334

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

Landmark Selection for Vision-Based Navigation

Pablo Sala, Student Member, IEEE, Robert Sim, Member, IEEE, Ali Shokoufandeh, Member, IEEE, and
Sven Dickinson, Member, IEEE

Abstract—Recent work in the object recognition community has
yielded a class of interest-point-based features that are stable under
significant changes in scale, viewpoint, and illumination, making
them ideally suited to landmark-based navigation. Although many
such features may be visible in a given view of the robot’s environ-
ment, only a few such features are necessary to estimate the robot’s
position and orientation. In this paper, we address the problem of
automatically selecting, from the entire set of features visible in
the robot’s environment, the minimum (optimal) set by which the
robot can navigate its environment. Specifically, we decompose the
world into a small number of maximally sized regions, such that
at each position in a given region, the same small set of features
is visible. We introduce a novel graph theoretic formulation of the
problem, and prove that it is NP-complete. Next, we introduce a
number of approximation algorithms and evaluate them on both
synthetic and real data. Finally, we use the decompositions from
the real image data to measure the localization performance versus
the undecomposed map.

Index Terms—Feature selection, localization, machine vision,
mapping, mobile robots.

1. INTRODUCTION

N THE domain of exemplar-based (as opposed to generic)
object recognition, the computer vision community has
recently adopted a class of interest-point-based features, e.g.,
[1]-[4]. Such features typically encode a description of image
appearance in the neighborhood of an interest point, such as
a detected corner or scale-space maximum. The appeal of
these features over their appearance-based predecessors is their
invariance to changes in illumination, scale, image transla-
tion, and rotation, and minor changes in viewpoint (rotation
in depth). These properties make them ideally suited to the
problem of landmark-based navigation. If we can define a set
of invariant features that uniquely defines a particular location
in the environment, these features can, in turn, define a visual
landmark.
To use these features, we could, for example, adopt a local-
ization approach proposed by Basri and Rivlin [5], and Wilkes
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et al. [6], based on the linear combination of views (LC) tech-
nique. During a training phase, the robot is manually “shown”
two views of each landmark in the environment, by which the
robot is to later navigate. These views, along with the positions
at which they were acquired, form a database of landmark views.
At run-time, the robot takes an image of the environment and
attempts to match the visible features to the various landmark
views it has stored in its database. Given a match to some land-
mark view, the robot can compute its position and orientation in
the world.

There are two major challenges with this approach. First,
from any given viewpoint, there may be hundreds or even
thousands of such features. The union of all pairs of landmark
views may therefore yield an intractable number of distin-
guishable features that must be indexed in order to determine
which landmark the robot may be viewing.! Fortunately, only
a small number of features are required (in each model view)
to compute the robot’s pose. Therefore, of the hundreds of
features visible in a model view, which small subset should we
keep?

The second challenge is to automate this process, and let the
robot automatically decide on an optimal set of visual landmarks
for navigation. What constitutes a good landmark? A landmark
should be both distinguishable from other landmarks (a single
floor tile, for example, would constitute a bad landmark since it
is repeated elsewhere on the floor) and widely visible (a land-
mark visible only from a single location will rarely be encoun-
tered and, if so, will not be persistent). Therefore, our goal can
be formulated as partitioning the world into a minimum number
of maximally sized contiguous regions, such that the same set
of features is visible at all points within a given region.

There is an important connection between these two chal-
lenges. Specifically, given a region, inside of which all points see
the same set of features (our second challenge), what happens
when we reduce the set of features that must be visible at each
point (first challenge)? Since this represents a weaker constraint
on the region, the size of the region can only increase, yielding
a smaller number of larger regions covering the environment.
As mentioned earlier, there is a lower bound on the number of
features that can define a region, based on the pose-estimation
algorithm and the degree to which we want to overconstrain its
solution.

Combining these two challenges, we arrive at the main
problem addressed by this paper: from a set of views acquired

'Worst-case indexing complexity would occur during the kidnapped local-
ization task, in which the robot has no prior knowledge of where it is in the
world. Under normal circumstances, given the currently viewed landmark and
the current heading, the space of landmark views that must be searched can be
constrained. Still, even for a small set of landmark views, this may yield a large
search space of features.
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at a set of sampled positions in a given environment, partition
the world into a minimum set of maximally sized regions,
such that at all positions within a given region, the same set
of k features is visible, where k is defined by the pose-es-
timation procedure (or some overconstrained version of it).
We begin by introducing a novel, graph theoretic formulation
of the problem, and proceed to prove its intractability. In the
absence of optimal, polynomial-time algorithms, we introduce
six different heuristic algorithms for solving the problem. We
have constructed a simulator that can generate thousands of
worlds with varying conditions, allowing us to perform ex-
haustive empirical evaluation of the six algorithms. Following
a comparison of the algorithms on synthetic environments, we
adopt the most effective algorithm, and test it on imagery of a
real environment. We conclude with a discussion of the main
contributions made and possible directions for future work.

II. RELATED WORK

In previous work on robot navigation using point-based fea-
tures, little or no attention has been given to the size of the land-
mark database or the number of landmark lookups required for
localization. This is especially problematic for map represen-
tations that rely on large numbers of generic features, such as
corners or line segments [7]-[9]. Recently, a number of image-
based feature detectors, such as the scale-invariant feature trans-
form (SIFT), and other scale-, rotation-, and affine-invariant
features have been developed that provide stronger discrimina-
tive power [1], [3], [4]. Despite these enhancements, maps con-
structed using visual features often entail mapping very large
numbers of points in space.

There are several existing feature-based approaches to envi-
ronment representation. Se et al. [10] use SIFT features as land-
marks. The robot automatically updates a 3-D landmark map
with the reliable landmarks seen from the current position using
Kalman filtering techniques. The position of the robot is esti-
mated using the odometry of the robot as an initial guess, and is
improved using the map. Trinocular vision is used to estimate
the 3-D locations of landmarks and their regions of confidence,
with all reliable landmarks stored in a dense database.

Navigation by landmark recognition is also possible without
knowledge of the locations of the landmarks in a map of the en-
vironment. Localization can be accomplished in a view-based
fashion, in which the robot knows only the image location of the
landmarks in a collection of model views of the environment ac-
quired at known positions and orientations. One such approach
is the LC technique, which was first introduced by Ullman and
Basri for object recognition, and later applied to vision-based
navigation by Basri and Rivlin [5]. The authors proved that if a
scene is represented as a set of 2-D views, each novel view of
the scene can be computed as a linear combination of the model
views. From the values of the linear coefficients, it is possible to
estimate the position from which the novel view was acquired,
relative to that of the model views. Wilkes et al. [6] described
a practical robot navigation system that used the LC technique.
Their method consists of decomposing the environment into re-
gions, within which a set of model views of a particular area of
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the environment may be used to determine the position of the
robot. In these original applications of the LC method, the fea-
tures comprising the model views were typically linear features
extracted from the image.

The view-based approach of Sim and Dudek [11] consists of
an offline collection of monocular images sampled over a space
of poses. The landmarks consist of encodings of the neighbor-
hoods of salient points in the images, obtained using an attention
operator. Landmarks are tracked between contiguous poses, and
added to a database if they are observed to be stable through a
region of reasonable size, and sufficiently useful for pose es-
timation according to an a priori utility measure. Each stored
landmark is encoded by learning a parameterization of a set of
computed landmark attributes. The localization is performed by
finding matches between the candidate landmarks visible in the
current image and those in the database. A position estimate is
obtained by merging the individual estimates yielded by each
computed attribute of each matched candidate landmark.

