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Abstract

We introduce a novel view-based object representation, called the saliency map graph (SMG), which captures the salient regions of an
object view at multiple scales using a wavelet transform. This compact representation is highly invariant to translation, rotation (image and
depth), and scaling, and offers the locality of representation required for occluded object recognition. To compare two saliency map graphs,
we introduce two graph similarity algorithms. The first computes the topological similarity between two SMGs, providing a coarse-level
matching of two graphs. The second computes the geometrical similarity between two SMGs, providing a fine-level matching of two graphs.
We test and compare these two algorithms on a large database of model object views.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The view-based approach to 3D object recognition repre-
sents an object as a collection of 2D views, sometimes
called aspects or characteristic views [1]. The advantage
of such an approach is that it avoids having to construct a
3D model of an object as well as having to make 3D infer-
ences from 2D features. Many approaches to view-based
modeling represent each view as a collection of extracted
features, such as extracted line segments, curves, corners,
line groups, regions, or surfaces [2–6]. The success of these
view-based recognition systems depends on the extent to
which they can extract their requisite features. With real
images of real objects in unconstrained environments, the
extraction of such features can be both time consuming and
unreliable.

In contrast to the feature-based view-based recognition
paradigm, a number of image-based view-based recognition
systems have emerged. Beginning with the eigenface
approach proposed by Turk and Pentland [7], these image-
based approaches avoid extracting complex features from
an image; instead, they retain the entire raw image as a
single feature in a high-dimensional space. Turk and Pent-
land focused on the domain of faces and therefore did not
require a large set of model views for each face. Nayar and

Murase extended this work to general 3D objects where a
dense set of views was acquired for each object [8].

Although avoiding costly and often unreliable feature
extraction, these image-based approaches pay the price of
sensitivity to lighting conditions, image translation, image
rotation, depth rotation, occlusion, and minor shape varia-
tion, all of which affect an image’s pixel values and result in
a change in the image’s location in some high-dimensional
space. Recent results have shown some progress towards
solving these problems; for example, the work of Belheu-
mer and Kriegman [9] (limited invariance to illumination
changes) and the work of Leonardis and Bischoff [10] and
Schmid and Mohr [11] (limited invariance to occlusion).
Nevertheless, the lack of abstraction from raw image data
to the model means that the model defines a very specific
object instance.

The concept of computing coarse-to-fine image descrip-
tion has much support in the computer vision community;
some examples include Refs. [12–17]. In some cases, atten-
tion models have been developed that use a multiscale
description to decide where in the image to apply some
operation. Lindeberg has based this selection process on a
quantitative analysis of gray-level blobs in scale space [14].
Jägersand [13] uses an information theoretic measure to
compute ‘informativeness’ of image regions at different
scales, while others have defined some measure of ‘impor-
tance’ and used it to drive an attention process [15–17].
Although suitable for locating objects in images for further
processing, the above multiscale descriptions, often called
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saliency maps, lose the detailed shape information required
for object recognition. We will adopt this definition of
saliency as ‘informedness’ or, more concretely, the signifi-
cance of an energy response as computed by a filter (or set of
filters) [18, 19].

Some multiscale image descriptions have been used to
locate a particular target object in the image. For example,
Rao et al. use correlation to compare a multiscale saliency
map of the target object with a multiscale saliency map of
the image in order to fixate on the object [20]. Although
these approaches are effective in finding a target in the
image, they, like any template-based approach, do not
scale to large object databases. Their bottom-up descriptions
of the image are not only global, offering little means for
segmenting an image into objects or parts, but offer little
invariance to occlusion, object deformation, and other trans-
formations.

Wiskott et al. [21] use Gabor wavelet jets to extract sali-
ent image features. Wavelet jets represent an image patch
(containing a feature of interest) with a set of wavelets
across the frequency spectrum. Each collection of wavelet
responses represents a node in a grid-like planar graph
covering overlapping regions of the image. Image matching
reduces to a form of elastic graph matching, in which the
similarity between the corresponding Gabor jets of nodes is
maximized. Correspondence is proximity-based, with nodes
in one graph searching for (spatially) nearby nodes in
another graph. Effective matching therefore requires that
the graphs be coarsely aligned in scale and image rotation.

