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Abstract. Hierarchical image structures are abundant in computer vi-
sion, and have been used to encode part structure, scale spaces, and
a variety of multiresolution features. In this paper, we describe a uni-
fied framework for both indexing and matching such structures. First,
we describe an indexing mechanism that maps the topological structure
of a directed acyclic graph (DAG) into a low-dimensional vector space.
Based on a novel eigenvalue characterization of a DAG, this topologi-
cal signature allows us to efficiently retrieve a small set of candidates
from a database of models. To accommodate occlusion and local defor-
mation, local evidence is accumulated in each of the DAG’s topological
subspaces. Given a small set of candidate models, we will next describe
a matching algorithm that exploits this same topological signature to
compute, in the presence of noise and occlusion, the largest isomorphic
subgraph between the image structure and the candidate model structure
which, in turn, yields a measure of similarity which can be used to rank
the candidates. We demonstrate the approach with a series of indexing
and matching experiments in the domains of 2-D and (view-based) 3-D
generic object recognition.

1 Introduction

The indexing and matching of hierarchical (e.g., multiscale or multilevel) image
features is a common problem in object recognition. Such structures are of-
ten represented as rooted trees or directed acyclic graphs (DAGs), where nodes
represent image feature abstractions and arcs represent spatial relations, map-
pings across resolution levels, component parts, etc [40, 14]. The requirements of
matching include computing a correspondence between nodes in an image struc-
ture and nodes in a model structure, as well as computing an overall measure of
distance (or, alternatively, similarity) between the two structures. Such matching
problems can be formulated as largest isomorphic subgraph or largest isomorphic
subtree problems, for which a wealth of literature exists in the graph algorithms
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community. However, the nature of the vision instantiation of this problem often
precludes the direct application of these methods. Due to occlusion and noise,
no significant isomorphisms may exist between two DAGs or rooted trees. Yet,
at some level of abstraction, the two structures (or two of their substructures)
may be quite similar.

The matching procedure is expensive and must be used sparingly. For large
databases of object models, it is simply unacceptable to perform a linear search
of the database. Therefore, an indexing mechanism is essential for selecting a
small set of candidate models to which the matching procedure is applied. When
working with hierarchical image structures, in the form of graphs, indexing is a
challenging task, and can be formulated as the fast selection of a set of candi-
date models that share a subgraph with the query. But how do we test a given
candidate without resorting to subgraph isomorphism? If there were a small
number of subgraphs shared among many models, representing a vocabulary of
object parts, one could conceive of a two-stage indexing process, in which image
structures were matched to the part vocabulary, with parts “voting” for can-
didate models [6]. However, we're still faced with the complexity of subgraph
isomorphism, albeit for a smaller database (vocabulary of parts).

In this paper, we present a unified solution to the problems of indexing and
matching hierarchical structures. Drawing on techniques from the domain of
eigenspaces of graphs, we present a technique that maps any rooted hierarchical
structure, i.e., DAG or rooted tree, to a vector in a low-dimensional space. The
mapping not only reduces the dimensionality of the representation, but does
so while retaining important information about the branching structure, node
distribution, and overall structure of the graph — information that is critical
in distinguishing DAGs or rooted trees. Moreover, the technique accommodates
both noise and occlusion, meeting the needs of an indexing structure for vi-
sion applications. Armed with a low-dimensional, robust vector representation
of an input structure, indexing can be reduced to a nearest-neighbor search in a
database of points, each representing the structure of a model (or submodel).

Once a candidate is retrieved by the indexing mechanism, we exploit this
same eigen-characterization of hierarchical structure to compute a node-to-node
correspondence between the input and model candidate hierarchical structures.
We therefore unify our approaches to indexing and matching through a novel rep-
resentation of hierarchical structure, leading to an efficient and effective frame-
work for the recognition of hierarchical structures from large databases. In this
paper, we will review our representation, described in [33,35], including a new
analysis on its stability. We then describe the unifying role of our representation
in the indexing and matching of hierarchical structures. Finally, we demonstrate
the approach on two separate object recognition domains.