In an attempt to address the localization of a robot in a pre-
viously mapped environment, Fairfield and Maxwell [12] used
visual and spatial information associated with simple, but artifi-
cial, landmarks. Their method projects the acquired coordinates
of the visual landmark in the image plane into an estimation of
the distance between landmark and robot. Ideally, this estimate
can be cross-validated with prestored landmark coordinates to
localize the robot. Their solution for dealing with robot odom-
etry and landmark distance-estimation errors was to use a simple
Kalman filter model in order to correct for accumulated odom-
etry and sensor errors.

DeSouza and Kak [13] presented a comprehensive survey
of computer vision methods for both indoor and outdoor nav-
igation. For indoor navigation, they considered three popular
models of map-based, map-building-based, and mapless nav-
igation. In each case, they discussed the contributions of ex-
isting vision methods to visual information acquisition, land-
mark detection, cross-validation of visual hypotheses and pre-
stored models, and position estimation for localization. In the
context of outdoor robotics, they surveyed the navigation of both
structured and unstructured environments. In each case, the rel-
evant contribution of vision to a variety of critical components
of navigation systems was considered, including obstacle detec-
tion and avoidance, robust road detection, construction of hypo-
thetical scene models, far-point (landmark) triangulation, and
global position estimation. In other work, landmarks are used
to define topological locations in the world. For example, Mata
et al. demonstrated a system for topological localization using
distinctive image regions [14].

While the focus of our work is on visual navigation, our ap-
proach to feature selection is also applicable to other feature-
based representations, such as points extracted from range data.
There is a rich body of work on mapping and navigation using
range-based features. Leonard and Durrant-Whyte developed a
map representation using “geometric beacons,” corresponding
to corners extracted from a sonar signature [15]. Other work
has examined similar features in outdoor settings, and under-
water [16], [17].

Since there is always a certain amount of uncertainty in
estimating the robot’s position, some authors have considered
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the problem of landmark selection for the purpose of mini-
mizing uncertainty in the computed pose estimate. Sutherland
and Thompson [18] demonstrate that the precision of a pose
estimate derived from point features in 2-D is dependent on the
configuration of the observed features. They also provided an
algorithm for selecting an appropriate set of observed features
for pose estimation. Olson [19] presented a method for esti-
mating the localization uncertainty of individual landmarks for
the purpose of gaze planning. Burschka er al. [20] considered
the effect of spatial landmark configuration on a robot’s ability
to navigate. Similarly, Yamashita et al. [21] demonstrated
motion-planning strategies that take into account landmark
configuration for accurate localization.

Methods have also been developed to combine multiple unre-
liable observations into a more reliable estimate. Measurements
from various sensors, data acquired over time, and previous
estimates are integrated in order to compute a more accurate
estimate of the current robot’s pose. In every sensor update,
previous data is weighted according to how accurately it pre-
dicts the current observations. This technique, called sensor
fusion, has generally been implemented through the use of
Kalman filters and Extended Kalman filters (EKFs). It has
been applied to the problem of localization by Leonard and
Durrant-Whyte [22] from sonar data obtained over time. A
disadvantage of Kalman filters and EKFs is that since they
realize a local linear approximation to the exact relationship
between the position and observations, they depend on a good
a priori estimate, and therefore can suffer from robustness
problems.

Fox introduced Markov localization in [23], a Bayesian ap-
proach to localization using Markov chain methods, and main-
taining a probability distribution over pose space. As evidence
is collected from the sensors, it is used to update the current state
of belief of the robot’s pose. This approach generalizes beyond
the Kalman filter in that multimodal probability distributions
can be represented. In [24], Thrun presents an approach based
on Markov localization in which neural networks are trained
to discover landmarks that will minimize the localization error.
The proposed algorithm has the advantage of being widely
applicable, since the robot customizes its localization algorithm
to the sensors’ characteristics and the particular environment
in which it is navigating. The localization error achieved by
the automatically selected landmarks is shown to outperform
the error achieved with landmarks carefully selected by human
experts. On the other hand, this approach has the drawback
that the training of the neural networks can take several hours,
though this process generally needs to be performed only once
in an offline stage.

Another set of probabilistic mapping approaches is that of si-
multaneous localization and mapping (SLAM), in which, after
each new measurement, both the robot’s pose and the positions
of landmarks in the world are reestimated. Davison’s work in
this direction basically computes a solution to the structure-
from-motion problem online [25] using the Shi and Tomasi fea-
ture detector to construct maps in real time from a monocular
sequence of images. Conventional SLAM approaches based on
the Kalman filter suffer, in that the time complexity of each
sensor-update step increases with the square of the number of
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landmarks in the database. To deal with this scalability problem,
some authors suggested dividing the global map into submaps,
within which the complexity can be bounded [26], [27]. Other
researchers [28]-[31] have proposed hierarchical approaches to
SLAM, in which a topological map is maintained, organizing
the landmarks into smaller regions where feature-based map-
ping strategies can be applied. Most recently, several authors
have tackled the scaling problem with new filter designs, such as
sparse-information filters, particle filters, and thin junction-tree
filters [32]-[34].

Our work is also closely related to the general problem of
computing a minimum description length (MDL) encoding of
a set of observations [35]. However, our problem is further
defined by the domain-dependent constraint that the encoding
must facilitate localization everywhere in the world. Some
authors have also examined the problem of feature selection
(which image-derived features are optimal for representing
camera location) [36], [37]. These approaches also generally
seek to compute optimal encodings of the observations, but tend
to depend on global image properties, making them susceptible
to failure in the presence of minor changes in the scene. For this
paper, we assume a feature-extraction approach that recovers
multiple local features from single images. In principle, one
could apply our work to several such feature detectors to deter-
mine which operators produce the most compact descriptions
of the world.

While all of the approaches discussed above demonstrate
how robot localization can be performed from a set of landmark
observations, none consider the issue of eliminating redundancy
from the landmark-based map, which at times can grow to contain
hundreds of thousands of landmark models. In this paper, we
study the problem of automatically selecting a minimum-size
subset of landmarks, such thatreliable navigation is still possible.
While maximizing precision is clearly an important issue, in
this paper, we are concerned primarily with selecting landmarks
that are widely visible. However, the algorithms presented in
this paper can be easily extended to select sets of features
that fulfill any given additional constraints.

III. LANDMARK-SELECTION PROBLEM DEFINITION

In an offline training phase, images are first collected at
known discrete points in pose space, e.g., the accessible ver-
tices (points) of a virtual grid overlaid on the floor of the
environment. During collection, the known pose of the robot
is recorded for each image, and a set of interest-point-based
features are extracted and stored in a database. For each of the
grid points, we know exactly which features in the database are
visible. Conversely, for each feature in the database, we know
from which grid points it is visible.

Consider the example shown in Fig. 1. Fig. 1(a) shows a 2-D
world with a polygonal perimeter, a polygonal obstacle in its
center, and nine features along the world and obstacle perime-
ters. In Fig. 1(b)—(g), the area of visibility of some of the features
is shown as a colored region. The feature-visibility areas, com-
puted from a set of images acquired at a set of grid points in the
world, constitute the input to our problem.

In a view-based localization approach, the current pose of
the robot is estimated using, as input, the locations of a small
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Fig. 1. (a) Simple polygonal world with a polygonal obstacle in its center and
nine features. (b)-(g) Visibility areas of some (circled) features. (h) Covering of
the world using four features (3, 4, 5, and 7). (i) Covering of the world using
two features (2 and 8).

number of features in the current image, matched against their
locations in the training images. This set of simultaneously
visible features constitutes a landmark. The minimum number
of features necessary for this task depends on the method
employed for pose estimation. For example, three features are
enough for localization in Basri and Rivlin’s LC technique [5],
which uses a weak perspective projection imaging model. The
essential matrix method [38], that properly models perspec-
tive projection in the imaging process, requires at least eight
features to estimate pose.

