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Abstract In previous work, singular points (or top points)
in the scale space representation of generic images have
proven valuable for image matching. In this paper, we pro-
pose a novel construction that encodes the scale space de-
scription of top points in the form of a directed acyclic
graph. This representation allows us to utilize coarse-to-
fine graph matching algorithms for comparing images repre-
sented in terms of top point configurations instead of using
solely the top points and their features in a point matching
algorithm, as was done previously. The nodes of the graph
represent the critical paths together with their top points.
The edge set captures the neighborhood distribution of ver-
tices in scale space, and is constructed through a hierarchi-
cal tessellation of scale space using a Delaunay triangula-
tion of the top points. We present a coarse-to-fine many-to-
many matching algorithm for comparing such graph-based
representations. The algorithm is based on a metric-tree rep-
resentation of labeled graphs and their low-distortion em-
beddings into normed vector spaces via spherical encoding.
This is a two-step transformation that reduces the match-
ing problem to that of computing a distribution-based dis-
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tance measure between two such embeddings. To evaluate
the quality of our representation, four sets of experiments
are performed. First, the stability of this representation un-
der Gaussian noise of increasing magnitude is examined.
Second, a series of recognition experiments is run on a face
database. Third, a set of clutter and occlusion experiments
is performed to measure the robustness of the algorithm.
Fourth, the algorithm is compared to a leading interest point-
based framework in an object recognition experiment.

Keywords Top points · Catastrophe theory · Scale space ·
Graph matching · Object recognition

1 Introduction

Previous research has shown that top points (singular points
in the scale space representation of generic images)1 have
proven to be valuable sparse image descriptors that can be
used for image reconstruction [26, 44] and image matching
[1, 27, 48]. In our previous work, images were compared
using a point matching scheme which took into account the
positions, scales, and differential properties of correspond-
ing top points [3, 4, 26, 27, 47]. The underlying matching
framework was based on the Earth Mover’s Distance [19],
a powerful, point matching framework. However, treating
the points as an unstructured collection ignores the salient
neighborhood relations that may exist within a given scale or
across scales. Grouping certain top points together explicitly
encodes the neighborhood structure of a point, effectively
enriching the information encoded at a point—information

1The terminology is reminiscent of the 1D case, in which only annihi-
lations occur generically.
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that can be exploited during both indexing [55] and match-
ing [6, 57].

In this paper, we take an unstructured set of top points
and impose a neighborhood structure on them. Similar to
the work of Lifshitz and Pizer [32], we will encode the scale
space structure of a set of top points in a directed acyclic
graph (DAG). Specifically, we combine the position-based
grouping of the top points provided by a Delaunay trian-
gulation with the scale space ordering of the top points to
yield a directed acyclic graph. This new representation al-
lows us to utilize powerful graph matching algorithms to
compare images represented in terms of top point configu-
rations, rather than using point matching algorithms to com-
pare sets of isolated top points. Specifically, we draw on our
recent work in many-to-many graph matching [12, 13, 28],
which reduces the matching problem to that of computing a
distribution-based distance measure between embeddings of
labeled graphs. Moreover, we employ the matching frame-
work in a coarse-to-fine manner, using coarse-level similar-
ity to select candidate models for further (fine-level) analy-
sis.

Following a review of related work, we describe our new
construction by first elaborating on those basics of catastro-
phe theory required to introduce the concept of a top point in
Sect. 3. Next, we formally define a top point, and introduce
a measure for its stability that will be used to prune unsta-
ble top points. Section 5 describes the construction of the
DAG through a Delaunay triangulation scheme. Section 6
reviews our many-to-many DAG matching algorithm, and
describes how it will be applied in a coarse-to-fine search
of the database. In the first experiment, we examine the sta-
bility of the framework under Gaussian noise of increasing
magnitude applied to the original images. In the second ex-
periment, we examine the invariance of the framework to
within-class image deformation. Finally, in the third experi-
ment, we examine the robustness of the framework to clutter
and occlusion.

2 Related Work

There has been considerable effort devoted to multiscale im-
age analysis. One of the earliest studies was due to Crowley
and Parker [10], who proposed a representation framework
in which peaks and ridges were identified in scale space
and encoded in a tree. The resulting trees were then used
to match images at different scales. Given a query and large
database, a linear search was used to match the query tree to
each database tree in order to determine the closest model to
the query. In contrast, our matching algorithm achieves sub-
linear search complexity through a coarse-to-fine search of
the database. Moreover, our matcher accounts for the com-
plete topological structure of a directed acyclic graph, as op-
posed to the peak paths of a tree.