Another related approach is due to Crowley [22–24].
From a Laplacian pyramid computed on an image, peaks
and ridges at each scale are detected as local maxima. The
peaks are then linked together to form a tree structure, from
which a set of peak paths are extracted, corresponding to the
branches of the tree. During matching, correspondence
between low-resolution peak paths in the model and the
image are used to solve for the pose of the model with
respect to the image. Given this initial pose, a greedy match-
ing algorithm descends down the tree, pairing higher-
resolution peak paths from the image and the model.
Using a log likelihood similarity measure on peak paths,
the best corresponding paths through the two trees is found.
The similarity of the image and model trees is based on a
very weak approximation of the trees’ topology and geo-
metry, restricted, in fact, to a single path through the tree.

A more recent approach by Halvadar et al. also uses path
structure to index into a database [25]. From an intensity
image, a graph is constructed in which nodes represent
perceptual groups of contours and arcs capture relations
between the groups. Computing thekth power of the result-
ing adjacency matrix yields all possible paths of lengthk
between any two nodes in the graph, with each path consist-
ing of an ordered sequence of structural relations among the
vertices in the graph. In the interest of efficiency, they
compute only paths of length two (i.e. two edges and
three vertices). Paths are used as keys for indexing into an

object database of model graphs, with each path component
voting for a set of model graphs sharing that subpath. In a
verification phase, model paths belonging to the same object
and receiving significant votes are clustered to form maxi-
mal subgraphs. The subgraph having maximal cardinality is
chosen as the best matching model.

In this paper, we present a multiscale view-based repre-
sentation of 3D objects that, on one hand, avoids the need
for complex feature extraction, such as lines, curves, or
regions, while on the other hand, provides the locality of
representation necessary to support occluded object recog-
nition as well as invariance to minor changes in both illu-
mination and shape. In computing a representation for a 2D
image (whether model image or image to be recognized), a
multiscale wavelet transform is applied to the image, result-
ing in a hierarchical saliency map of the image that offers
advantages over a Laplacian pyramid. This saliency map is
represented as a hierarchical graph structure, called the
saliency map graph, that encodes both the topological and
geometrical information found in the saliency map.

The similarity between a test image and a model image is
defined as the similarity between their respective saliency
map graphs. We address the problem of matching two
saliency map graphs, leading to two matching algorithms.
The first algorithm finds the best mapping between two
saliency map graphs in terms of their topological structure,
while the second algorithm factors in the geometry of the
two graphs. In each case, we present an evaluation function
that determines the overall quality of the match, i.e. the
similarity of the two graphs. We demonstrate and evaluate
our image representation and our two matching algorithms
using the Columbia University COIL image database. In
addition, we assess the viewpoint invariance of our repre-
sentation and matching algorithms.

2. A scale-space saliency representation of an image

To reduce the complexity in matching input image repre-
sentations to model view representations, we seek a scale-
space or coarse-to-fine representation of images that allows
us to first match or index, based on the coarse-level features
in the image. Coarse-level correspondence can then be used
to constrain a fine-level matching of the remaining features.
Furthermore, we would like our image representation to be
invariant to slight variations in the illumination falling on
the object, image-plane rotation, translation, and scaling of
the object, slight rotation in depth of the object, slight defor-
mations of the shape of the object, e.g. stretching, bending,
etc., and occlusion of the object.

Traditional view-based object representations that are
image based (for example, Refs. [7–11, 20]) are neither
coarse-to-fine nor invariant to the above transformations
due to the global nature of their representations (although
some offer limited invariance to particular transformations).
However, the advantage of these approaches is that complex
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feature extraction, grouping, or abstraction is not required.
Systems based on more invariant view-based image descrip-
tions (for example, Refs. [2–6]) have relied on complex
feature extraction (e.g. edges, lines, regions, etc.) which is
not only unreliable but often requires domain-specific para-
meter tuning.

To address these shortcomings, we compute a scale-space
representation of an image in which image objects (homo-
geneous regions) are located at the coarsest scale which
captures their salient shape properties. Moreover, both the
geometrical and topological relations between the regions
will be explicitly encoded in the representation. Finally,
computing these regions and relations requires the setting
of very few parameters.

2.1. The multiscale wavelet transform

The scale-space image representation that we have
selected is based on a multiscale wavelet transform [26].
The advantage of the wavelet decomposition lies in its effec-
tive time (space)–frequency (scale) localization. Unlike
other image transforms, e.g. the Laplacian/Gaussian pyra-
mid [12, 23], which spread the information across their basis
functions, the wavelet transform allows us to compute better
localized object representations. In the output of the trans-
form, as illustrated in Fig. 1, the salient shape of small
objects is best captured by small wavelets, while the
converse is true for large objects. Searching from finer to
coarser scales (right to left in Fig. 1), we select the scale
which captures the most efficient encoding of an object’s
salient shape; above the chosen scale, extraneous informa-
tion is encoded, while below the chosen scale, the object is
overly ‘blurred’. The region defining the object at the
chosen scale is called the scale-space cell (SSC) [27].