To reduce the effect of noise, a larger number of features can
be used to overconstrain the solution. This presents a tradeoff
between the accuracy of the estimation and the size (in features)
of the landmark. Requiring a larger number of features for
localization will yield better pose estimation. However, the more
constrained a landmark is, the smaller its region of visibility
becomes. We will use the parameter & as the number of features
that will be employed to achieve pose estimation with the desired
accuracy, i.e., the number of features constituting a landmark.

Robot localization from a given position is possible if, from
the features extracted from an image taken at that position, there
exists a subset of k features that exist in the database and that
are simultaneously visible from at least two known locations.
For a large environment, the database may be large, and such a
search may be costly. For each image feature, we would have
to search the entire database for a matching feature until not
only £ such matches were found, but that those k features were
simultaneously visible from at least two separate positions (grid
points).
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Recalling that k is typically far less than the number of
features in a given image, one approach to reducing search
complexity would be to prune features from the database subject
to the existence of a minimum of k features visible at each
point, with those same k features being visible at one or more
other positions. Unfortunately, this is a complex optimization
problem whose solution still maintains all the features in a
single database, leading to a potentially costly search. A more
promising approach is to partition the pose space into a number
of regions, i.e., sets of contiguous grid points, such that for
each region, there are at least k features simultaneously visible
from all the points in the region. Such a partitioning of the
world, in turn, partitions the database of features into a set
of smaller databases, each corresponding to what the robot
sees in a spatially coherent region. In this latter approach,
since k is small, the total number of features (corresponding
to the union of all the databases) that need to be retained for
localization is much smaller than that of the single database in
the previous approach. Therefore, even without prior knowledge
of the region in which the robot is located, the search is far
less costly.

Let us return to the world depicted in Fig. 1. In this example,
we will assume, for sake of clarity, that a single (k = 1) feature
is sufficient for reliable navigation. However, the reader must
note that in practice, a k greater than one is generally required
for localization, its particular minimum value depending on the
method employed. Under this assumption, one possible decom-
position of the world into a set of regions (such that each pose of
the world sees at least one feature) is achieved using features 3,
4,5, and 7, as shown in Fig. 1(h). (In the figure, the feature-vis-
ibility areas are shown superimposed for features 3, 7, 5 and 4,
in that particular order.) It is clear that all four features in this
set are needed to cover the world, since removing any one of
them will yield some portion of the world from which none of
the remaining three features are visible, meaning that the robot
is blind in this area. However, this decomposition is not optimal,
since other decompositions with fewer regions are possible. Our
goal is to find a minimum decomposition of the world which, in
this case, has only two regions. One such decomposition corre-
sponds to the areas of visibility of features 2 and 8, as shown in
Fig. 1(i). This minimum set of maximally sized regions is our
desired output, and allows us to discard from the database all but
features 2 and 8. Since at least one of these two features is seen
from every point in the pose space, reliable navigation through
the entire world is possible.

Besides reducing the total number of features to be stored,
a partitioning of the world into regions offers additional advan-
tages. While navigating inside a region, the corresponding % fea-
tures are easily tracked between the images that the robot sees. If
the expected k features are not all visible in the current image,
this may indicate that the robot has left the region in which it
was navigating, and is entering a new region. In that case, the
visible features can vote for the regions they belong to, if any,
according to a membership relationship computed offline. The
new region(s) into which the robot is likely moving will be those
with at least k votes. Input features would, therefore, be matched
to the k£ model features defining each of the candidate regions.
This approach also provides a solution to the kidnapped robot
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problem, i.e., if the robot is blindfolded and released at an arbi-
trary position, it can estimate its current pose.

A. A Graph Theoretic Formulation

Before we formally define the minimization problem under
consideration, we will introduce some terms.

Definition 3.1: The set of positions at which the robot can be
at any time is called the pose space. The discrete subset of the
pose space from which images were acquired is modeled by an
undirected planar graph G = (V, E), where each node v € V
corresponds to a sampled pose, and two nodes are adjacent if
the corresponding poses are contiguous in 2-D space.

Definition 3.2: Let F' be the set of computed features from
all collected images. The visibility set of v is the set F,, C F' of
all features that are visible from pose v € V.

Definition 3.3: A world instance consists of a tuple (G =
(V,E), F,{F,}vev), where the graph G models a discrete set
of sampled poses, F is a set of features, and {F, },cv is a col-
lection of visibility sets.

Definition 3.4: A setof poses R C V is said to be a region if
and only if (iff) for all poses u,v € R, there is a path between
u and v completely contained in R, i.e., Vu,v € R : I{u =
Vo, - --,vp = v} C R, such that (v;,v;41) € E forall0 <1 <

Definition 3.5: A collection of regions D =
Rq} C 2V is said to be a decomposition of V iff
Ulgigd Ry =V.

Definitions 3.1 to 3.5 define the set of inputs and outputs of
interest to our problem. In view of our optimization problem, for
a given world instance (G = (V, E), F, {F,},ecv), one would
like to create a minimum cardinality decomposition D. In ad-
dition, it will be desirable for a given solution to the optimiza-
tion problem to satisfy a variety of properties. One property of
interest is that of ensuring a minimum amount of overlap be-
tween regions in the decomposition. The purpose of overlap is
to ensure smooth transitions between regions, as different sets of
features become visible to the robot. When one region’s features
start to fade at its border, the robot can be assured to be within
the boundary of some other region, where the new region’s land-
mark is clearly visible. The following definitions formalize this
property.

Definition 3.6: The p neighborhood of a pose v € V is the
set N,(v) = {u €V : 6(u,v) < p}, where §(u, v) is the length
of the shortest path between nodes « and v in G.

Definition 3.7: A decomposition D = {Ry,...,Rs} of Vis
said to be p-overlapping iff (Vv € V')(3i) : N,(v) C R;.

With these definitions in hand, the problem can now be for-
mally stated as follows.

Definition 3.8: Let k be the number of features required for
reliable localization at each position, according to the local-
ization method employed. The p-minimum overlapping region
decomposition problem (p-MORDP) for a world instance
(G =(V,E), F,{F,}vev) consists of finding a minimum-size
p-overlapping decomposition D = {Ry,..., Rq} of V, such
that Vi : [(,cr, Fol > k.

Note that given a solution of size d to this problem, the total
number of features needed for reliable navigation is bounded by
d- k.
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IV. COMPLEXITY ANALYSIS

Before we consider the complexity of p-MORDP, we will
present two theorems indicating that p-MORDP can be reduced
to O-MORDP (p = 0), and that a solution to the reduced
0-MORDP can be transformed back into a solution of the more
general p-MORDP. The first of the following two theorems
states that if there is a p-overlapping decomposition, such that k&
features are visible in each region for a certain world instance,
then there is a 0-overlapping decomposition for the related
problem, also with k features visible in each region. This
theorem guarantees that if a solution exists for the p-MORDP,
then there is also a solution to the related 0-MORDP.

The second theorem states that whenever the related
0-MORDP has a solution ﬁ, then the p-MORDP has a solution,
too, and it presents the method to construct it from D. We will
start by proving three auxiliary lemmas that will be used in the
proofs of Theorems 4.1 and 4.2.

Lemma 4.1: {Ry,...,R;} is a p-overlapping decomposi-
tion of V iff {Ry,..., Ry} is a O-overlapping decomposition
of V, where R; = {v € R; : N,(v) C R;} foralli=1,....d.