Reconstruction of one-dimensional and two-dimensional
signals has received significant interest from the scale space
community. Hummel and Moniot [20] reconstructed signals
and images from zero crossings in scale space. Johansen
et al. [23] showed that it is possible to reconstruct a one-
dimensional signal from its top points. Specifically, one-
dimensional signals can be reconstructed using the locations
of the top points for zero-crossing curves. To generalize one-
dimensional signals to two-dimensional signals (images),
one may replace zero-crossing curves by zero-crossing sur-
faces. As an alternative, the set of extrema and saddles for
all values of the scale parameter (or, curves) may be taken
into account. Johansen [22] studied the behavior of curves in
scale space consisting of critical points, and showed how the
partial derivatives at a top point could be used for top point
classification. In contrast to the model proposed in this pa-
per, Johansen’s approach ignores the salient neighborhood
structure of a top point, which can be useful for matching.

Previous work on scale-invariant detectors searches for
local extrema in the 3D scale space representation of an im-
age. After applying a difference of Gaussian filter to the im-
age at different scales, a point is selected as a feature point
if it is a local extremum (in both space and scale) and its
response is greater than a predefined threshold. This idea
originated in the work of Witkin [61] and Koenderink [29].
Existing techniques based on this paradigm differ in the dif-
ferential expressions used for the construction of the scale
space representation. The reader is referred to [43] for a
comparison of state of the art affine region detectors.

A multiscale representation does not state what image
structures are significant, what relations may exist between
the structures, or what scales are appropriate for extract-
ing the features. To address these problems, Lindeberg [34]
studied the behavior of image structures over scales, mea-
sured the saliency of image structures from stability proper-
ties, and extracted relations between structures at different
scales. In related work, Lindeberg utilized the Laplacian-
of-Gaussian to search for 3D maxima of scale-normalized
differential operators [37]. By successively smoothing the
image with Gaussian kernels of different size, a scale space
representation of the image was constructed. Additionally,
Lindeberg [36] also presented a framework for edge and
ridge detection by defining the concept of these features as
one-dimensional curves in the three-dimensional scale space
representation of the image. These approaches were empir-
ically shown to be effective for selecting regions of interest
with associated scale levels in a broad scope of image do-
mains. As exemplified by our face recognition experiments
on a publicly available face database, a set of occlusion ex-
periments using real images of real objects, and a set of ob-
ject retrieval experiments on a publicly available database,
the proposed approach is also shown to be applicable to var-
ious image domains.
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The Laplacian-of-Gaussian was shown to be suitable for
automatic scale selection of image structures [35, 37]. How-
ever, the main disadvantage of this function is that it cor-
responds not only to blobs but to high gradients in one di-
rection as well. As a result, localization of features may not
be very accurate. One way of addressing this problem was
given by Dufournoud et al. [15] who presented the scale-
adapted Harris operator. Using this operator, a scale space
is created in which local 3D maxima are selected as salient
points. The scale-adapted Harris operator separates feature
detection from scale selection. However, this operator rarely
finds a maximum over scales, resulting in too few points
with which to represent the image. To overcome this prob-
lem, Mikolajczyk and Schmid [42] merge the scale adapted
Harris corner detector with the Laplacian-based scale selec-
tion. The resulting detector, called the Harris–Laplace de-
tector, is extended to deal with affine transformations.

Lowe [40] proposed a framework transforming an im-
age into a large collection of image feature vectors, which
are largely invariant to changes in scale, illumination, and
local affine distortions. The framework is based on local
3D extrema in the scale space pyramid obtained by differ-
ence of Gaussian filters. The algorithm uses a large num-
ber of dimensions (128) to encode features. Bay et al. [5]
recently developed a scale and rotation invariant interest
point detector and descriptor named speeded up robust fea-
tures (SURF), which builds on the strengths of existing de-
tectors and descriptors. Specifically, the SURF detector is
based on the Hessian matrix, and uses Haar wavelet re-
sponses to construct the descriptor. To reduce the time re-
quired for feature computation and matching, this technique
uses a lower dimensional feature descriptor (64). Given an
image, our framework, on the other hand, uses only seven
unary features of a point (x, y, t coordinates, dxx, dyy, dxy

second order derivatives at the point, and the stability) and
adds hierarchical relational information to the representa-
tion. Despite the weak encoding of a point’s feature, exper-
imental evaluation of the framework, including a compari-
son with [40] in an object recognition experiment, demon-
strates the power of explicitly encoding the relational infor-
mation.