2 Related Work

Eigenspace approaches to shape description and indexing are numerous. Due to
space constraints, we cite only a few examples. Turk and Pentland’s eigenface
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approach [38] represented an image as a linear combination of a small number
of basis vectors (images) computed from a large database of images. Nayar and
Murase extended this work to general 3-D objects where a dense set of views
was acquired for each object [17]. Other eigenspace methods have been applied
to higher-level features, offering more potential for generic shape description
and matching. For example, Sclaroff and Pentland compute the eigenmodes of
vibration of a 2-D region [26], while Shapiro and Brady looked at how the modes
of vibration of a set of 2-D points could be used to solve the point correspondence
problem under translation, rotation, scale, and small skew [28].

In an attempt to index into a database of graphs, Sossa and Horaud use a
small subset of the coefficients of the ds-polynomial corresponding to the Lapla-
cian matrix associated with a graph [36], while a spectral graph decomposition
was reported by Sengupta and Boyer for the partitioning of a database of 3-D
models, where nodes in a graph represent 3-D surface patches [27]. Sarkar [25]
and Shi and Malik [31] have formulated the perceptual grouping and region seg-
mentation problems, respectively, as graph partitioning problems and have used
a generalized eigensystem approach to provide an efficient approximation. We
note that in contrast to many of the above approaches to indexing, the represen-
tation that we present in this paper i1s independent of the contents of the model
database and uses a uniform basis to represent all objects.

There have been many approaches to object recognition based on graph
matching. An incomplete list of examples include Sanfeliu and Fu [24], Shapiro
and Haralick [30,29], Wong et al. [41,22], Boyer and Kak [2] (for stereo match-
ing), Kim and Kak [11], Messmer and Bunke [16], Christmas et al. [4], Eshera
and Fu [7], Pellilo et al. [20], Gold and Rangarajan [10], Zhu and Yuille [42], and
Cross and Hancock [5]. Although many of these approaches handle both noise
and occlusion, none unify both indexing and matching through a single spectral
mechanism.

3 Indexing Hierarchical Structures

We make the assumption that if a DAG' has rich structure in terms of depth
and/or branching factor, its topology alone may serve as a discriminating index
into a database of model structures. Although false positives (e.g., model DAGs
that have the same structure, but whose node labels are different) may arise,
they may be few in number and can be pruned during verification. As stated
in Section 1, we seek a reduced representation for a DAG that will support
efficient indexing and matching. An effective topological encoding of a DAG’s
structure should: 1) map a DAG’s topology to a point in some low-dimensional
space; 2) capture local topology to support matching/indexing in the presence
of occlusion; 3) be invariant to re-orderings of the DAG’s branches, i.e., re-
orderings which do not affect the parent-child relationships in the DAG; 4) be

! Although a hierarchical structure can take the form of a DAG or rooted tree, we
will henceforth limit our discussion to DAGs, since a rooted tree is a special case of

a DAG.
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as unique as possible; i.e., different DAGs should have different encodings; 5)
be stable, i.e., small perturbations of a DAG’s topology should result in small
perturbations of the index; and 6) should be efficiently computed.

3.1 An Eigen-decomposition of Structure

To describe the topology of a DAG, we turn to the domain of eigenspaces of
graphs, first noting that any graph can be represented as a symmetric {0,1,—1}
adjacency matrix, with 1’s (-1’s) indicating a forward (backward) edge between
adjacent nodes in the graph (and 0’s on the diagonal). The eigenvalues of a
graph’s adjacency matrix encode important structural properties of the graph.
Furthermore, the eigenvalues of a symmetric matrix A are invariant to any or-
thonormal transformation of the form P*AP. Since a permutation matrix is or-
thonormal, the eigenvalues of a graph are invariant to any consistent re-ordering
of the graph’s branches. However, before we can exploit a graph’s eigenvalues
for indexing purposes, we must establish their stability under minor topological
perturbation, due to noise, occlusion, or deformation.

We will begin by showing that any structural change to a graph can be
modeled as a two-step transformation of its original adjacency matrix. The first
step transforms the graph’s original adjacency matrix to a new matrix having
the same spectral properties as the original matrix. The second step adds a
noise matrix to this new matrix, representing the structural changes due to
noise and/or occlusion. These changes take the form of the addition/deletion
of nodes/arcs to/from the original graph. We will then draw on an important
result that relates the distortion of the eigenvalues of the matrix resulting from
the first step to the magnitude of the noise added in the second step. Since
the eigenvalues of the original matrix are the same as those of the transformed
matrix (first step), the noise-dependent eigenvalue bounds therefore apply to the
original matrix. The result will establish the insensitivity of a graph’s spectral
properties to minor topological changes.