Proof: This follows from the following chain of
implications:

{Ry,..., Ry} is a p-overlapping decomposition of V'
— M eV)(Ti:1<i<d)N,(v) CR;

g(VveV)(ElizlﬁiSd)UERi

= (WweV)3i:1<i<dNy(v) CR;

<= {Ry,...,Ry}is a0-overlapping decomposition of V'
where implication (x) follows from the definition of R;. O

Lemma 4.2: {Ry,...,R;} is a 0-overlapping decomposi-
tion of V iff {R},..., R} is a p-overlapping decomposition
of V, where R, = Usern, @ foralli=1,....d. i

Proof: First, observe that R is a region, since R; is a re-

gion and N,(v) is path-connected, as can be inferred from its
definition. Now

{Ry,..., Ry} is a0-overlapping decomposition of V'
— (Yw e V)(3i): No(v) C R;
= (WweV)3i):veR;

2 (Vv e V)(3i): N,(v) CR;
(%) [ s i , g
— {Rj,...,R}}is a p-overlapping decomposition of V.

In (%), we use that (Vv € R;) : N,(v) C R}, which is a direct
implication of the definition of R}. In (xx), we use that R} is a
region. O
Lemma4.3: If{R1,..., R4} is a p-overlapping decomposi-
tionof V, R; = {veR;,: Ny(v) CR;}foralli =1,...,d,
and F,, = ﬂweNp(v) Fu,thenforalli = 1,....d:(\,cp, Fo C
Nvei, Fo» With equality holding if ; = UveRin(v)'
Proof: From the definition of RL-, we know that (Vv €
R;): N,(v) C R;, and hence, Uver, Np(v) C R;. Therefore

Nrnes N A
B (VA
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and the equality holds when R; = (J,c. N,(v). Now
N Fuo={) N Fol|=1{) Fo
veR; \WEN,(v) vER;

w&(Ucr, M)

O

It should be noted that while the transformation from
p-MORDP to 0-MORDP and back to p-MORDP may create
a different p-overlapping decomposition, the cardinality of the
decomposition under this two-step transformation will remain
the same, hence, the optimality will not be affected.

Theorem 4.1: If D = {Ry,...,R4} is a p-overlap-
ping decomposition of V for a world instance (G =
(V,E), F. {Fu}vev), such that |,cp Fu| =k for
al i = 1,...,d, then D = {Ry,...,Rq}, where
Ri = {v € R; : N,(v) C Ry} is a O-overlapping de-
composition for a world instance (G = (V, E), F, {Fy}vev),
where F, = N Fuw, such that [, R, ]:'U| > k for all
i=1,...,d.

Proof: According to Lemma 4.1, we know that Dis a
0-overlapping decomposition of V. By Lemma 4.3, we know
that ﬂve& F, C ﬂUGRi F,, foralli = 1,...,d. Therefore,
|ﬂU€Ri]-',,,|2|ﬂve&}"ﬂ|Zk,forallizl,...,d. O

Theorem 4.2: If D = {f%l,...,fi(i} is a solution to
0-MORDP for a world instance (G = (V, E), F, {F,}vev),
then D' = {Rj,...,R;}, where R, = U,cz No(v)
is a solution to p-MORDP for the world instance (G =
(V. E), F.AF" }oev ).

Proof: We have to show the following.

weN, (v)

1) D’ is a p-overlapping decomposition of V, i.e., (Vv €
V)(3i): N,(v) C R;. (This is direct from Lemma 4.2.).

2) |ﬂU€R; Fo| > kforalli = 1,...,d. (Direct from
Lemma 4.3 and the facts that D is a 0-MORDP solution,
and R} = U,egp, No(v).).

3) D’ is minimum size.

(We will prove this by contradiction. We will suppose
that there is solution D" to p-MORDP that has size less
than D’, and will show that from this, we can construct
a 0-MORDP decomposition D" for the original problem
of size smaller than D with the property |, cHn, Fo| >
k. This is a contradiction, since D was a decomposition
of minimum size with that property.

Suppose D" = {RY,..., R}} is a decomposition for
the original p-overlapping problem, such that b < ¢ and
|ﬂU€RZ,}Z,| > kforalli =1,...,h.

Let D" = {R"y,...,R",}, where R = {v € R/ :

N,(v) C R/} foralli = 1,...,h. By Lemma 4.1, we

know that D" is a 0-overlapping decomposition of V/,

and by Lemma 4.3, we can affirm that [, ¢ 7 Fy >
Noerr Fol 2 )

O

The transformation applied in Theorem 4.1 from a p-over-

lapping to a 0-overlapping solution effectively shrinks the re-

gions of D by p, and reduces the visibility set of each vertex

v to correspond to only those features that are visible over the
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U = {A B,C,D}
S = {{4,B},{C}.
{A, D}.{C,D}}
Fig. 2. Instance of the MSCP.

entire neighborhood N, (v) of v.2 Theorem 4.2 assumes that the
collection of visibility sets F input to 0-MORDP is defined by
a reduction of the p-overlapping instance of the problem to a
0-overlapping instance, using the transformation described in
Theorem 4.1.

A. 0O-MORDP is NP-Complete

We will now show that -MORDP is NP-complete. The proof
is by reduction from the minimum set cover problem (MSCP).

Definition 4.1: Given a set U, and a set of subsets S =
{S1,...,Sm} of U, the MSCP consists of finding a minimum
set C' C S such that each element of U is covered at least once,
ie,Us,ccSi =U.

Fig. 2 presents an instance of the MSCP. The optimal solution
for this instance is C' = {{A4, B},{C, D}} and, in fact, this
solution is unique. An instance (U, S,r) of the set cover (SC)
decision problem, where 7 is an integer, consists of determining
if there is a SC of U, by elements of S, of size at most . The
decision version of SCP was proven to be NP-complete by Karp
[39], with the size of the problem measured in terms of |S|.

Theorem 4.3: The decision problem (0-ORDP,d) is
NP-complete.

Proof: Tt is clear that O-MORDP is in NP, i.e.,
given a world instance (G = (V,E),F,{F,}vev) and
D = {Ry,..., Ry}, it can be verified in time polynomial in
max(|V],|F|) if D is a p-overlapping decomposition of V,
such that Vi : [ (),c g, Fol > k. We now show that any instance
of SCP can be reduced to an instance of 0-ORDP in time
polynomial in |V|. Given an instance (U, S = {S1,...,Smn})
of the MSCP, we construct a 0-ORDP for the world instance
(G = (V,E), F {F,}vev) in the following way:

* letv* be anelementnotin U;then V = U U {v*};

e FE = {(u,v*) : u € U} (Note that the graph G thus

generated is planar);

s F={f1,..., fm} where f; = 5; U {v*};
s Fo={feF:vef}
e k=1

The introduction of the dummy vertex v* will be used in the
proof to ensure that elements of U that belong to the same subset
S; can be part of the same region in the decomposition, by virtue
of their mutual connection to v*. Each visibility set F,, in the
transformed problem instance corresponds to a list of the sets
S; in the SCP instance that element v is a member of.

Now we show that from a solution to 0-ORDP of size d, we
can build a SC of size d. Let D = {R;, ..., R;} be a solution

’ ’

to the transformed O-ORDP instance, i.e.,
1) R; C Visaregion, for:i =1,...,d;

2) U1gi§d R =V,
3) [Nyer, Fol 2 k=1fori=1,...,d.

2Strictly speaking, the region reduction is impervious to boundary effects at
the boundary of G, due to the definition of N, (v).
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Claim: C = {Cy,...,Cy}, with C; = ﬁrStlﬂﬂf(ﬂueRi
Fo») — {v*}, is a SC for the original problem, where first;c., (A4)
returns the first element in lexicographical order from the
nonempty set A. (For each C;, the choice of an element f
from (1, r, Fv is arbitrary in that any such f yields a valid
solution.) Note that C; is well-defined, since | (), R, Fol > 1.