Matas et al. [41] introduced the maximally stable ex-
tremal regions, which are closed under the affine transforma-
tion of image coordinates and invariant to affine transforma-
tion of intensity. The authors show that the maximally sta-
ble extremal regions can produce large numbers of match-
ing features with good stability. Kadir and Brady [24] pro-
posed a different multiscale algorithm for the selection of
salient regions of an image. The algorithm detects scale lo-
calized features with high entropy. Since the algorithm treats
the scale as isotropic, it results in blob-like features. These
techniques do not encode the relational information for the
interest points. Similar to some existing approaches, such as

Fig. 1 The generic catastrophes in isotropic scale space. Left: an an-
nihilation event. Right: a creation event. A positive charge ⊕ denotes
an extremum, a negative charge � denotes a saddle, � indicates the
singular point

[7, 53, 54, 56], one of the benefits of our framework comes
from employing such information in the framework.

3 Catastrophe Theory

Critical points are points at any fixed scale in which the gra-
dient vanishes, i.e., ∇u = 0. The study of how these critical
points change as certain control parameters change is called
catastrophe theory [49, 58, 59]. A Morse critical point will
move along a critical path when a control parameter is con-
tinuously varied. In principle, the single control parameter
can be identified as the scale of the blurring filter. The only
generic morsifications in Gaussian scale space are creations
and annihilations of pairs of Morse hypersaddles of oppo-
site Hessian signature2 [11, 17]. An example of this is given
in Fig. 1.

The movement of critical points through scale, together
with their annihilations and creations, forms critical paths
in scale space. In this article, we restrict ourselves to
generic (non-symmetrical) 2D images, but the theory is eas-
ily adapted to higher dimensions. In the 2D case, the only
generic morsification is an annihilation or creation where a
saddle point and an extremum point meet [30, 33]. Critical
paths in 2D therefore consist of an extremum branch, that
describes the movement of an extremum through scale, and
a saddle branch, that describes the movement of the sad-
dle with which the extremum annihilates. Note that under
mild conditions only one extremum branch continues up to
infinite scale [38]. In Fig. 2, the critical paths and their top
points are shown for a picture of a face.

4 Top Points

The points at which creation and annihilation events take
place are often referred to as top points. A top point is a

2The Hessian signature is the sign of the determinant evaluated at the
location of the critical point.
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Fig. 2 Critical paths and top points of a face

critical point at which the determinant of the Hessian de-
generates:

{∇u = 0

det(H) = 0.
(1)

An easy way to find these top points is by means of zero-
crossings in scale space. This involves derivatives up to sec-
ond order and yields sub-pixel results. Other, more elaborate
methods can be used to find or refine the top point positions;
for details, the reader is referred to [17, 22, 23].

It is obvious that the positions of extrema at very fine
scales are sensitive to noise. This, in most cases, is not a
problem. Most of these extrema are blurred away at fine
scales and won’t affect our matching scheme at slightly
coarser scales. However, problems do arise in areas in the
image that consist of almost constant intensity. One can
imagine that the positions of the extrema (and thus the crit-
ical paths and top points) are very sensitive to small per-
turbations in these areas. These unstable critical paths and
top points can continue up to very high scales since there is
no structure in their vicinity to interact with. To account for
these unstable top points, we need to have a measure of sta-
bility, so that we can either give unstable points a low weight
in our matching scheme, or disregard them completely.