Let’s begin with some definitions. Let A, € {0,1, —1}™*™ denote the adja-
cency matrix of the graph GG on m vertices, and assume H is an n-vertex graph
obtained by adding n — m new vertices and a set of edges to the graph G. Let
v {0, 1, =1} — {0, 1, —1}"%", be a lifting operator which transforms a
subspace of R”*™ to a subspace of R**" with n > m. We will call this opera-
tor spectrum preserving if the eigenvalues of any matrix A € {0, 1, —1}™*™ and
its image with respect to the operator (¥(.A)) are the same up to a degeneracy,
i.e., the only difference between the spectra of A and ¥(.A) is the number of zero
eigenvalues (¥(A) has n — m more zero eigenvalues then A).

As stated above, our goal is to show that any structural change in graph G can
be represented in terms of a spectrum preserving operator and a noise matrix.
Specifically, if A,, denotes the adjacency matrix of the graph H, then there exists
a spectrum preserving operator ¥() and a noise matrix Eg € {0, 1, —1}"*" such
that:

A, =U(A,) + B, (1)

H
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We will define ¥() as a lifting operator consisting of two steps. First, we will
add n — m zero rows and columns to the matrix A, and denote the resulting
matrix by A’ . Next, A’ will be pre- and post-multiplied by a permutation
matrix P and its transpose P!, respectively, aligning the rows and columns
corresponding to the same vertices in A, and W(A_). Since the only difference
between the eigenvalues of A’ and A, is the number of zero eigenvalues, and
PALP' has the same set of eigenvalues as the matrix A, ¥() is a spectrum
preserving operator. As a result, the noise matrix E, can be represented as
A, —W(A,) € {0,1,=1}7>n.

Armed with a spectrum-preserving lifting operator and a noise matrix, we
can now proceed to quantify the impact of the noise on the original graph’s
eigenvalues. Specifically, let A, for k € {1, ..., n} denote the k*P largest eigenvalue
of the matrix A. A seminal result of Wilkinson [39] (see also Stewart and Sun [37])
states that:

Theorem 1. If A and A+ FE are n x n symmetric matrices, then:
A (A) + A (B) < A (A+ E) < A (A) + A (E), forall ke{l,..n} (2)

For H and G, we know that A\ (F,) = ||E,||2. Therefore, using the above
theorem, for all k € {1,...,n}:

s (Ag) = A (W (A )] = (W (Ag) + Ey) = A ((Ag))]
< max{|A(Ey ), [Aa (B[} (3)

= |[Eql2-

The above chain of inequalities gives a precise bound on the distortion of the
eigenvalues of W(A,) in terms of the largest eigenvalue of the noise matrix F,,.
Since ¥() is a spectrum preserving operator, the eigenvalues of A, follow the
same bound in their distortions.

The above result has several important consequences for our application of a
graph’s eigenvalues to graph indexing. Namely, if the perturbation E, is small
in terms of its complexity, then the eigenvalues of the new graph H (e.g., the
query graph) will remain close to their corresponding non-zero eigenvalues of the
original graph G (e.g., the model graph), independent of where the perturbation
is applied to GG. The magnitude of the eigenvalue distortion is a function of the
number of vertices added to the graph due to the noise or occlusion. Specifically,
if the noise matrix F,, introduces k new vertices to &, then the distortion of
every eigenvalue can be bounded by +/k — 1 (Neumaier [18]). This bound can
be further tightened if the noise matrix has simple structure. For example, if
[, represents a simple path on k vertices, then its norm can be bounded by
(2cosm/(k + 1)) (Lovész and Pelikdn [15]). In short, large distortions are due
to the introduction/deletion of large, complex subgraphs to/from G, while small
structural changes will have little impact on the higher order eigenvalues GG. The
eigenvalues of a graph are therefore stable under minor perturbations in graph
structure.
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3.2 Formulating an Index

Having established the stability of a DAG’s eigenvalues under minor perturbation
of the graph, we can now proceed to define an index based on the eigenvalues. We
could, for example, define a vector to be the sorted eigenvalues of a DAG, with
the resulting index used to retrieve nearest neighbors in a model DAG database
having similar topology. However, for large DAGs, the dimensionality of the
index (and model DAG database) would be prohibitively large. Our solution to
this problem will be based on eigenvalue sums rather than on the eigenvalues
themselves.