The dyadic wavelet transform of a functionf [ L2(R) at

the scale 2j and at the positionk is given by the inner
products of the function with the family of wavelets

�Wf��j; k� � kf ;cj;kl � 22j=2
Z1 ∞

2 ∞
f �x�c�22jx 2 k� dx �1�

where the overline denotes the complex conjugate. This
inner product may also be viewed as a convolution product
�Wf��j; k� � f p cj;k or as a filtering of the functionf with a
band-pass filter whose impulse response iscj;k.

Detecting the SSCs requires analysis of the wavelet trans-
form response at each scale. The SSC of an image object is
located at the scale which is approximately one octave
below the scale at which the object’s response becomes
indistinguishable from other image objects of the same
size. At this scale, the object’s response resembles the wave-
let basis function impulse response. The following subsec-
tions will explore SSC detection in greater detail.

2.2. SSCs in one dimension

To illustrate the detection of SSCs, consider the one-
dimensional signal in Fig. 2, using the wavelets described
in Ref. [28]. Any object behaves like a point in all scales
coarser than its characteristic scaleI. This means that the
wavelet transform of a signal at any scalej . I is the same
no matter what the object’s shape is; the transform is
completely determined by the width of the objects and
their amplitude. We can ignore the information at the scales
j . I and still be able to reconstruct the original signal
almost perfectly, as illustrated in the right column in
Fig. 2.

The reconstructed signalf6
r(x) is obtained by replacing the

response (W·)(6,x) of objects A and B with the analyzing
waveletc6,k of the same amplitude. Similarly,f6,5

r (x), f6,5,4
r (x),

and f6,5,4,3
r (x) are obtained by successively replacing the
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Fig. 1. In the proposed multiscale description, objects are captured at the coarsest scale which captures their salient properties. Note that the frequencyj and
the scales are inversely proportional.



corresponding wavelet responses at the scales (6,5), (6,5,4),
and (6,5,4,3), respectively, with the analyzing wavelets. The
error in reconstruction is very small if the replacement takes
place at scales greater than the characteristic scale; the error
increases significantly as the replacement takes place at the
finer scales. In the general case, interactions between the
neighboring objects will distort the wavelet transform
response. However, even for complex signals, each object
will eventually yield the (approximate) impulse response
at the appropriate scale determined by the size of the
object.

In order to find the characteristic scale of an image object
in the 1D case, one can measure the correlation between the
wavelet transform of the object and the basis function at any
given scale. At each location (x, y), one can then select the
finest scale at which the correlation exceeds some threshold.
We will now proceed to examine the detection of a SSC in
two dimensions.

2.3. Saliency detection algorithm in two dimensions

In the two-dimensional case, the characteristic scaleI(Q)
may be different for any particular orientationQ of a 1D
cross-section through an object. Any object other than a
circular one (disc) will become a point at different scales
in different directions, e.g. an elongated object, occluded
object, etc. In this case, the object will extend over several

SSCs at any scalej , maxQ{ I(Q)}. Therefore, in the 2D
case, we apply the 1D procedure in a number of directions
and search for clusters of 1D centers, as shown in Fig. 3(a).
Our entire procedure for detecting the SSCs in an image
therefore consists of the following four steps [27].

Step 1 — Wavelet Transform. Compute the wavelet
pyramid of an image withl dyadic scales using oriented
quadrature bandpass filters tuned to 16 different orienta-
tions, i.e.Q � 08, 22.58, 458, …, 337.58. See Ref. [29] for
a detailed derivation and description of computing the
wavelet pyramid using steerable basis filters.
Step 2 — Local Energies. Compute the oriented local
energies using the equation

E�Q; s; x; y� � �GQ�s; x; y��2 1 �HQ�s; x; y��2 �2�
whereGQ(s,x,y) andHQ(s,x,y) are the outputs of a quad-
ratic pair of analyzing wavelet filters at the scale-space
coordinate (s,x,y), oriented at the angleQ. For each image
point, 16 different oriented local energies are computed.
Step 3 — Saliency Maps. Computel saliency maps. The
saliency of each particular SSC is computed using the
convolution:

saliency SSC�s; x; y� �
X
Q

�E�Q; s; x; y� p q�Q; x; y�� �3�

whereq (Q,x,y) is the filter kernel obtained by computing
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Fig. 2. An illustration of the object’s characteristic scale. The left column shows the analyzing waveletsc i,k at the corresponding scales. The middle column
shows two examples (A and B) of a functionf(x) (top) and their wavelet transforms (below). Beginning with the characteristic scaleI � 4, the (W·)(I 1 j,x)
takes the shape ofc I1j,k, j � 1,2, … The right column shows the reconstruction of the original function by replacing the (W·)(i,x) with thec ki,k.