A top point is more stable in an area with a lot of struc-
ture. The amount of structure contained in a spatial area
around a top point can be quantified by the total quadratic
variation (TQV) norm over that area:

TQV(�)
def= σ 2

∫
�

‖∇u(x)‖2dV∫
�

dV
. (2)

We calculate the TQV norm in a circular area with radius
λσ around a top point at position (xc, tc). Note that the size

Fig. 3 Spatial projection of critical paths of a MR brain scan image.
The paths are filtered by thresholding the stability norm of their top
points. Most instabilities occur in flat regions, as expected

of the circle depends on the scale σ . The integration area of
the TQV norm � is defined by:

� : ‖x − xc‖2 ≤ λ2σ 2. (3)

By using a spatial Taylor series expansion around the con-
sidered top point, and taking into account that the first order
spatial derivatives at this point are zero, we can simplify the
TQV-norm (2) to what we refer to as the differential TQV-
norm by the following limiting procedure [48]:

tqv
def= lim

λ→0

4

π

1

λ2
TQV(λ) = σ 4Tr(H 2). (4)

The proportionality factor 4
π

is irrelevant for our purposes
and has been chosen for mere convenience. The normal-
ization factor 1

λ2 is needed prior to evaluation of the limit

since TQV(λ) = O(λ2). Equation (4) has been referred to
by Koenderink as deviation from flatness, which can indeed
be seen to be the differential counterpart of (2). It enables
us to calculate a stability measure for a top point locally by
using only its second order derivatives. Alternative stabil-
ity measures may also be used here, e.g., [2]. This stability
norm can be used to weigh the importance of top points in
our matching scheme, or to remove any unstable top points
by thresholding them on their stability value. The latter is
demonstrated in Fig. 3.

5 Construction of the Graph

The goal of our construction is two-fold. First, we want to
encode the neighborhood structure of a set of points, explic-
itly relating nearby points to each other in a way that is in-
variant to minor perturbations in point location. Moreover,
when local neighborhood structure does indeed change, it
is essential that such changes will not affect the encoded
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Fig. 4 Visualization of the
DAG construction algorithm.
Left: the Delaunay
triangulations at the scales of the
nodes. Right: the resulting DAG
(edge directions not shown)

structure elsewhere in the graph. The Delaunay triangula-
tion imposes a position-based neighborhood structure with
exactly these properties [50]. It represents a triangulation of
the points which is equivalent to the nerve of the cells in
a Voronoi tessellation, i.e., that triangulation of the convex
hull of the points in the diagram in which every circumcir-
cle of a triangle is an empty interior [45]. The directed edge
set of our resulting graph will be based on the edges of the
triangulation. Our second goal is to capture the scale space
ordering of the points to yield a directed acyclic graph, with
coarser scale top points directed to nearby finer scale top
points.

The first step in constructing our graph G is the detection
of top points and critical paths using [25]. The root of G,
denoted as v1, will correspond to the single critical path that
continues up to infinity; note that there is no top point as-
sociated with this critical path, but simply its position at the
coarsest scale. All other nodes in G, denoted as v2, . . . , vn,
correspond to the detected top points and their correspond-
ing critical paths. Let σk denote the scale of node vk . The
nodes, v2, . . . , vn, are ordered such that σi > σj , where
i < j .

As we build the Delaunay triangulation of the points, we
will simultaneously construct the DAG. Beginning with the
root, v1, we have a singleton point in our Delaunay triangu-
lation, and a corresponding single node in G. Next, at the
scale corresponding to v2, we project v1’s position down to
v2’s level, and recompute the triangulation. In this case, the
triangulation yields an edge between v1 and v2. Each new
edge in the triangulation yields a new edge in G, directed
from coarser top points to finer top points; in this case, we
add a directed edge in G from v1 to v2. We continue this
process with each new top point, first projecting all previous
top points to the new point’s level, recomputing the trian-
gulation, and using the triangulation to define new directed

edges in G. A summary of this procedure is presented in
Algorithm 1.

Algorithm 1 Top point graph construction procedure
1: Detect the critical paths.
2: Extract the top points from the critical paths.
3: Label the extremum path continuing up to infinity as v1.
4: Label the rest of the nodes (critical paths, together with

their top points) according to the scale of their top points
from high scale to low as v2, . . . , vn.

5: For i = 2 to n evaluate node vi :
6: Project the previous extrema into the scale of the con-

sidered node vi .
7: Calculate the 2D Delaunay triangulation of all the ex-

trema at that scale.
8: All connections to vi in the Delaunay triangulation-

are stored as directed edges in G.