Proof: We must show the following.
) Vi=1,...,d:C; € S:
From the definition of C;, we can affirm that (37):
[1<j<mandC; = f; —{v*}].Hence,C; = S; € S.
2) Ulgigd CZ =U:
From the definition of F,,

( Fo= ({feF:vef}

vER; vER;
={feF:R;Cf}.

Therefore, from the definition of C;
C; :ﬁrstlez{f eEF:R; C f} — {U*}
=V=J rc |J Gu{uicv

1<i<d 1<i<d
= |J Giu{v}=V
1<i<d
= |J a=v-{v}=U.
1<i<d

Finally, we have to show that if there is a SC of size d, then
there is a decomposition of size d for the 0-ORDP. Let C’ =
{C1,...,C%} be a SC for the original SCP instance.

Claim: D" = {R},..., R}, where R, = C. U {v*},is a
0-overlapping region decomposition such that | (], R Fol > 1.

Proof: We must show the following.
1) Each R, C V is a region:?
Vi:1 <i<d,since C; C U,then R, = CIU{v*} C
V.
R; is a region because v* € R; and, by the definition
of the graph G, v* is connected to all other nodes in R;.
2) U1nggd R, =V:

U Ri= | ciufp}=Uu{v} =V

1<i<d 1<i<d
D yer Fol 2 1
C'"is a SC

=Vi:1<i<d:CleS

=R, =5;U{v*}=f;€F
—1<|{feF: R CJ}

=N {feFveft=|) Al
'UGR; ’UGR;
(]

3Recall that a region corresponds to a subset R of vertices in V', for which a
path exists between any two vertices in R that lies entirely within R.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

Input: world (G = (V, E), F,{Fv}vev)
Output: decomposition D

1. U={veV:|F|>k},D=0

2: while U # 0 do

3:  Select v € U (See text)

4: R={v}

5 repeat

6: W ={ue{Ni(v):v€ R} - R:|FuN[NyerFoll >k}
7 if W # 0 then

8 if WNU # 0 then

9: W:=WwnU

10: end if

11: U = arg maxXyew | Fw N [DUER]——“”
12: R=RU{u}

13: end if

14:  until W =0

15: U=U-R

16: D = D U{R} (See Section V-E)
17: end while

Fig. 3. Algorithm A.x.

V. SEARCHING FOR AN APPROXIMATE SOLUTION

The previous section established the intractability of our
problem. Fortunately, the full power of an optimal decompo-
sition is not necessary in practice, for a decomposition with
a small number of regions is sufficient for practical purposes.
We therefore developed and tested six different greedy ap-
proximation algorithms, divided into two classes, to realize the
decomposition.

A. Limitations in the Real World

In real-world visibility data, there are usually sampled poses
at which the count of visible features is less than the required
number k. This is generally the case for poses that lie close to
walls and object boundaries, as well as for areas that are located
far from any visible object, and are, therefore, beyond the vis-
ibility range of most features. For this reason, the set of poses
that should be decomposed into regions has to include only the
k-coverable poses, i.e., those sampled poses whose visibility-set
sizes are at least k.

B. Growing Regions From Seeds

The A.x class of algorithms decomposes pose space by
greedily growing new regions from poses that are selected
according to three different criteria. Once a new region has
been started, each growth step consists of adding the pose in the
vicinity of the region that has the largest set of visible features
in common with the region. This growth is continued until
adding a new pose would cause that region’s visibility set to
have a cardinality less than k.

The pseudocode of this class of algorithms is shown in Fig. 3.
Algorithms A.1, A.2, and A.3 implement each of three different
criteria for selecting the pose from which a new region is grown.
These three algorithms differ only in the implementation of line
3 (Fig. 3).

* A.1 selects the pose v € U at which the least number of

features is visible, i.e., v = arg min, ey | Fu|-

* A.2 selects the pose v € U at which the greatest number of

features is visible, i.e., v = arg max, ey |Ful-

¢ A.3 randomly selects a pose v € U.

In cases of ties in line 3, they are broken randomly.



SALA et al.: LANDMARK SELECTION FOR VISION-BASED NAVIGATION

The set U, which is initialized in line 1 of the algorithm, con-
tains the k-coverable poses which are still unassigned to some
region. The set D that will contain the regions in the achieved
decomposition is also initialized to be empty. The main loop
starts in line 2, and is executed while there are unassigned poses.
In lines 3 and 4, a pose v is selected from U according to the cri-
teria given above, and a new region R containing only v is cre-
ated. The loop that starts in line 5 adds neighboring poses to the
region R, until the addition of a new pose would cause the set of
features commonly visible in the region to have cardinality less
than k. An iteration of this loop is realized in the following way.
In line 6, the set W is formed by all poses u in the vicinity of
the region R (i.e., the set of poses not in R that are at distance
exactly one from a pose in R), such that u, together with the
poses in R commonly see at least k features.

In lines 8 through 10, if W contains unassigned poses, then
W is restricted to those poses. Since the region R is going to
grow with a pose selected from W, this step is intended to give
priority to the growth of R with poses that still have not been
assigned to any other region. In lines 11 and 12, the pose from
W, that together with the poses in R commonly sees the max-
imum number of features, is added to R. In case of a tie, it is
broken randomly. Finally, in lines 15 and 16, the poses in R are
removed from the set of unassigned poses U, and the new region
R is added to the decomposition set D.

C. Shrinking Regions Until k Features are Visible

Algorithms B.x and C take an incremental approach to
defining the £ features, starting with a large region that “sees”
one feature, and iteratively shrinking the region as additional
features (up to k) are added. The resulting region is added to
the decomposition, a new region is started, and the process
continued until the world is covered. These algorithms select
as a new region the set of poses from which the most widely
visible feature, taken from a set F, is seen among the poses that
are not yet assigned to a region. Algorithms B.x and C differ in
the criteria by which F is defined, as shown in Figs. 4 and 5,
respectively. In the case of algorithm B.x, F is just the set of all
features, while algorithm C systematically selects as F the set
of features commonly visible in a circular area centered at each
pose v € V. If the number of unassigned poses in the circular
area is less than a certain fraction « of the size of the circular
area, or the size of F is less than k, then no further processing
is performed for pose v, and the next pose is processed.

The class B.x comprises two algorithms, B.1 and B.2, that
differ only in their treatment of the decomposition D after
adding to it a new region R (line 12). While Algorithm B.1
leaves D as it is, Algorithm B.2 greedily eliminates regions
from D as long as the total number of poses that become unas-
signed, after the regions are removed from D), is less than the
number of cells that the recently added region R has covered
but were unassigned before.# This discarding rule is adapted
from the algorithm “Altgreedy,” appearing in [40], where it is
empirically shown to achieve very good approximation results
for the SC problem.

“4Notice that this discarding rule ensures that the number of poses assigned
to regions strictly increases with each iteration, so that the algorithm always
terminates.
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Input: world (G = (V,E), F,{Fuv}vev)

Output: decomposition D

1: U={veV:|F|>k},D=0

2: while U # 0 do

. R=UL=0

fori=1to k do
f=argmaxse(p_r) {vE€ R: ¢ € Fu}l
R={veR:feF,}
L=Lu{f}

end for

R={veV:LCF}

10: U=U-R

11: D = D U{R} (See Section V-E)

12:  Purge D (See text)

13: end while

Fig. 4. Algorithm B.x.