the sum of the squared impulse responses of the two
analyzing wavelet filtersGQ(s,x,y) and HQ(s,x,y), as
shown in Fig. 3(b). As discussed above, circular shape
has the highest saliency as measured by this scheme.
Step 4 — Peaks in Saliency Maps. Moving from finer to
coarser scales at every location, we select the first
saliency map for the which a peak (local maximum) at
that location exceeds a given threshold. By using a series
of oriented 1D filters to detect the characteristic scale, we
can detect objects that are not circular in shape. For
example, if a non-circular shape’s variation in diameter
does not reach neighboring scales above or below the
current scale, then a circularly symmetric filter, such as
that used by Crowley [22–24], will give a weak response
for the shape. In our approach, however, the 1D filters are
slightly adjusted in width (bounded by neighboring
scales). The result is a cluster of oriented peaks from
which we compute the 2D shape’s location as the centroid
of these peaks. The salience of the 2D shape is computed
as the sum of the oriented saliences of the oriented peaks
near this centroid. Finally, we apply a non-maximum
suppression process to eliminate closely overlapping sali-
ent SSCs at each scale.

The contents of each SSC is a 2D matrix of wavelet
coefficients. The size of this matrix is invariant to both the
scale at which the SSC is detected and the complexity of the
shape contained in the SSC’s corresponding image region.
In the current implementation, only the scale, position, and
saliency of a SSC is exploited during the matching of two
saliency maps. However, one could include the actual
contents of the SSC as specified by the wavelet coefficient
matrix. The fact that all the SSC matrices are self-similar
and small (in our case, 16× 16) means that efficient compar-
isons can be made between SSCs at different scales.

Fig. 4 illustrates how a complex object’s saliency map (a)
is largely invariant to scaling (b), translation (c), image
plane rotation (d), and limited rotation in depth (e), where

the illuminated left side of the face exhibits little change in
its saliency map. Circles in the image correspond to SSCs,
while their intensity is proportional to the SSC saliency.
Note that the size of the circle appears to be slightly larger
than its corresponding image feature. This is due to the fact
that the size of the circle is determined by the largest extent
of the filter shown in Fig. 3(b), i.e. where the response
approaches zero. For different images taken under different
conditions, there cannot be true invariance in the sense that
salient regions are identical in different views. However,
approximate invariance suffices for the recognition scheme
that we propose.

To illustrate the illumination invariance of the represen-
tation, we have conducted two experiments in which the
illumination of the scene is systematically varied and the
saliency maps computed. In Fig. 5(a)–5(d), the average
scene illumination is 13, 15, 25, and 50 candles per square
foot, respectively. Note that the most salient regions are
approximately invariant to the changes in illumination.
Note that the lower left large SSC represents the concave
structure defined by the base, the bird’s leg, and the bird’s
breast. In Fig. 6(a)–(e), the average scene illumination is 6,
13, 25, 30, and 50 candles per square foot, respectively.
Note that while the majority of SSCs remain invariant
across the illumination range, Fig. 6(e) loses the lower left
large SSC. In fact, this same SSC is progressively weaker as
the illumination (or contrast) is increased. This is due to the
fact that the higher contrast will improve the response of the
higher frequency SSCs, which are smaller in area. The rela-
tive strength of the smaller SSCs thereby increases, redu-
cing the relative strength of the large SSC. To avoid
overcrowding the picture, only those SSCs whose saliency
exceeds 50% of the most salient SSC at their scale are
displayed.

To better illustrate exactly what is encoded by the
saliency map, Fig. 7 gives an example of synthesizing an
image from the wavelet coefficients retained in the SSCs.
Only the features represented in the saliency map (see
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Fig. 3. (a) The clusters formed by the centers of the 1D SSCs, associated with the cross-sections through an object. (b) One of the filter kernelsq(Q,x,y) used in
computing the saliency of the SSCs Eq. (3). The kernel is obtained by computing the oriented energy atQ � 08 for a disc.



Fig. 4(a)) are reconstructed. Note that the quality of the
reconstruction depends on the density of SSCs within a
region. In Fig. 7(b)–7(d), an increasing number of salient
cells were used to reconstruct the image.