The construction is illustrated for a simple image in
Fig. 4. In the top two frames in the left figure, we show
the transition in the triangulation from v2 (point 2) to v3

(point 3); the root is shown as point 1. In the upper right
frame, the triangulation consists of three edges; correspond-
ingly, G has three edges: (1,2), (1,3), (2,3), where (x, y)

denotes an edge directed from node x to node y. In the lower
left figure, point 4 is added to the triangulation, and the
triangulation recomputed; correspondingly, we add edges
(1,4), (2,4), (3,4) to G (note that (1,2) is no longer in the
triangulation, but remains in G). Finally, in the lower right
frame, point 5 is added, and the triangulation recomputed.
The new edges in the triangulation yield new edges in G:
(2,5), (4,5), (1,5). The right side of Fig. 4 illustrates the
resulting graph (note that the directions of the edges are not
shown). Figure 5 is the result of applying this construction
to the face of Fig. 2.
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Fig. 5 The DAG obtained from applying Algorithm 1 to the critical
paths and top points of a face image

6 Many-to-Many Matching Algorithm

Given a pair of DAGs, our next objective is to compute their
similarity using both vertex and edge attributes. Our match-
ing algorithm is based on the low-distortion embeddings of
labeled graphs into normed vector spaces via spherical cod-
ing [13, 28]. The advantage of this embedding technique
stems from the fact that it prescribes a single vector space
into which both graphs are embedded. In order to achieve
this embedding, we first have to choose a suitable metric for
our graphs, i.e., we must define a distance between any two
vertices. Since we are dealing with a scale space of a 2D im-
age, our distance function should depend on both the scale
of a point and its spatial position in scale space.

Eberly [16] defined such a metric that depends on a pa-
rameter ρ > 0, weighting the relative importance of spatial
and scale values. The metric is given below:

ds2 =
n∑

j=1

dx2
i

σ 2
+ 1

ρ2

dσ 2

σ 2
, (5)

where σ represents the scale of a point and xi is the spatial
position of the point in scale space. After solving the dif-
ferential equations as shown in [60], the distance S between
two points (x1, y1, σ1) and (x2, y2, σ2) in scale space can be

Fig. 6 Computing the minimum amount of work it takes to transform
one distribution (P) into another (Q) by the Earth Mover’s Distance
algorithm

defined as:

S = (r2 − r1)/ρ,

ri = ln(

√
b2
i + 1 − bi), i = 1,2, (6)

bi = σ 2
2 − σ 2

1 − (−1)iρ2R2

2σiρR
, i = 1,2,

where R is the Euclidean distance between (x1, y1) and
(x2, y2).

Embedding graphs into normed vector spaces reduces
the many-to-many matching problem in the graph domain
to that of computing a distribution-based distance measure
between two points sets. To compute such a distance, we
use a variation of the Earth Mover’s Distance (EMD) under
transformation [9]. The EMD approach computes the min-
imum amount of work (defined in terms of displacements
of the masses associated with points) it takes to transform
one distribution into another (Fig. 6). For two given graphs,
the algorithm provides an overall similarity (distance) mea-
sure.

Figure 7 presents an overview of the approach. For a
given image, we first create its DAG according to Sect. 5,
and embed each vertex of the DAG into a vector space
of prescribed dimensionality using a deterministic spherical
coding. Finally, we compute the distance between the two
distributions by the modified Earth Mover’s Distance under
transformation. The dimensionality of the target space has a
direct effect on the quality of the embedding. Specifically, as
the dimensionality of the target space increases, the quality
of the embedding will improve. Still, there exists an asymp-
totic bound beyond which increasing the dimensionality will
no longer improve the quality of the embedding. Details on
the many-to-many matching algorithm can be found in [14].

In the absence of an effective many-to-many graph in-
dexing algorithm, the query graph must be matched to each
database graph in order to determine the closest model to
the query. As the database grows, such a linear search can
become costly. This is further compounded if the sizes of
the graphs also grow, since the many-to-many matching
algorithm takes into consideration all nodes and edges (at
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Fig. 7 Computing similarity
between two given faces

all scales) of two graphs in order to compute the similar-
ity between them. If we are indeed constrained to a lin-
ear search of the database, we can reduce the complexity
of our search task by effectively reducing the complex-
ity of the graphs through a coarse-to-fine search. Specif-
ically, if we assume that a query and a particular model
are dissimilar with respect to their coarser-scale features,
then determining the similarity of their finer-scale fea-
tures is fruitless. Distinguishing between the coarser and
the finer features is facilitated by the hierarchical struc-
ture of the top point directed acyclic graph construc-
tion.

