connected sets of faces; each face in the structure
shares a line with at least one other face in the structure. Figure 13.7 illustrates
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Figure 13.7. Examples of face structures.

a few examples of our 37 face structures; the complete set of face structures can
be found in Dickinson et al. (1989). A face structure can be represented by a con-
nected graph, with the nodes representing faces and the ares representing the
sharing of lines between faces; arc labels indicate which line is being shared.

Combining the Two Components

A given face feature may be common to a number of faces. Similarly, a given face
may be a component of a number of face structures, while a given face structure
may be the projection of a number of primitives. To capture these ambiguities, a
matrix maps face features to faces, while another matrix maps faces to face struc-
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FiGure 13.8. Combining the object-centered and viewer-centered models,

tures. To tie together the object-centered and viewer-centered representations,
we define a third matrix mapping the top level of the aspect hierarchy, the face
structure level, to the primitives.

In many cases, a feature (face feature, face, or face structure) could be a com-
ponent of more than one parent feature at the next higher level; however, some
parents might be more likely than others. The entries in the three matrices cap-
ture this likelihood. For example, consider the matrix mapping faces to face
structures; the rows represent faces while the columns represent face structures.
If a particular face can be a component of 10 different face structures, then those
10 column entries corresponding to the 10 face structures contain a value from
0 to 1.0, indicating the probability that the face is part of that particular face
structure. Thus, the entries along each row sum to 1.0. Figuré 13.8 presents a
portion of the aspect hierarchy and related primitives along with the correspond-
ing portions of the matrices.
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TaBLE 13.1. Superquadric definitions of the 10 primitives.

Primitive

Parameter Value 1 2 3 4 5 6 7 8 9 10
x-gize 15 15 15 15 15 15 15 15 15 15
y-size 15 15 15 15 15 15 15 15 15 15
z-size 30 30 30 30 30 30 30 30 30 30

& 05 05 05 .05 1.0 1.0 1.0 10 1.0 10
& 05 05 05 05 05 05 05 05 1.0 05
z-axis bend g0 0.0 0.0 0.0 0.0 0.0 tRY] 00 00 a0
z-axis taper 0.0 0.5 1.0 0.0 00 035 10 0.0 60 g0
z-axis pinch 0.0 0.0 00 00 0.0 00 0.0 05 00 0.0

To generate the probabilities in the tables mapping face features to faces, faces
to face structures, and face structures to primitives, we first modeled our 3-D
volumetric primitives vsing the SuperSketch modeling tool (Pentland, 1987b).
SuperSketch models each primitive with a superquadric surface subject to
deformation. The superquadric with length, width, and breadth a,, a,, and a,
is described (adopting the notation cos 1 = C,, sin @ = 8.} by the following
equation:

a,CsiCs?
X(mw) = { a8

a;S3t

where X{(n,) is a three-dimensional vector that sweeps out a surface parameter-
ized in latitude 1 and longitude m, with the surface’s shape controlled by the
parameters £, and &,. The superquadric can be deformed by stretching, bending,
twisting, or tapering. The SuperSketch superquadric definitions for the 10 primi-
tives are given in Table 13.1.

The next step in generating the probability tables involves rotating each super-
quadric primitive about its internal x, ¥, and z axes in 10° intervals. The resulting
quantization of the viewing sphere gives rise to 648 different views per superquad-
ric primitive. However, we can exploit symmetries of the primitives to signifi-
cantly reduce the number of views (688 views for all primitives). For each view,
we orthographicaliy project the superquadric primitive into the image plane. The
final step involves a manual analysis of the images, noting each feature {face fea-
ture, face, and face structure) and its parent. The resulting frequency distribution
gives rise to the three probability matrices given in Dickinson et al. (1985).

It should be emphasized that the results offer only a crude approximation to the
‘true probabilities. A more thorough analysis would vary the dimensions, curva-
ture, expansion rate, etc. of the primitives at a finer resolution on the viewing
sphere. The resulting explosion of views would require an automated tool to
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perform the analysis and generate the probabilities. However, we believe that the
probabilities will not change significantly in a more thorough analysis.

The three matrices can be used to guide the process of extracting the primitives
from image contours. For example, if a face extracted from the image fails to
match one of the 16 face types due to occlusion, the matrix mapping face features
te faces can predict the most likely face type given a face feature belonging to the
face. Once a face has been identified, the matrix mapping faces to face structures
can predict the most likely face structure containing that face. Finally, given a
face structure in the image, the matrix mapping face structures to primitives can
predict the most likely primitive to which the face structure belongs. At each
level, the matrices provide a heuristic to guide the search through the interpreta-
tions. The details of the processes used in both primitive extraction and model
matching will not be presented in this chapter.