Specifically, let T' be a DAG whose maximum branching factor is A(7T), and
let the subgraphs of its root be T1,75,...,Ts. For each subgraph, 7;, whose
root degree is §(7;), we compute the eigenvalues of T;’s submatrix, sort the
eigenvalues in decreasing order by absolute value, and let S; be the sum of the
d(T;) — 1 largest absolute values. The sorted S;’s become the components of a
A(T)-dimensional vector assigned to the DAG’s root. If the number of .S;’s is less
than A(T), then the vector is padded with zeroes. We can recursively repeat this
procedure, assigning a vector to each nonterminal node in the DAG, computed
over the subgraph rooted at that node. The reasons for computing a description
for each node, rather than just the root, will become clear in the next section.

Although the eigenvalue sums are invariant to any consistent re-ordering of
the DAG’s branches, we have given up some uniqueness (due to the summing
operation) in order to reduce dimensionality. We could have elevated only the
largest eigenvalue from each subgraph (non-unique but less ambiguous), but
this would be less representative of the subgraph’s structure. We choose the
d(T;) — 1 largest eigenvalues for two reasons: 1) the largest eigenvalues are more
informative of subgraph structure, and 2) by summing J(7;) — 1 elements, we
effectively normalize the sum according to the local complexity of the subgraph
root.

To efficiently compute the submatrix eigenvalue sums, we turn to the domain
of semidefinite programming. A symmetric n X n matrix A with real entries is
said to be positive semidefinite, denoted as A = 0, if for all vectors z € R”,
ztAz > 0, or equivalently, all its eigenvalues are non-negative. We say that
U = V if the matrix U — V is positive semidefinite. For any two matrices U
and V having the same dimensions, we define U V' as their inner product, 1.e.,
UeV = Z Z U; ;Vi ;. For any square matrix U, we define trace(U) = >, U; ;.

2
Let I denote ]the identity matrix having suitable dimensions. The following re-
sult, due to Overton and Womersley [19], characterizes the sum of the first k
largest eigenvalues of a symmetric matrix in the form of a semidefinite convex
programming problem:

Theorem 2 (Overton and Womersley [19]). For the sum of the first k
etgenvalues of a symmetric matriz A, the following semidefinite programming
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characterization holds:

AMA) + .+ 2 (A) =max Ae U
s.t. trace(U) =k (4)
0=U=<1,

The elegance of Theorem (2) lies in the fact that the equivalent semidefinite
programming problem can be solved, for any desired accuracy €, in time poly-
nomial in O(n+/nL) and log %, where L is an upper bound on the size of the
optimal solution, using a variant of the Interior Point method proposed by Al-
izadeh [1]. In effect, the complexity of directly computing the eigenvalue sums is a
significant improvement over the O(n?) time required to compute the individual

eigenvalues, sort them, and sum them.

3.3 Properties of the Index

Our topological index satisfies the six criteria outlined in Section 1. The eigen-
decomposition yields a low-dimensional (criterion 1) vector assigned to each node
in the DAG, which captures the local topology of the subgraph rooted at that
node (criterion 2 — this will be more fully explained in Section 3.4). Further-
more, a node’s vector 1s invariant to any consistent re-ordering of the node’s
subgraphs (criterion 3). The components of a node’s vector are based on sum-
ming the largest eigenvalues of its subgraph’s adjacency submatrix. Although
our dimensionality-reducing summing operation has cost us some uniqueness,
our partial sums still have very low ambiguity (criterion 4). From the sensitivity
analysis in Section 3.1, we have shown our index to be stable to minor per-
turbations of the DAG’s topology (criterion 5). As shown in Theorem 2, these
sums can be computed even more efficiently (criterion 6) than the eigenvalues
themselves. The vector labeling of all DAGs isomorphic to 7" not only has the
same vector labeling, but spans the same subspace in R4(T)~1 Moreover, this
extends to any DAG which has a subgraph isomorphic to a subgraph of T'.