Input: world (G = (V, E), F,{Fv}vev)

Output: decomposition D

1: U={veV:|F| >2k},D=0

2 r=max{p € N: {u € U: |Nyen, @ynv Fol =k} > 5}
3: forallv € V do

4: C=N,(v)NU
) f:muGC]:u
6: if ‘N‘Cﬁ > a and |F| > k then

7: R=UL=0

8: for i =1 to k do

9 f=argmaxger_ry {v € R: ¢ € Fu}

10: R={veR:feF,}
11: L=LuU{f}
12: end for
13: R={veV:LCF,}
14: U=U-R
15: D = D U{R} (See Section V-E)
16:  end if
17: end for
Fig. 5. Algorithm C.

In line 1 of Algorithm B.x, the sets U and D are initialized
as in Algorithm A.x. The main loop starts in line 2, and it is
executed while there are unassigned poses. In line 3, a new re-
gion R is initialized, containing all unassigned poses, and the
set L, which will contain features that all poses in the region
commonly see, is initialized to be empty. Each iteration of the
for-loop in lines 4-8 greedily selects the feature f not in L that
is most widely visible in the region R, shrinks R to be formed
only by those poses, and extends L to include f. At the exit of
the for-loop, which is executed k times, R contains at least one
pose (since R entered the loop containing k-coverable poses),
and the set L contains the k features that greedily decreased the
least the size of the region R. In line 9, R is set to be the set
of all poses (not only the unassigned ones) that see at least the
k features in L. Finally, in lines 10 and 11, the poses in R are
removed from the set of unassigned poses U, and the region R
is added to the decomposition D.

Algorithm C, in line 1, initializes the set of unassigned poses
U and the decomposition set D in the same way that Algorithms
A.x and B.x do. In line 2, the variable r is assigned the maximum
natural number such that at least half of the k-coverable poses
have an r- neighborhood, such that the k-coverable poses of the
neighborhood commonly see at least k features. The main loop
of this algorithm starts in line 3, and is executed for every pose
v € V. In line 4, C is assigned the set of unassigned poses in
the r-neighborhood of v, and in line 5, F is assigned the set
of features commonly visible in all poses of C. The condition
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verified in line 6 requires the proportion of unassigned poses
in the r-neighborhood of the current pose v to be greater than
or equal to a constant « (defined by the user), and the number
of features commonly visible from all unassigned poses in the
r-neighborhood of v to be at least k. If this condition is true,
then the process continues in a way similar to lines 3-11 of
Algorithm B.x. A for-loop greedily select the & “most visible
features” from the set of unassigned poses, and finally, a region
containing all poses seeing those & features is created. The only
difference is in the fact that in the for-loop of this algorithm,
the features are greedily selected from the set 7 — L, while in
Algorithm B.x, such features are selected from F' — L. With this
difference, Algorithm C ensures that the for-loop will exit with a
region R that has a minimum number (which depends on 7 and
«) of newly assigned poses that are in N,.(v). This algorithm
may terminate leaving some poses unassigned to a region. A
process (not shown in the pseudocode) is therefore applied to
cover those areas. Such a process is equivalent to Algorithm B.1,
but with line 1 making U equal to the set of unassigned poses.

Algorithms B.x and C are based on the assumption that the
set of poses from which each feature is visible form a connected
region, and that the intersection of such feature-visibility areas
is also a connected region. This assumption is true if all feature-
visibility areas are simple and convex. In our experiments with
real data, we have observed that the feature-visibility regions are
not always convex or connected, and that they sometimes have
some small holes. Since the number of extracted features is quite
large, we can afford to exclude from the decomposition process
those features with significant holes in their visibility regions.
Visibility regions with many concavities can also be trimmed
to the set of poses that have a more or less convex shape. Also,
if a visibility region has more than one connected component,
each component of significant size can be considered to be the
visibility region of a different feature.

D. Elimination of Redundant Regions

All algorithms, except B.2, can terminate with a solution that
is not minimal. Redundancy is, therefore, eliminated from their
solutions by discarding regions one by one until a minimal solu-
tion is obtained. This process greedily selects for elimination the
region R from the solution D with the largest minimum-overlap-
ping-count w value, where w = min{[{R’ € D : v € R'}| :
v € R}, i.e., itis the minimum number of regions that overlap
at a pose contained in the region. The worst-case running-time
complexity of Algorithm A.x is bounded by O(|V|?|F|), while
Algorithms B.x and C are bounded by O(k|V|?|F|).

E. Relaxing the Requirement for a Complete Decomposition

A decomposition that tries to cover all k-coverable poses may
include a large number of regions in total, since many regions
will serve only to cover small “holes” that could not be other-
wise covered by larger regions. These holes generally lie in areas
for which the size of the visibility set is very close to k, leaving
very few features to choose from. In order to avoid the inclusion
of regions that are only covering small holes, our implementa-
tions of the algorithms add a region to the decomposition only
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TABLE 1
PARAMETERS OF A WORLD

Component Parameters

Sides count

Vertex radius

Total obstacles count
Sides count

Vertex radius

Total features count
Visibility angular extent
o Visibility range

Perimeter

Obstacles

Features

if its number of otherwise uncovered poses is greater than a cer-
tain value 0.5

VI. RESULTS

We performed experiments on both synthetic and real visi-
bility data. Synthetic data was produced using a simulator that
randomly generates worlds, given a mixture of probability dis-
tributions for each of the defining parameters of the world (see
Table I). A world consists of a 2-D top view of the pose space de-
fined by a polygon, with internal polygonal obstacles and a col-
lection of features on the polygons (both external and internal).
Each feature is defined by two parameters, an angle (visibility
angle extent), and a range of visibility (visibility range), deter-
mining the span of the area on the floor from which the feature
is visible. An example of a randomly generated world and the
visibility area of some of its features is illustrated in Fig. 6.

A. Decomposition of Synthetic Worlds

Independent tests of the algorithms on synthetic data were
performed for four different world settings. The settings com-
bined different feature-visibility properties with different shape
complexities for the world and obstacle boundaries. Two types
of features were used, having visibility ranges N (0.65,0.2)
to N (12.5,1) m, with an angular range A (25,3) degrees for
Type 1, and N(0.65,0.2) to N(17.5,2) m with an angular
range N (45, 4) degrees for Type 2 (where N (1, o) is normally
distributed with mean j and variance o?). Two classes of
shapes were tested for the world and obstacles: irregular and
rectangular. For the case of irregular worlds, the number of
sides of its perimeter was generated from the mixture dis-
tribution {U(4,4) with p = 0.1; N(5,0.5) with p = 0.45;
N(7,2) with p = 0.45]}, and the number of obstacles from the
distribution {¢/(5,9) with p = 0.5; N'(8,2) with p = 0.5}. The
number of obstacles in each rectangular world was generated
from the mixture distribution {{/(6,9) with p = 0.5; N'(10,2)
with p = 0.5}. The generated worlds had an average diameter
of 40 m, and feature visibility was sampled in pose space at
points spaced at 50-cm intervals.

The parameters used in the experiments were overlapping
p = 1, and features commonly visible per region k = 4. (Basri
and Rivlin [5] showed that reliable localization can be accom-
plished using their linear combination of model views method
with as few as three point correspondences between the current

5The presence of a few small holes does not prevent reliable navigation. In
general, whenever the robot is at a point for which the number of visible features
is less than k&, advancing a short distance in most directions will get it to a point
that is assigned to some region.
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Fig.6. Randomly generated world. The green polygon defines the perimeter of
the world. The blue polygons in the interior define the boundaries of obstacles.
The small red circles on the polygons are the features. As an illustration, the
visibility areas of selected features are shown as colored regions.
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Fig. 7. Results for experiments on synthetic data. The = axes of the charts
represent the four world settings used in the experiments. (Rectangular worlds
were used in settings 1 and 2, while irregularly shaped worlds were used in
settings 3 and 4. Type 1 features were used in settings 1 and 3, and Type 2
features in settings 2 and 4.) The y axes correspond to the average value of 300
experiments for the total number of regions, average number of poses per region,
and total number of used features in each decomposition. From left to right, the
bars at each setting correspond to Algorithms A.1, A.2, A.3,B.1, B.2, and C.

image and two stored model views.) The allowed maximum area
of a hole was set to 0 = 9 poses, i.e., on average, a hole has a
diameter of at most 1.5 m. The parameter « of algorithm C was
set to 0.85.