Evaluating the Aspect Hierarchy

An alternative approach to our hierarchical aspect representation would be to map
the featuzes at the lowest level {in our case, the face features) directly to the 3-D
models (in our case, the 3-D primitives), an approach advocated by Lowe (1985),
Huttenlocher and Ullman (1987), and Lamdan et al. (1988). In such a scenario, a
given face feature index would return a set of candidate primitives containing that
face feature. This approach has several drawbacks. First, the complexity of the
primitives would increase to accommodate constituent face features. We would
also face the problem that a weak hypothesis based on simple features requires a
top-down verification step; the more gualitative the primitive, the more difficult
the verification. Finally, simple indexing features do not provide strong orienta-
tion constraints on the primitives. For example, a pair of intersecting lines may lead
to primitive hypotheses in many different orientations, whereas the face structure
encompassing the lines constrains the orientation. In fact, we use the face structure
label as a gualitative specification of a primitive’s orientation.

In addition to the above heuristic arguments, we can make a quantitative case
for the aspect hierarchy based on the three mapping matrices. By multiplying
together matrices representing adjacent levels of the aspect hierarchy, we can
generate new matrices mapping face features to face structures, faces to primi-
tives, and face features to primitives. The results can best be seen in a set of histo-
grams. To generate the histogram between two levels in the aspect hierarchy, we
retain only the strongest probability arc emanating from each feature at the lower
level. This indicates the degree of ambiguity in the mapping. For example, a node
having two emanating arcs with values 0.50 and 0.50 is clearly inferior to a node
having three emanating arcs with values 0.90, 0.05, and 0.05. Making an infer-
ence at the node with two emanating, equal probability arcs is a 50-50 guess,
whereas there is a clear choice at the node with three emanating arcs. Clearly,
having fewer emanating arcs is not as important as having a distinctly high prob-
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ability arc. Once the strongest probability arc emanating from each node has been
retained, we simply count the number of remaining arcs falling in each of 10
probability intervals. The resulting histograms (percentage of nodes whose
emanating highest probability arc falls within given probability range) are
presented in Figure 13.9.

Working backwards from the primitives, we can compare mappings from the
face structures, faces, and face features to the primitives; the three histograms
are illustrated in Figure 13.9¢, e, and f, respectively. The face structure to pPrimi-
tive mapping is the strongest, with 90% of the face structure nodes having a high
probability (0. 80-1.0) arc. At the face structure level, we can compare mappings
from the faces and face features; the two histograms are illustrated in Figure
13.9b and d, respectively In this case, the mapping from the faces is much less
ambiguous than the mapping from the face features. The final mapping from face
features to faces is illustrated in Figure 13.9a,

The aspect hierarchy effectively prunes the mapping from face features to
primitives by introducing intermediate constraints in the form of faces and face
structures. The histograms suggest that for a typical set of 3-D modeling primi-
tives, image regions, or faces, are the most appropriate features for recognition,
Moreover, these faces should be grouped into the more complex face structures,
providing a less ambiguous mapping to the primitives and further constraining
their orientation. Only when a face’s shape is altered due to primitive occlusion
should we descend to the face feature level.

Related Work

Brooks” ACRONYM system (Brooks, 1983) exemplifies the object-centered
approach to object recognition. In ACRONYM, objects are represented as
constructions of generalized cylinders. Recognition of a particular model object
consists of predicting the projected appearance in the image of the object’s
components; constraints on the 3-D parts of the model are mapped to constraints
on the 2-D parts of the projection. The image contours are then exarmined,
subject to these constraints, and matched contours are used to further constrain
the size and orientation of the 3-D parts. The top-down nature of ACRONYM
makes it unsuitable for unexpected-object recognition; ACRONYM can only
confirm or deny the existence in the image of a user-specified object. In addi-
tion, the quantitative nature of ACRONYM’s constraints requires the overhead
of a complex constraint manipulation system. ACRONYM is appropriate for
recognizing the subclasses of a particular airplane, while our system cannot;
however, in distinguishing an airplane from, say, a horse, we avoid detailed quan-
titative constraints.