3.4 Candidate Selection

Given a query DAG corresponding to an image, our task is to search the model
DAG database for one or more model DAGs which are similar to the image
DAG. If the number of model DAGs is large, a linear search of the database is
intractable. Therefore, the goal of our indexing mechanism is to quickly select a
small number of model candidates for verification. Those candidates will share
coarse topological structure with the image DAG (or one of its subgraphs, if
it is occluded or poorly segmented). Hence, we begin by mapping the topology
of the image DAG to a set of indices that capture its structure, discounting
any information associated with its nodes. We then describe the structure of
our model database, along with our mechanism for indexing into i1t to yield a
small set of model candidates. Finally, we present a local evidence accumulation
procedure that will allow us to index in the presence of occlusion.
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A Database for Model DAGs Our eigenvalue characterization of a DAG’s
topology suggests that a model DAG’s topological structure can be represented
as a vector in §-dimensional space, where ¢ is an upper bound on the degree
of any vertex of any image or model DAG. If we could assume that an image
DAG represents a properly segmented, unoccluded object, then the vector of
eigenvalue sums, which we will call the topological signature vector (or TSV),
computed at the image DAG’s root, could be compared with those topological
signature vectors representing the roots of the model DAGs. The vector distance
between the image DAG’s root TSV and a model DAG’s root TSV would be
inversely proportional to the topological similarity of their respective DAGs; as
finding two subgraphs with “close” eigenvalue sums represents an approximation
to finding the largest isomorphic subgraph.

Unfortunately, this simple framework cannot support either cluttered scenes
or large occlusion, both of which result in the addition or removal of signifi-
cant structure. In either case, altering the structure of the DAG will affect the
TSV’s computed at its nodes. The signatures corresponding to the roots of those
subgraphs (DAGs) that survive the occlusion will not change. However, the sig-
nature of a root of a subgraph that has undergone any perturbation will change
which, in turn, will affect the signatures of any of its ancestor nodes, including
the root of the entire DAG. We therefore cannot rely on indexing solely with the
root’s signature. Instead, we will exploit the local subgraphs that survive the
occlusion.

We can accommodate such perturbations through a local indexing frame-
work analogous to that used in a number of geometric hashing methods, e.g.,
[13,8]. Rather than storing a model DAG’s root signature, we will store the
signatures of each node in the model DAG, along with a pointer to the object
model containing that node as well as a pointer to the corresponding node in
the model DAG (allowing access to node label information). Since a given model
subgraph can be shared by other model DAGs, a given signature (or location
in d-dimensional space) will point to a list of (model object, model node) or-
dered pairs. At runtime, the signature at each node in the image DAG becomes
a separate index, with each nearby candidate in the database “voting” for one
or more (model object, model node) pairs. Nearby candidates can be retrieved
using a nearest neighbor retrieval method. In our implementation, model points
were stored in a Voronoi database, whose off-line construction (decomposition) is
O((kn)LOHD/2141Y 1 O((kn)LO+D/2 og(kn)) ([21]), and whose run-time search
is O(log’ (kn)) for fixed & [21]; details are given in [33].

Accumulating Local Evidence Each node in the image DAG will generate
a set of (model object, model node) votes. To collect these votes, we set up an
accumulator with one bin per model object. Furthermore, we can weight the
votes that we add to the accumulator. For example, if the label of the model
node is not compatible with the label of its corresponding image node, then the
vote 1s discarded, i.e., it receives a zero weight. If the nodes are label-compatible,
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then we can weight the vote according to the distance between their respective
TSV’s — the closer the signatures, the more weight the vote gets.

We can also weight the vote according to the complexity of its correspond-
ing subgraph, allowing larger and more complex subgraphs (or “parts”) to have
higher weight. This can be easily accommodated within our eigenvalue frame-
work, for the richer the structure, the larger its maximum eigenvalue:

Theorem 3 (Lovész and Pelikdn [15]). Among the graphs with n vertices,
the star graph (K1 ,-1), has the largest eigenvalue (\/n — 1), while the path on
n nodes (P,) has the smallest eigenvalue (2cosm/(n + 1)).