Fig. 7 shows the results of the experiments on synthetic
data. The performance of each algorithm in the four settings
described above is compared in terms of the number of regions
in the decomposition, the average area of a region in a decom-
position, and the size of the set formed by the union of the k
features commonly visible from each region in a decomposi-
tion. Each value in the figure is the average computed over a set
of 300 randomly generated worlds. The decomposition of each
world took only a few seconds for each algorithm.

Unsurprisingly, the average size of a region is strongly depen-
dent on the stability of its defining features in the pose space.
Also as expected, the total number of regions in each decom-
position increases as the average size of the regions decreases.
Tables II and IIT show the number of regions and the average
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TABLE 1II
AVERAGE NUMBER OF REGIONS IN A DECOMPOSITION
Setting | A.1 A.2 A.3 B.1 B.2 C
1 173.81 | 156.96 | 154.97 | 127.76 | 112.63 | 140.10
2 59.30 | 56.45 | 54.72 | 44.74 | 42.10 | 44.17
3 112.40 | 100.46 | 98.97 82.11 73.08 82.29
4 44.71 40.00 39.11 31.99 30.02 31.11
TABLE 1II
AVERAGE NUMBER OF POSES PER REGION
Setting | A.1 A.2 A.3 B.1 B.2 C
1 70.76 | 76.49 | 75.74 | 80.60 | 80.99 | 71.85
2 253.88 | 276.37 | 272.83 | 281.63 | 279.81 | 251.86
3 69.04 | 74.60 | 73.95 | 78.63 | 79.29 | 71.61
4 215.15 | 237.68 | 234.67 | 244.44 | 241.26 | 218.56
TABLE IV

AVERAGE NUMBER OF FEATURES VISIBLE FROM A POSE

Setting | Average Number
of Features
1 30
2 95
3 41
4 117

number of poses in a region, respectively, achieved by each al-
gorithm and setting, averaged over all the randomly generated
worlds. In the case of worlds with widely visible features (set-
tings 2 and 4), the best results, in terms of minimum number of
regions in the decomposition, are achieved by Algorithm B.2,
closely followed by Algorithms B.1 and C. For the worlds with
less visible features (settings 1 and 3), Algorithm B.2 outper-
formed the rest.

In our simulations, we obtained fairly big regions, as seen in
Table II1. Each pose corresponds to a sampled area of 0.25 m?
(50 cm by 50 cm), so the averages achieved by the best algo-
rithm correspond to region areas of 20 m? for features of Type
1, and 65 m? for features of Type 2. These results were achieved
with only a few features visible per pose, as shown in Table IV,
where the average number of features visible per pose was on the
order of 100. In real image data, however, the number of stable
features visible per pose is on the order of several hundred, and
each feature has a visibility range close to that of our simulated
features of Type 1 (see [1], for example). These findings lead us
to predict that this technique will successfully find decomposi-
tions useful for robot navigation in real environments.

B. Region Decomposition Using Real Data

We took Algorithm B.2, the algorithm that achieved the best
results on synthetic data, and as a further evaluation, we applied
it to real visibility data acquired in a 6 mx3 m grid sampled at
25 cm, (i.e., a lattice of 25x 12 poses), from Room 408, Mc-
Connell Engineering Building, at McGill University (Montreal,
QC, Canada). Images were taken with the robot’s camera ori-
entation fixed in four different orientations at 0°, 90°, 180°, and
270°. Each image’s position was measured using a laser tracker
and a target mounted on the robot [41]. Fig. 8 shows two images
of the employed dataset where the variation in image scale can
be appreciated. The images correspond to poses that are furthest
front and furthest back along the 270° orientation, respectively.
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\/ N |

Examples of the images used in the experiments on visibility data
collected in a 6 mx 3 m space.

Fig. 8.

We extracted SIFT features from the images in the dataset
using Lowe’s implementation [42]. On average, about 420 SIFT
feature vectors were extracted from each image. We then used
the method proposed in [43] to match the feature vectors from
different images, and to discard those that were ambiguous.

As a result of the matching process, an equivalence rela-
tion among the image features was constructed. Specifically,
two features from different images were placed in the same
equivalence class iff they are close to each other in the feature
space. As a result, SIFT features in each class of this partition
correspond to the same scene feature. Less distinctive image
features, i.e., features for which pertinence to a class cannot
be unambiguously decided, were discarded in the following
way. If the distance in the feature space between two image
features belonging to different classes was not significantly
larger than the radius of the classes in the feature space, all
image features belonging to both classes were eliminated. We
also removed those features which were not widely visible,
i.e., visible from a certain minimum number of poses. This
heuristic reduces the complexity of the feature decomposition
by eliminating unstable/ambiguous features.

Following this step, we ended up with a total of 897 classes
of features, each feature visible from at least 16 poses. An ex-
ample of the typical feature-visibility regions that we obtained
after we ran the feature-matching algorithm proposed in [43]
can be seen in Fig. 9. Each of these images represents the visi-
bility region of a particular feature in the 25x 12 pose sampling
grid. Each thumbnail corresponds to the appearance of a 30x 30
pixels context around the feature point extracted from the image
taken at the corresponding grid position in the pose space.

From the set of distinctive features that remained after the
grouping into classes, we only retained those that were widely
and consistently visible, that is, those that were visible from at
least 16 poses, whose visibility regions had few small holes,
and that contained at least one connected component of at least
3x3 poses. The set of poses of each of these feature-visibility
regions was further reduced to a subset that had a fairly convex
shape. This was achieved by first retaining only the poses in the
largest connected component of the visibility region. Secondly,
poses were then removed from this component, which did not
have a neighbor with at least seven out of eight of its neighbor
poses in the region. After these steps, the feature-visibility
regions of each class not only reduced in size, but the total
number of image feature classes decreased to 554, since many of
the visibility regions became empty as a result of the filtering
process. Fig. 10 shows the distribution of feature-visibility
regions by size before and after this filtering process. The
visibility regions, after filtering, had an average size of 33
poses, and a median size of 23.
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()
Fig. 9. Typical examples of feature-visibility regions obtained after executing
the feature-matching algorithm in [43].
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Fig. 10. Distribution of feature-visibility regions by size (i.e., number of
poses).

In Fig. 11, we can see the seven regions obtained in the de-
composition when we used these visibility regions as input to
Algorithm B.2, using parameters £ = 4, p = 0, and 0 =
3. (Each region of the decomposition is shown as a separate
bird’s-eye image of the pose space with the poses of the region
colored black, and the k-coverable area of the pose space col-
ored in a lighter gray.) The decomposition obtained using these
same parameters but with p = 1 has nine regions, as shown in
Fig. 12. The decompositions obtained when using the value 10
for k, and 0 and 1 for p, can be seen in Figs. 13 and 14. As
expected, the decompositions for larger values of k contain a
larger number of regions of smaller size. As an example of this,
notice that some of the regions in Fig. 13 are too small or irreg-
ularly shaped, and therefore do not seem useful for navigation
purposes. It can also be observed in the figures that the 1-over-
lapping decompositions have a larger number of regions than
when no overlapping is required. It is interesting to note that the
regions of the 1-overlapping decompositions are generally more
regularly shaped than their O-overlapping counterparts. This is
a natural consequence of the method used to obtain these types
of decompositions, which imposes a minimum diameter on the
obtained regions. As an example, compare Figs. 13 and 14, in
which the regions in the 1-overlapping decomposition are more
suitable for navigation than those obtained for p = 0.
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Fig. 11. Region decomposition of the 6 mx3 m real world for & = 4 and
p = 0 using Algorithm B.x.
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Fig. 12. Region decomposition of the 6 mx 3 m real world for & = 4 and
p = 1 using Algorithm B.x.