2.4. Limitations of the representation

Under normal circumstances, an object (or one of its
component features) should produce a peak at its corre-
sponding location in the saliency map. However, there are
several exceptions which do not properly fit within the SSC
framework. The evolution of the saliency map at a single
scale as the object becomes degenerate, in the sense of the
SSC framework, is shown in Fig. 8. The exceptions arise
due to wavelet transform scale sub-sampling, crowded
objects, and elongated objects. As expected, combinations
of these will create even more difficulties.

As shown in Fig. 8(a), the saliency peak detector will find
one salient region for the object at the left side, whereas it
will find several salient regions for larger objects on the
right side. This effect will occur when the size of an object
is intermediate between two (octave) scales, and can be
minimized by increasing the number of scales. In Fig.
8(b), the detector will find four salient regions for the distant
objects to the left, but will find only one region in the center
of the four close objects to the right. This phenomenon

occurs when a set of objects enclose a compact background
region; the detector cannot separate figure from ground. One
could argue that such a regular pattern represents a form of
texture that should be treated as a single object. Again, if
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Fig. 5. Illumination invariance experiment 1: average illumination of (a)
13, (b) 15, (c) 25, and (d) 50 candles per square foot.

Fig. 4. Extracting the most salient SSCs in an image: (a) original image and its saliency map; (b) scale invariance; (c) translation invariance; (d) image rotation
invariance; (c) invariance to rotation in depth (illuminated left side of face exhibits little change in its saliency map); and (f) the saliency map graph (SMG) of
the original image in (a).



there were more scales, this composite object would be
detected at a coarser scale. Finally, in Fig. 8(c), the detector
will find several salient regions positioned along the elon-
gated object. In this case, a salient region grouper could
search for a string of co-curvilinear SSCs at a given scale
and group them into a composite structure which could
easily be accommodated by our graph representation and
matching methods outlined below. An approach similar to
this was proposed by Crowley for detecting ridges in a
Laplacian pyramid [24].

2.5. The saliency map as a graph

The computed saliency map can be represented as a hier-
archical graph with nodes representing saliency regions and
specifying region location (in the image), region size, region
saliency, and scale level. More formally, we define the
saliency map graph (SMG) to be a directed acyclic graph
G� (V,E), with each saliency regionri having a vertexvi in
V. (vi,vj) is a directed edge inE if and only if the scale level
of regionri is less than the scale level of regionrj, and the
center of the regionrj lies entirely in the interior of the
region ri. All the edges ofG will therefore be directed
from vertices at a coarser scale to vertices at a finer scale,
as shown in Fig. 4(f).1 Finally, to construct the database
of object views, a set of views is obtained for each object
from a fixed number of viewpoints (e.g. a regularly sampled
tessellation of a viewing sphere centred at the object). For
each view, the SMG is computed and stored in the database.

3. Matching two SMGs

Given the SMG computed for an input image to be recog-
nized and a SMG computed for a given model object image
(view), we propose two methods for computing their simi-
larity. In the first method, we compare only the topological
or structural similarity of the graphs, a weaker distance
measure designed to support limited object deformation
invariance. In the second method, we take advantage of
the geometrical information encoded in a SMG and
strengthen the similarity measure to ensure geometric
consistency, a stronger distance measure designed to
support subclass or instance matching. It is imperative that
each method support a measure of subgraph similarity in
order to support occluded object matching.
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Fig. 7. An example of image reconstruction by inverse wavelet transform
of scale-space cells in the order of decreasing saliency. (a) The original
image. Image reconstructed using the six most salient cells (b), 12 most
salient cells (c), and 20 most salient cells (d) from Fig. 4(a).

Fig. 6. Illumination invariance experiment 2: average illumination of (a) 6, (b) 13, (c) 25, (d) 30, (e) 50 candles per square foot.

1 This graph structure is more compact than Crowley’s Laplacian pyra-
mid approach [22–24] since he represents every local peak in his graph,
whereas we retain peaks only at their most characteristic scale.



3.1. Problem formulation

Two graphsG � (V,E) andG 0 � (V 0,E 0) are said to be
isomorphic if there exists a bijective mappingf:V ! V 0

satisfying, for allx,y [ V(x,y) [ E$ (f(x),f(y)) [ E 0. To
compute the similarity of two SMGs, we consider a general-
ization of the graph isomorphism problem, which we will
call the SMG similarity problem: Given two SMGsG1 �
(V1,E1) andG2� (V2,E2) and a partial mapping fromf:V1!
V2, let e be a real-valued error function defined on the set of
all partial mappings. Our error function,e , incorporates two
components with respect to any partial mapping: (1) we
would like to reward corresponding nodes which are similar

in terms of their topology, geometry, and salience; and (2)
we would like to penalize a set of correspondences the more
they exclude nodes from the model. A detailed discussion of
the error function is provided in Appendix A. We say that a
partial mappingf is feasible iff(x) � y implies that there are
parentspx of x andpy of y, such thatf(px) � py. Our goal is
therefore to find a feasible mappingf which minimizese(f).