Since the size of the eigenvalues, and hence their sum, is proportional to both the
branching factor as well as the number of nodes, the magnitude of the signature
is also used to weight the vote. If we let u be the TSV of an image DAG node
and v the TSV of a model DAG node that is sufficiently close, the weight of
the resulting vote, i.e., the local evidence for the model, is computed as (we use

p=2):

I

s ®)
Once the evidence accumulation is complete, those models whose support
is sufficiently high are selected as candidates for verification. The bins can, in
effect, be organized in a heap, requiring a maximum of O(log k) operations to
maintain the heap when evidence is added, where k is the number of non-zero
object accumulators. Once the top-scoring models have been selected, they must

be individually verified according to some matching algorithm.

4 Matching Hierarchical Structures

Each of the top-ranking candidates emerging from the indexing process must be
verified to determine which 1s most similar to the query. If there were no clutter,
occlusion, or noise, our problem could be formulated as a graph isomorphism
problem. If we allowed clutter and limited occlusion, we would search for the
largest isomorphic subgraphs between query and model. Unfortunately, with the
presence of noise, in the form of the addition of spurious graph structure and/or
the deletion of salient graph structure, large isomorphic subgraphs may simply
not exist. It is here that we call on our eigen-characterization of graph structure
to help us overcome this problem.

Each node in our graph (query or model) is assigned a TSV, which reflects the
underlying structure in the subgraph rooted at that node. If we simply discarded
all the edges in our two graphs, we would be faced with the problem of finding the
best correspondence between the nodes in the query and the nodes in the model,
two nodes could be said to be in close correspondence if the distance between
their TSVs (and the distance between their domain-dependent node labels) was
small. In fact, such a formulation amounts to finding the maximum cardinality,
minimum weight matching in a bipartite graph spanning the two sets of nodes.
At first glance, such a formulation might seem like a bad idea (by throwing away
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all that important graph structure!) until one recalls that the graph structure
is really encoded in the node’s TSV. Is it then possible to reformulate a noisy,
largest isomorphic subgraph problem as a simple bipartite matching problem?

Unfortunately, in discarding all the graph structure, we have also discarded
the underlying hierarchical structure. There is nothing in the bipartite graph
matching formulation that ensures that hierarchical constraints among corre-
sponding nodes are obeyed, i.e., that parent/child nodes in one graph don’t
match child/parent nodes in the other. This reformulation, although softening
the overly strict constraints imposed by the largest isomorphic subgraph formu-
lation, is perhaps too weak. We could try to enforce the hierarchical constraints
in our bipartite matching formulation, but no polynomial-time solution is known
to exist for the resulting formulation. Clearly, we seek an efficient approximation
method that will find corresponding nodes between two noisy, occluded DAGs,
subject to hierarchical constraints.

Our algorithm, a modification to Reyner’s algorithm [23], combines the above
bipartite matching formulation with a greedy, best-first search in a recursive pro-
cedure to compute the corresponding nodes in two rooted DAGs. As in the above
bipartite matching formulation, we compute the maximum cardinality, minimum
weight matching in the bipartite graph spanning the two sets of nodes. Edge
weight will encode a function of both topological similarity as well as domain-
dependent node similarity. The result will be a selection of edges yielding a
mapping between query and model nodes. As mentioned above, the computed
mapping may not obey hierarchical constraints. We therefore greedily choose
only the best edge (the two most similar nodes in the two graphs, representing
in some sense the two most similar subgraphs), add it to the solution set, and
recursively apply the procedure to the subgraphs defined by these two nodes.
Unlike a traditional depth-first search which backtracks to the next statically-
determined branch, our algorithm effectively recomputes the branches at each
node, always choosing the next branch to descend in a best-first manner. In
this way, the search for corresponding nodes is focused in corresponding sub-
graphs (rooted DAGs) in a top-down manner, thereby ensuring that hierarchical
constraints are obeyed.

Before formalizing our algorithm, some definitions are in order. Let G =
(Vi, E1) and H = (V3, E2) be the two DAGs to be matched, with |Vi]| = ny and
|[Va] = ny. Define d to be the maximum degree of any vertex in G and H, i.e.,
d = max(6(G),8(H)). For each vertex v, we define x(v) € R*"! as the unique
topological signature vector (TSV), introduced in Section 3.2.? Furthermore, for
any pair of vertices u and v, let C'(u, v) denote the domain dependent node label
distance between vertices u and v. Finally, let ¢(G, H) (initially empty) be the
set of final node correspondences between G and H, representing the solution to
our matching problem.