C. Metric Localization Using Region Decomposition

In order to demonstrate the utility of our approach for naviga-
tion, we applied the decompositions computed in the previous
experiment to the problem of robot pose estimation. Specifi-
cally, for each decomposition, we computed a visual map using
the framework described by Sim and Dudek in [11], and sub-
sequently computed localization estimates (specifically, proba-
bility distributions over the pose space) for a set of test observa-
tions. The visual map framework computes generative models
of feature behavior as a function of viewing position, and can
represent a wide variety of feature properties. Please refer to the
cited paper for further details of the representation. The total
number of SIFT features encoded in the visual map for each de-
composition, and its required storage size on disk, are shown in
the second and third columns of Table V. In addition, for base-
line comparison, we computed a visual map using all 554 fea-
tures detected in the undecomposed map.
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Fig. 13. Region decomposition of the 6 mx 3 m real world for & = 10 and
p = 0 using Algorithm B.x.
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Fig. 14. Region decomposition of the 6 mx 3 m real world for & = 10 and
p = 1 using Algorithm B.x.

Once the visual maps were computed, we collected 93 test ob-
servations from random poses distributed over the environment
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TABLE V
VISUAL MAP RESULTS
Decomposition Visual Map Mean Localization Localization
Feature Count | Size (Mb) Error (cms.) Time (secs/pose)

All Features 554 9.2 18.66 25.91

k=10,p=0 72 3.1 29.75 10.56

k=10,p=1 85 3.4 31.34 11.02

k=4,p=0 23 1.5 64.48 5.82

k=4,p=1 28 1.6 50.42 6.72
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Probability distribution of some chosen test poses. The rows correspond to different poses and the columns from left to right correspond to the estimates

computed using all features, (k = 10,p = 0), (k = 10,p = 1), (k =4,p = 0),and (k = 4, p = 1). The = and y axes of each plot span a space of 3m by 6m

(as in Fig. 16).

(these were novel observations that were not used in the training
phase). The ground-truth positions of these observations were
estimated using a robot-mounted target and laser range finder,
as described in [41]. Once these observations were collected,
SIFT features were extracted, and matches were found in each
of the visual maps. Note that in this step, we are reducing the
number of features that could potentially be used to localize the
observation from around 450 (the typical number of SIFT fea-
tures in the image), to approximately &, depending on match
quality and region overlap. In these experiments, k is 4 or 10,
resulting in a compression level of 97.5%—-99%.

Once features matching the map features were detected in the
test images, the image position and SIFT scale of each feature
were then employed to compute probability distributions over
the pose space, indicating the probability of a pose x, given the

observation z
p(w|z) oc p(z|z)p(z)

where p(z) is a uniform prior distribution over the pose space.
The details of computing the observation likelihood p(z|z) are
also provided in [11]. Some example distributions are plotted in
Fig. 15. The absolute localization results are shown in Fig. 16,
plotting each ground-truth pose as an “o0,” connected with a line
segment to the estimated pose, plotted as an “x.” For each map,
the mean distance between the maximum-likelihood pose esti-
mate and ground truth as provided by the laser tracker is shown
in the fourth column of Table V. The mean time employed for
localization of the 93 test poses is shown in the last column of
Table V for each decomposition. These times include the fea-
ture detection and matching.
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In addition to absolute error, we are also interested in the dif-
ference between the decomposition-based pose probability dis-
tributions and the pose distributions based on the complete set of
landmarks. To measure this difference, we computed the KL-di-
vergence between each decomposition distribution and the base-
line distribution. Let Y be the set of all test poses. For each test
pose y € Y, and each decomposition d, the KL-divergence was
computed as

py(x)
4y ()

DZ = Zp;(x) log
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where pZ(m) is the probability distribution of y when computed
using the features of decomposition d, and ¢, () is the proba-
bility distribution of ¥ computed from the complete set of fea-
tures. Notice that there are grid poses x that have value zero in
distribution g, (x) but nonzero in pZ (z), making the divergence
infinity. To deal with this problem, we mixed a uniform distri-
bution with a small weight with each distribution before com-
puting the divergence measure. This is a reasonable regulariza-
tion procedure, because it should never really be the case that a
grid pose has identically zero probability. For each decomposi-
tion d, we computed the mean and standard deviation of the set
of KL-divergences {DZ }yey between the decomposition distri-
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TABLE VI
KL-DIVERGENCE BETWEEN BASELINE AND DECOMPOSITION DISTRIBUTIONS

Decomposition Mean Std. Deviation
of KL-Divergence | of KL-Divergence
k=10,p=0 0.3472 0.1355
k=10,p=1 0.3561 0.1595
k=4.p=0 0.6522 0.2678
k=4,p=1 0.5943 0.2457

bution and the baseline distribution of test poses. These values
are shown in Table VL.

From these results, it can be seen that while there is some
degradation in the quality of the pose estimates as k decreases,
the decomposition-based estimates remain sufficiently robust
to successfully localize. Furthermore, navigation, as well as
improved pose estimates, can be achieved by computing the
p(z|z) using a Markov chain and a model of the robot’s motion
[15], [44]. It should be noted that in this work, initial landmark
selection was based on the tracking stability and viewing range
of the selected features. The localization results presented here
could be improved by adding additional criteria to the decom-
position framework, such as selecting features that provide
improved constraints for localization (for example, selecting
features whose image-domain observations are expected to be
widely separated). The key result of this experiment is that a
high degree of map compression can be achieved with only a
small degradation in the localization performance.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel graph theoretic formulation of the
problem of automatically extracting an optimal set of landmarks
from an environment for visual navigation. Its intractable com-
plexity (which we prove) motivates the need for approximation
algorithms, and we present six such algorithms. To systemati-
cally evaluate them, we first test them on a simulator, where we
can vary the shape of the world, the number and shape of obsta-
cles, the distribution of the features, and the visibility of the fea-
tures. The algorithm that achieved the best results on synthetic
data was then demonstrated on real visibility data. The resulting
decompositions find large regions in the world in which a small
number of features can be tracked to support efficient online
localization. Our formulation and solution of the problem are
general, and can accommodate other classes of image features.

There are a number of extensions to this work for future re-
search:

* integrating the image-collection phase with the re-
gion-decomposition stage into a unique online process
as the robot is exploring its environment, in a view-based
SLAM fashion;

e path planning through decomposition space, minimizing
the number of region transitions in a path;

e extending the proposed framework to detect and cope
with environmental change;

e computing the performance guarantee of our heuristic
methods and providing tight upper bounds on the quality
of our solution compared with those of optimal decom-
positions;
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e studying the use of feature tracking during the image-col-
lection stage to achieve larger areas of visibility for each
feature, since tracking the features between images taken
from adjacent viewpoints allows for tracking small vari-
ations of appearance (which may integrate to large ones
over large areas). Such a framework would require main-
taining equivalence classes of features in the database;

e adding constraints to the algorithms for feature selection
in terms of a quality measure of the feature reliability for
localization.
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