" In contrast to ACRONYM's top-down approach, Lowe's SCERPO system
{Lowe, 1985} takes a more bottom-up approach to object-centered recognition.
In SCERPOQ, objects are represented as polyhedra, or constructions of 3-D
faces. Image contours are first grouped according to perceptual organization
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rules, including parallelism, symmetry, and collinearity. From these groupings,
simple 3-D inferences are made about the 3-D contours comprising the object;
for example, parallel lines in the image imply paralle] edges in the polyhedral
object. The 3-D inferences are matched against manually identified instances of
the properties in the model Back-projected features are used to verify the object
and constrain its position and orientation. Although SCERPO could be applied
to unexpected-ohject recognition, the complexity of polyhedral models and the
simplicity of the indexing features result in large indexing ambiguity. In addition,
SCERPO's polyhedral models restrict its recogaition domain to rigid objects. Our
modeling scheme and indexing primitives, on the other hand, support the recog-
nition of articulated objects.

Modeling objects using a set of qualitative primitives is not new. Mulgaonkar
et al. (1984) describe a recognition system based on 2 set of generalized blob
models including sticks, plates, and blobs. From the 2-D sithouette of an object,
a graph-theoretic clustering technique yields a set of convex polygonal parts;
internal image contours are ignored. The projected parts are then compared to
3-D part instances in the model database, subject to quantitative geometric
and relational constraints. Like ACRONYM, the system is primarily top-down,
starting with a model and matching image structures to the model-based pre-
dictions. Biederman (1985) proposed a set of primitives, called geons, based
on the dichotomous and trichotomous properties of generalized cylinders. How-
ever, he failed to demonstrate how they may be extracted from the image, nor did
he propose a control strategy for matching image features to models. Bergevin
and Levine (1988a,b) have applied Biedermarn’s geons to 3-D object recognition
from 2-D images in a system called PARVO. Their approach to grouping lines
consists of pairing segmentation points resulting from concave tangent discon-
tinuities lying on the sithouette boundary of the object. From this pairing, line
groups are formed, and internal contours are later assigned to the line groups on
a second pass. The technique assumes that the segmentation points can be paired.
In addition, PARVQ assumes that a unique geon label can be assigned to each
group of lines constituting a part. However, in the presence of occlusion or
degenerate viewpoint, these assumptions may not be correct. Perhaps the
greatest disadvantage of their approach is that it is dependent on their choice of
geons as modeling primitives.

The viewer-centered representation of an object by a set of aspects was applied
to 3-D object recognition by Chakravarty and Freeman (1982), and more
recently by Tkeuchi and Kanade (1988). However, in these systems, the whole
object is represented by the set of aspects. Thus, as the complexity of the object
increases, so does the number of distinct aspects; automatically generating the
distinguishable aspects is a difficult task. In our system, the aspects of a set of
common parts or primitives have been generated and analyzed, and will be
applicable to any objects constructed with these parts. Rather than matching
against a large number of complex aspects, we plan to identify local instances of
simple aspects. This allows us, like ACRONYM, to have articulated models,
since we are matching aspects to primitives rather than to objects.
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Conclusions

The inefficiency of most 3-D object recognition systems is reflected in the rela-
tively small number of objects in their databases (on the order of 10); in many
cases, algorithms are demonstrated on a single object model. The major problem
is that these systems terminate the bottom-up primitive extraction phase very
early, resulting in simple primitives such as lines, corners, or curvature points
Unfortunately, these primitives do not provide very discriminating indices into
a large database. In fact, there may be many instances of such primitives in Jjust
one model, resulting in many hypothesized matches. The resulting systems are
very top-down or model driven in nature. To achieve a more bottom-up recogni-
tion system requires that we index into the model database with more dis-
criminating, higher order primitives. However, the more complex the indexing
primitive, the more difficult the primitive extraction.

We propose a representation integrating constructions of 3-D volumetric
modeling primitives at the database level with a set of aspects that describes the
primitives at the image level. To reduce the number of aspects, our primitives are
qualitative in nature, with the set of primitive aspects invariant to minor changes
in primitive shape. The resulting integration of object-centered and viewer-
centered models provides the foundation for a more bottom-up unexpected-
object recognition system. The qualitative nature of the representation is ideal
for qualitative recognition, and could provide a coarse front end for a more quan-
titative recognition system. Although we demonstrate our approach using a par-
ticular choice of 3-D primitives, the integration of object-centered and
viewer-centered representations using a probabilistic aspect hierarchy is equally
applicable to any representation scheme modeling objects as constructions of
3-D volumetric primitives.
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