3.2. A matching algorithm based on topological similarity

In this section, we describe an algorithm which finds an
approximate solution to the SMG similarity problem.
The focus of the algorithm is to find a minimum weight
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Fig. 8. The evolution of the saliency map at a single scale for the exception cases. The left-hand side shows the original images and the right-hand sideshows
the corresponding saliency maps at one scale. (a) As the object size increases, a peak in the saliency map corresponding to the object turns into a ‘crater’. (b) As
the objects approach closer to one another, the ‘anti-object’ between them becomes the most salient. (c) Instead of peak(s) in the saliency map, elongated
objects produce ‘mountain ridges’.

Fig. 9. Illustration of the SMGBM algorithm (see text for explanation).



matching between vertices ofG1 and G2 which lie in the
same level. Our algorithm starts with the vertices at level 1.
Let A1 andB1 be the set of vertices at level 1 inG1 andG2,
respectively. We construct a complete weighted bipartite
graphG(A1,B1,E) with a weight function defined for edge
(u,v) (u [ A1 andv [ B1) asw(u,v)� us(v) 2 s(u)u.2 Next, we
find a maximum cardinality, minimum weight matchingM1

in G using Ref. [30]. All the matched vertices are mapped to
each other, i.e. we definef(x) � y if (x,y) is the matching
edge inM1.

The remainder of the algorithm proceeds in phases as
follows, as shown in Fig. 9. In phasei, the algorithm consid-
ers the vertices of leveli. Let Ai andBi be the set of vertices
of level i in G1 andG2, respectively. Construct a weighted
bipartite graphG(Ai,Bi,E) as follows: (v,u) is an edge ofG if
either of the following is true: (1) bothu andv do not have
any parent inG1 and G2, respectively; or (2) they have at
least one matched parent of depth less thani, i.e. there is a
parentpu of u andpv of v such that (pu,pv) [ Mj for somej ,
i. We define the weight of the edge (u,v) to beus(u) 2 s(v)u.
The algorithm finds a maximum cardinality, minimum
weight matching inG and proceeds to the next phase.

The above algorithm terminates afterl phases, wherel is
the minimum number of scales in the SMGs of two graphs.
The partial mappingM of SMGs can be simply computed as
the union of allMi values fori � 1, …, l. Finally, using the
error measure defined in Appendix A, we compute the error
of the partial mappingM. Each phase of the algorithm
requires simple operations with the time to complete each
phase being dominated by the time to compute a minimum
weight matching in a bipartite graph. The time complexity
for finding such a matching in a weighted bipartite graph
with n vertices isO�n2 �������������

nlog log n
p � time, using the scaling

algorithm of Gabow et al. [31]. The entire procedure, as
currently formulated, requiresO�ln2 �������������

nlog log n
p � steps.

3.3. A matching algorithm based on geometric similarity

The SMGBM similarity measure captured the structural
similarity between two SMGs in terms of branching factor
and node saliency similarity; no geometric information
encoded in the SMG was exploited. In this section, we
describe a second similarity measure, called SMG similarity
using an affine transformation (SMGAT), that includes the
geometric properties (e.g. relative position and orientation)
of the saliency regions.

Given G1 � (V1,E1) and G2 � (V2,E2), we first assume,
without loss of generality, thatuV1u # uV2u. First, as shown in
Fig. 10, the algorithm will hypothesize a correspondence
between three regions ofG1, say (r1,r2,r3), and three regions

�r 01; r 02; r 03� of G2. The mapping {(r1 ! r 01), (r2 ! r 02),
(r3! r3

0)} will be considered as a basis for alignment if the
following conditions are satisfied:

• ri andri
0 have the same level in the SMGs, for alli [ {1,

…, l}.
• (ri,rj) [ E1 if and only if (ri

0,rj
0) [ E2, for all i,j [ {1, …,

l}, which implies that selected regions should have the
same adjacency structure in their respective SMGs.