This coarse-to-fine search of the model database effec-
tively represents a breadth-first search. Given a query DAG,
we first match its root (coarsest node) with the root of each
database DAG. The similarities between the query and each
root can be sorted in decreasing similarity. If the difference
in similarity between the top two most similar models (to
the query) is large, the algorithm terminates by selecting the
most similar model, and avoids the complexity of match-
ing the finer scales of that or any other model. However,
if the difference is small, then all models whose similar-
ity exceeds a threshold are considered candidates for fur-
ther examination at finer scales. We add a level (forming
the union of the root plus the new level) to each of the sur-
viving candidates (and to the query) and repeat the proce-
dure. As a new level is added, the contribution of the new
nodes to the distance function is increased relative to the
previously matched nodes, in order to take maximum ad-
vantage of the disambiguating information. This iterative

process of pruning candidates is repeated until a “winner”
emerges.

7 Experiments

To evaluate our construction, we explore the invariance of
the construction to three types of perturbations. The first
is the sensitivity of the construction to noise in the image,
the second is within-class deformation resulting in displace-
ments of top points both within and across scales, and the
third is robustness to clutter and occlusion. We conduct the
first two experiments using a subset of the Olivetti Research
Laboratory face database [46], while the third experiment
contains cluttered, occluded scenes imaged in our labora-
tory. In a fourth set of experiments, our approach is com-
pared to a leading interest point-based framework in an
object recognition experiment using a subset of a publicly
available database.

Invariance of a graph to noise, within-class deformation,
or clutter/occlusion requires a measure of graph distance, so
that the distance between the original and perturbed graphs
can be computed. For the experiments reported in this paper,
we compute this distance using our many-to-many graph
matching algorithm. Note that we have developed a gen-
eral algorithm that is in no way specifically designed for
face recognition. The proposed algorithm is more widely ap-
plicable than dedicated algorithms specifically constructed
for face recognition. Therefore we have not compared our
method to state-of-the-art face recognition algorithms. We
present this experiment only as a proof of concept.
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Fig. 8 Sample faces from 20
people

Fig. 9 Table 1: Matching results of 20 people. The rows represent the queries and the columns represent the database faces (query and database
sets are non-intersecting). Each row represents the matching results for the set of 10 query faces corresponding to a single individual matched
against the entire database. The intensity of the table entries indicates matching results, with black representing maximum similarity between two
faces and white representing minimum similarity. Table 2: Subset of the matching results with the pairwise distances shown. Table 3: Effect of
presence or absence of glasses in the matching for the same person. The results clearly indicate that the graph perturbation due to within-class
deformation, including facial expression changes, illumination change, and the presence/absence of glasses is small compared to the graph distance
between different classes

7.1 Graph Stability under Additive Noise

The face database consists of faces of 20 people with 10
faces per person, for a total of 200 images; each image in the
database is 112 × 92 pixels. The face images are in frontal
view and differ by various factors such as gender, facial
expression, hair style, and presence or absence of glasses.
A representative view of each face is shown in Fig. 8. While
the top-point graphs (DAGs) constructed for the face data-

base have, on average, 75 levels, the coarse-to-fine matching
algorithm converges in the first 30 levels, representing a very
significant reduction in matching complexity.

To test the robustness of our graph construction, we first
examine the stability of our graphs under additive Gaussian
noise at different signal levels applied to the original face
images. For this experiment, the database consists of the
original 200 unperturbed images, while the query set con-
sists of noise-perturbed versions of the database images.
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Specifically, for each of the 200 images in the database, we
create a set of query images by adding 1%, 2%, 4%, 8%,
and 16% of Gaussian noise. Next, we compute the similar-
ity between each query (perturbed database image) and each
image in the database, and score the trial as correct if its dis-
tance to the face from which it was perturbed is minimal
across all database images. This amounts to 40,000 similar-
ity measurements for each noise level, for a total of 200,000
similarity measurements. Our results show that the recogni-
tion rate decreases down to 96.5%, 93%, 87%, 83.5%, and
74% for 1%, 2%, 4%, 8%, and 16% of Gaussian noise, re-
spectively. These results indicate a graceful degradation of
graph structure with increasing noise.