2 Note that if the maximum degree of a node is d, then excluding the edge from the
node’s parent, the maximum number of children is d — 1. Also note that if §(v) < d,
then then the last d — 6(v) entries of x are set to zero to ensure that all y vectors
have the same dimension.
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The algorithm begins by forming a ny x ny matrix 71 (G, H) whose (u, v)-th
entry has the value C'(u, v)||x(¢) —x(v)]|2, assuming that « and v are compatible
in terms of their node labels, and has the value oo otherwise. Next, we form a
bipartite edge weighted graph G(V1, Va, Eg) with edge weights from the matrix
II (G, H).? Using the scaling algorithm of Goemans, Gabow, and Williamson
[9], we then find the maximum cardinality, minimum weight matching in G.
This results in a list of node correspondences between G and H, called M, that
can be ranked in decreasing order of similarity.

From M, we choose (u1,v1) as the pair that has the minimum weight among
all the pairs in My, i.e., the first pair in My. (u1,v1) is removed from the
list and added to the solution set (G, H), and the remainder of the list is
discarded. For the rooted subgraphs Gy, and H,, of G and H, rooted at nodes uy
and vy, respectively, we form the matrix IT(Gy,, H,,) using the same procedure
described above. Once the matrix is formed, we find the matching My in the
bipartite graph defined by weight matrix I7(Gy,, Hy,), yielding another ordered
list of node correspondences. The procedure is recursively applied to (us,va),
the edge with minimum weight in My, with the remainder of the list discarded.

This recursive process eventually reaches the bottom of the DAGs, forming
a list of ordered correspondence lists (or matchings) {My,..., My}. In back-
tracking step ¢, we remove any subgraph from the graphs G; and H; whose roots
participate in a matching pair in @(G, H) (we enforce a one-to-one correspon-
dence of nodes in the solution set). Then, in a depth-first manner, we recompute
M; on the subgraphs rooted at u; and v; (with solution set nodes removed).
As before, we choose the minimum weight matching pair, and recursively de-
scend. Unlike a traditional depth-first search, we are dynamically recomputing
the branches at each node in the search tree. Processing at a particular node
will terminate when either rooted subgraph loses all of its nodes to the solution
set. The precise algorithm is given in Figure 1; additional details and examples
are given in [35,32].

In terms of algorithmic complexity, observe that during the depth-first con-
struction of the matching chains, each vertex in G or H will be matched at most
once in the forward procedure. Once a vertex is mapped, it will never participate
in another mapping again. The total time complexity of constructing the match-
ing chains is therefore bounded by O(n?y/nloglogn), for n = max(ni,ns) [9].
Moreover, the construction of the y(v) vectors will take O(n\/nL) time, implying
that the overall complexity of the algorithm is max(O(n?\/nloglogn), O(n?\/nL).
The above algorithm therefore provides, in polynomial time better than O(n?)
an approximate optimal solution to the largest isomorphic subgraph problem in
the presence of noise.

® G(A,B,E) is a weighted bipartite graph with weight matrix W = [w;;] of size
|A| x |B| if, for all edges of the form (i,j) € E, 1 € A, j € B, and (1, ) has an

associated weight = w; ;.
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procedure isomorphism(G,H)
(G H) — 0
d + max(6(G),0(H))
for u € Vs compute x(u) € R (see Section 3.2)
for v € Vi compute x(v) € R*™" (see Section 3.2)
call match(root(G),root(H))
return(cost(®(G, H))

end

procedure match(u,v)
do
{
let G, + rooted subgraph of G at u
let H, + rooted subgraph of H at v
compute |Vg, | x |V, | weight matrix IT(G., Hy)
M  max cardinality, minimum weight bipartite matching
in §(Vs,,, Vr,) with weights from I1(G., Hy) (see [9])
(u',v") « minimum weight pair in M
S(G, H) + &(G, HYu {(v',v")}
call match(u',v")
Gy« Gy — {z]z € Vg, and (z,w)
H, « H, — {y|y € VHU and (w,y)

€ &(G, H)}
€ &(G, H)}

}
while (G, # 0 and H, # 0)

Fig. 1. Algorithm for Matching Two Hierarchical Structures

5 Demonstration

In this section, we briefly illustrate our unified approach to indexing and match-
ing on two different object recognition domains.