Once regions (r1,r2,r3) and (r1
0,r2
0,r3
0) have been selected,

we solve for the affine transformation (A,b), that aligns the
corresponding region triples by solving the following
system of linear equalities:
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The affine transformation (A,b) will be applied to all
regions inG1 to form a new graphG 0. Next, a procedure
similar to the minimum weight matching, used in the
SMGBM is applied to the regions in graphsG 0 and G2.
Instead of matching regions which have maximum similar-
ity in terms of saliency, we match regions which have mini-
mum Euclidean distance from each other. Given two
regionsu andv, the distance between them can be defined
as theL2 norm of the distance between their centers, denoted
by d�u; v� � �����������������������������xu 2 xv�2 1 �yu 2 yv�2

p
. In a series of steps,

SMGAT constructs weighted bipartite graphsGi �
(Ri,R

0
i ,Ei) for each leveli of the two SMGs, whereRi and

R0i represent the set of vertices ofG 0 andG2 at theith level,
respectively. The constraints for having an edge inEi are the
same as SMGBM: (u,v) is an edge inGi if either of the
following holds:

• both u and v do not have any parents inG 0 and G2,
respectively;

• they have at lest one matched parent of depth less thani.

The corresponding edge will have weight equal to
w(u,v) � d(u,v). A maximum cardinality, minimum weight
bipartite matchingMi will be found for each levelGi, and the
partial mappingf(A,b) for the affine transformation (A,b) will
be formed as the union of allMi values. Finally, the error of
this partial mappinge(f(A,b)) will be computed as the sum
over eachEi of the Euclidean distance separating the nodes
of Ei weighted by the nodes’ difference in saliency (see
Appendix A). Once the total error is computed, the algo-
rithm proceeds to the next valid pair of region triples.
Among all valid affine transformations, SMGAT chooses
that one which minimizes the error of the partial mapping.

In terms of algorithmic complexity, solving for the affine
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2 G(A,B,E) is a weighted bipartite graph with weight matrixW� [wij] of
sizeuAu × uBu if, for all edges of the form (i,j) [ E, i [ A, j [ B, and (i,j) has
an associated weight,wi,j.



transformation Eq. (4) takes only constant time, while
applying the affine transformation toG1 to form G 0 is
O(max(uV1u,uE1u)). The execution time for each hypothesized
pair of region triples is dominated by the complexity of
establishing the bipartite matching betweenG2 and G 0,
which is O�ln2 �������������

nlog log n
p �, for SMGs withn vertices and

l scales. In the worst case, i.e. when both saliency map
graphs have only one level, there areO(n6) pairs of triples.
However, in practice, the vertices of a SMG are more
uniformly distributed among the levels of the graph, greatly
reducing the number of possible correspondences of base
triples. For a discussion of how the complexity of the bipar-
tite matching step can be reduced, see Ref. [32].

3.4. Limitations of the matching algorithms

There are two major limitations of both matching algo-
rithms. First, since both algorithms seek a minimum weight,
maximum cardinality matching in a bipartite graph that
spans corresponding levels of two saliency map graphs,
corresponding nodes in the two graphs must therefore lie
at the same levels in their respective SMGs. This implies
that a scene SMG cannot be vertically expanded or
compressed relative to a model SMG. Furthermore, an
image object that is detected at a scale different from that

of its corresponding model object cannot be correctly
matched.

To overcome this problem, consider a model SMG corre-
sponding to a particular view of some object and let the
initial scene SMG be exactly equal to the model SMG.
Next, consider a perturbation of the scene SMG in which
any scene SMG node can migrate up or down a small
number of levels,k, provided that the scene SMG topology
remains intact, i.e. same parent–child relationships with
parents and/or children changing levels. For a fixed, small
k, the bandwidth of the bipartite graph mapping solution will
increase from 1 to 2k 1 1. In other words, the bipartite graph
previously generated at each level will now encompass
nodes at neighboring levels. The resulting complexity of
both algorithms will be the same except for a constant scal-
ing factor to account for the increased (constant) number of
nodes in each bipartite graph.

The restriction that corresponding nodes lie at the same
level or scale has an important implication for matching
cluttered scenes. If the scale of background objects is
comparable to the object being recognized, the saliency
map graph corresponding to the scene is approximately
the saliency map corresponding to the object with additional
nodes added to one or more levels. In this case, our assump-
tion that corresponding nodes exist at the same level is not
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Fig. 10. Illustration of the SMGAT algorithm (see text for explanation).



violated. However, if a background object dominates the
object being recognized, the effect will be to ‘push’ the
object down to a finer scale while the background object
occupies the coarser scales. The migration of the target
object would violate our assumption that corresponding
SMG nodes lie at the same scale.