7.2 Graph Stability under Within-Class Variation

To test the stability of the graph construction to within-class
variation (e.g., different views of the same face), we first
group the faces in the database by individual; these will rep-
resent our categories. Next, we remove the first image (face)
from each group and compare it (the query) to all remaining
database images. The image is then put back in the data-
base, and the procedure is repeated with the second image
from each group, etc., until all 10 face images of each of the
20 individuals have been used as a query. If the graph rep-
resentation is invariant to within-class deformation, result-
ing from different viewpoints, illumination conditions, pres-
ence/absence of glasses, etc., then a query from one individ-
ual should match closest to another image from the same in-
dividual, rather than an image from another individual. The
results are summarized in Table 1, Fig. 9.

The magnitudes of the distances are denoted by shades
of gray, with black and white representing the smallest and
largest distances, respectively. Due to symmetry, only the
lower half of distance matrix is presented. Intra-object dis-
tances, shown along the main diagonal, are very close to
zero. In addition, based on the overall matching statistics, we
observed that in all but 6.5% of the experiments, the closest
match selected by our algorithm belonged to the same cate-
gory.

To better understand the differences in the recognition
rates for different people, we randomly selected a subset of
the matching results among three people in the database, as
shown in Table 2, Fig. 9. Here, the (i, j)-th entry shows the
actual distance between face i and face j . It is important to
note that the distance between two faces of the same person
is smaller than that of different people, as is the case for all
query faces. In our experiments, one of our objectives was
to see how various factors, such as the presence or absence
of glasses, affects the matching results for a single person.
Accordingly, we took a set of images from the database of
one person, half with the same factor (with the presence of
glasses), and computed the distances between each image

pair. Our results show that images with the same factors are
more similar to each other than to others. Table 3 of Fig. 9
presents a subset of our results. As can be seen from the ta-
ble, images of the same person with glasses are more similar
than those of the same person with and without glasses. Still,
in terms of categorical matching, the closest face always be-
longs to the same person.

7.3 Graph Stability under Clutter and Occlusion

To demonstrate the framework’s robustness to clutter and
occlusion, we turn to a set of real images of real objects
under occlusion. The database images were obtained by
placing six unoccluded objects, in turn, on a table and tak-
ing their pictures from a single viewpoint. Cluttered query
scenes were generated by arranging one or more database
objects (along with possible non-database objects) in oc-
cluded configurations, such that the viewpoint of any data-
base object in the query scene is similar to that of its data-
base (model) image. Given a query image, the goal is to re-
trieve the database objects that are at least partially visible in
the scene. Table 1 shows the results of matching every query
image (leftmost column) to every database image (topmost
row). The entries in the table reflect distance, with the clos-
est matching database image marked with a box.

Examination of Table 1 reveals that for each query, the
closest matching database object correctly identifies the sin-
gle object in the query that is unoccluded (when one exists).
The exceptions are rows 9 and 12, in which all query objects
are occluded to some degree; in these two cases, the closest
matching object is one of the less-occluded objects. These
results clearly demonstrate the framework’s robustness to
scene clutter. If we examine the second closest matching
object for each query, we find that it represents one of the
occluded objects in the query. And in most cases, the third
closest matching object also represents an occluded object in
the query. These results clearly demonstrate the framework’s
robustness to occlusion. While the top-point graphs (DAGs)
constructed for the database images have, on average, 2600
levels, the coarse-to-fine matching algorithm converges in
the first 500 levels, representing an even more dramatic re-
duction in matching complexity.

7.4 Comparison to Other Approaches

The above experiments have clearly established the frame-
work’s stability under noise, within-class variation, clutter,
and occlusion. In this section, we compare our framework
to SIFT, a leading interest point-based framework presented
in [40]. For the comparison, we use a subset of the Ams-
terdam Library of Object Images (ALOI) [18]. The subset
consists of 5 objects with 36 views per object. In the origi-
nal ALOI database, images of the objects were taken at pose
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Table 1 Occlusion results. The distance between each query and database image is shown in the table. The closest database object for each query
is indicated by a box around its minimum distance