5.1 2-D Generic Object Recognition

To demonstrate our approach to indexing, we turn to the domain of 2-D object
recognition [33,35]. We adopt a representation for 2-D shape that is based on
a coloring of the shocks (singularities) of a curve evolution process acting on
simple closed curves in the plane [12]. Any given 2-D shape gives rise to a rooted
shock tree, in which nodes represent parts (whose labels are drawn from four
qualitatively-defined classes) and arcs represent relative time of formation (or
relative size). Figure 2 illustrates a 2-D shape, along with its corresponding shock
tree.

We demonstrate our indexing algorithm on a database of 60 object silhou-
ettes. In Figure 3, query shapes are shown in the left column, followed by the top
ten database candidates (based on accumulator scores), ordered left to right. The
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Fig. 2. An illustrative example taken from [35]. The labels on the shocks of the hammer
(left) correspond to vertices in the derived shock graph (right).

candidate in the box is the closest candidate, found by computing the distance
(using the matcher) between the query and each database shape (linear search).
For unoccluded shapes, the results are very encouraging, with the correct can-
didate ranking very highly. With increasing occlusion, high indexing ambiguity
(smaller unoccluded subtrees are less distinctive and “vote” for many objects
that contain them) leads to slightly decreased performance, although the target
object is still ranked highly. We are investigating the incorporation of more node
information, as well as the encoding of subtree relations (currently, each subtree
votes independently, with no constraints among subtrees enforced) to improve
indexing performance.

5.2 View-Based 3-D Object Recognition

For our next demonstration, we turn to the domain of view-based object recog-
nition, in which salient blobs are detected in a multiscale wavelet decomposition
of an image [3]. Figure 4 shows three images of an origami figure, along with
their computed multiscale blob analyses (shown inverted for improved visibil-
ity). Each image yields a DAG, in which nodes correspond to blobs, and arcs
are directed from blobs at coarser scales to blobs at finer scales if the distance
between their centers does not exceed the sum of their radii. Node similarity is
a function of the difference in saliency between two blobs.

In Figure 5, we show the results of matching the first and second, and first and
third images, respectively, in Figure 4. The first and third images are taken from
similar viewpoints, so the match yields many good correspondences. However,
for the first and third images, taken from different viewpoints, fewer correspond-
ing features were found. Note that since only the DAG structure is matched
(and not DAG geometry), incorrect correspondences may arise when nodes have
similar saliency and size but different relative positions. A stronger match can
be attained by enforcing geometric consistency (see [34]).
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Fig. 3. Indexing Demonstration. Shape on left is query shape, followed by top ten
candidates in decreasing score from left to right. Boxed candidate is closest to query
(using a linear search based on matcher).

6 Conclusions

We have presented a unified solution to the tightly-coupled problems of index-
ing and matching hierarchical structures. The structural properties of a DAG
are captured by the eigenvalues of its corresponding adjacency matrix. These
eigenvalues, in turn, can be combined to yield a low-dimensional vector repre-
sentation of DAG structure. The resulting vectors can be used to retrieve, in the
presence of noise and occlusion, structurally similar candidates from a database
using efficient nearest-neighbor searching methods. Moreover, these same vectors
contribute to the edge weights in a recursive bipartite matching formulation that
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Fig.4. Top row contains original images, while bottom row (shown inverted for im-
proved visibility) contains corresponding multiscale blob analyses (see text).

computes an approximation to the largest 1somorphic subgraph of two graphs
(query and model) in the presence of noise and occlusion. Our formulation is gen-
eral and is applicable to the indexing and matching of any rooted hierarchical
structure, whether DAG or rooted tree. The only domain-dependent component
is the node label distance function, which is used in conjunction with the topo-
logical distance function to compute a bipartite edge weight. We have tested the
approach extensively on the indexing and matching of shock graphs, and have
only begun to test the approach on other domains, including the preliminary
results reported in this paper in the domain of multiscale blob matching.
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