Query Database

183.70 36.86 228.65 364.63 372.83 331.62

201.40 56.23 210.28 344.81 352.97 323.71

250.17 142.13 133.45 184.60 328.78 158.79

120.67 112.43 135.44 78.32 225.91 147.86

157.65 135.27 169.08 203.62 116.50 174.25

163.01 157.20 143.15 209.08 130.71 197.58

150.08 143.28 167.17 170.04 123.27 187.10

213.01 152.17 189.07 167.18 129.76 183.75

172.11 155.18 197.84 181.28 169.80 193.27

185.27 178.58 201.04 192.17 139.26 128.13

216.60 221.81 161.66 246.37 147.15 137.33

178.13 153.10 183.78 112.22 130.57 181.73
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Fig. 10 Sample images from
the Amsterdam library of object
images

intervals of 5 degrees. To provide a greater degree of varia-
tion between query and database image, we removed every
second image from the database and used the remaining im-
age set for our experiment; sample views from each object
are shown in Fig. 10. We follow the same experimental pro-
cedure presented in Sect. 7.2. Specifically, the first shape
(query) is removed from the database and compared to all re-
maining database shapes. The query is then put back in the
database and the procedure repeated for all other database
shapes. This process results in a similarity matrix in which
the entry for the i-th row and the j -th column represents the
similarity between the i-th and j -th shapes from the data-
base. Using this matrix, we examined the top matches to see
how many of the within-category shapes belong to the same
class as the query. Our objective here is to evaluate the re-
trieval performance of each algorithm.

Based on the overall matching statistics, we observe that
in 72.2% and 73.5% of the experiments, the closest match-
ing shape, i.e., the nearest neighbor, retrieved by SIFT and
our algorithm, respectively, belongs to the same class as
the query. In a second experiment, we compute how many
of the shapes in the query’s class appear within the top
n − 1 matches, where n is the size of the query’s class (first
tier [52]). This experiment examines the stability of the rep-
resentation to within-class variation for content-based re-
trieval tasks. Using SIFT, this number is 91.4%, while our
algorithm achieves 94.2%. Finally, we repeat the second ex-
periment but consider the top 2 × n − 1 matches (second
tier [52]). Here our goal is to identify the spread of objects
representing a category with respect to other classes, i.e., we
want to make sure the views are not too widely spread. Both
SIFT and our approach yield %100 recognition rates for this
experiment.

It is important to note that despite using only 7 dimen-
sions to encode our unary features, our framework outper-
forms or achieves comparable rates such as SIFT, in which
128 dimensions are used to encode features. Clearly, the im-
portant hierarchical (relational) information exploited in our
framework has made up for the decrease in unary informa-
tion. One might expect that if we used a higher dimensional
encoding of unary features, even more improvement over
SIFT could be achieved at the expense of greater feature
complexity.

7.5 Discussion

Typical interest point encodings used in some frameworks,
such as [8, 40, 51], are highly specific and can have many di-
mensions (e.g., SIFT has 128 dimensions). With such strong

unary features to minimize feature ambiguity, the need for
relational (e.g., binary) features to help disambiguate unary
features goes down. At the other extreme, classical model-
based recognition frameworks (e.g., [21, 31, 39]) based on
highly ambiguous corner or contour features require strong
relational (typically geometrical) constraints to help disam-
biguate highly ambiguous unary features.

Our experiments are aimed more at this latter end of the
spectrum, in which the dimensionality of our unary fea-
tures is quite low (7), with more emphasis placed on not
only encoding relational information, but encoding it hier-
archically to facilitate coarse-to-fine matching. The power
of the relational encoding reflected in the experiments is
clear, despite the much weaker encoding of a node’s feature.
However, the framework is flexible, for the node specificity
can easily be increased (e.g., replace our 7-dimensional fea-
ture with a 128-dimensional SIFT feature) and the rela-
tional constraints relaxed (i.e., node difference induces a
greater EMD penalty than embedded distance) in a more
exemplar-oriented matching task. Conversely, for a more
category-oriented matching task, node dimensionality can
be decreased, with greater emphasis put on relational infor-
mation. The power of our framework is its ability to support
such a spectrum of tasks.

8 Conclusions

Imposing neighborhood structure on a set of points yields
a graph, for which powerful indexing and matching algo-
rithms exist. In this paper, we present a method for impos-
ing neighborhood structure on a set of scale space top points.
Drawing on the Delaunay triangulation of a set of points, we
generate a graph whose edges are directed from top points at
coarser scales to nearby top points at finer scales. The result-
ing construction is stable to noise, within-class variability,
clutter, and occlusion, as reflected in a set of directed acyclic
graph matching experiments. More importantly, the hierar-
chical structure can be exploited in a coarse-to-fine matching
framework that can help manage the complexity of a linear
search of a database.
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