If we assume that some model SMG, consisting ofl
levels, occupies anyl continuous levels of a scene SMG,
then to overcome this second problem requires that we
apply either algorithm to each level of the scene SMG.
This will mean that the complexity of both algorithms will
increase by a multiplicative factor ofh, the number of scales
in the scene SMG. In the experiments reported in the follow-
ing section, we assume a bipartite graph of bandwidthl and
assume that any background objects do not dominate the
target object.

4. Experiments

To illustrate our approach to shape representation and
matching, we apply it to a database of model object views
generated by Murase and Nayar at Columbia University.

Views of each of the 20 objects are taken from a fixed
elevation every 58 (72 views per object) for a total of
1440 model views. The top row of images in Fig. 11
shows three adjacent model views for one of the objects
(piggy bank) plus one model view for each of two other
objects (bulb socket and cup). The second row shows the
computed saliency maps for each of the five images, while
the third row shows the corresponding saliency map graphs.
The time to compute the saliency map averaged 156 s per
image for the five images on a Sun Sparc 20, but can be
reduced to real-time on a system with hardware support for
convolution, e.g. a Datacube MV200. The average time to
compute the distance between two SMGs is 50 ms using
SMGBM, and 1.1 s using SMGAT (an average of 15
nodes per SMG).

4.1. Unoccluded scenes

To illustrate the matching of an unoccluded image to the
database, we compare the middle piggy bank image (Fig.
11(b)) to the remaining images in the database. Table 1
shows the distance of the test image to the other images in
Fig. 11; the two other piggy bank images (Fig. 11(a) and
11(c)) were the closest matching views in the entire data-
base. Table 1 also illustrates the difference between the two
matching algorithms. SMGBM is a weaker matching algo-
rithm, searching for a topological match between two
SMGs. SMGAT, on the other hand, is more restrictive,
searching for a geometrical match between the two SMGs.
For similar views, the two algorithms are comparable;
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Fig. 11. A sample of views from the database: top row represents original images, second row represents saliency maps, while third row represents saliency
map graphs.

Table 1
Distance of Fig. 11(b) to other images in Fig. 11

Algorithm 11(a) 11(c) 11(d) 11(e)

SMGBM 9.57 10.06 14.58 23.25
SMGAT 8.91 12.27 46.30 43.83



however, as two views diverge in appearance, their similar-
ity as computed by SMGAT diverges more rapidly than
their SMGBM similarity.

In the second experiment, we choose three different
objects and repeat the procedure, as shown in Fig. 12. In
this case, each of the five views is compared to the other four
views, leading to a 5× 5 table, as shown in Table 2. Entries
above the diagonal are computed using the SMGBM algo-
rithm, while entries below the diagonal are computed using
the SMGAT algorithm. Again, both algorithms perform
well, with the SMGAT distance diverging more rapidly as
the objects become more dissimilar.

In the third experiment, we compare every image to every
other image in the database, resulting in over 1 million
trials. There are three possible outcomes: (1) the image
removed from the database is closest to one of its neighbor-
ing views of the correct object; (2) the image removed from
the database is closest to a view belonging to the correct
object but not a neighboring view; and (3) the image
removed from the database is closest to a view belonging
to a different object. The results are shown in Table 3. As we
would expect, the SMGAT algorithm, due to its stronger
matching criterion, outperforms the SMGBM algorithm. If
we include as a correct match any image belonging to the
same object, both algorithms (SMGBM and SMGAT)
perform extremely well, yielding success rates of 97.4%
and 99.5%, respectively.

4.2. Occluded scenes

To illustrate the matching of an occluded image to the
database, we compare an image containing the piggy bank
occluded by the bulb socket, as shown in Fig. 13. Table 4
shows the distance of the test image to the other images in

Fig. 11. The closest matching view is the middle view of the
piggy back which is, in fact, the view embedded in the
occluded scene. In a labeling task, the subgraph matching
the closest model view would be removed from the graph
and the procedure applied to the remaining subgraph. After
removing the matching subgraph, we match the remaining
scene subgraph to the entire database, as shown in Table 5.
In this case, the closest view is the correct view (Fig. 11(d))
of the socket.

In a second occlusion experiment, consider the duck
occluding the toy cat, as shown in Fig. 14. Table 6 shows
the distance of the test image to the other images in Fig. 12.
The closest matching view in the database is the correct
view of the duck (Fig. 12(a)). After removing the scene
SMG subgraph corresponding to the duck, the remaining
subgraph was matched to the entire database, as shown in
Table 7. The closest image is the correct view (Fig. 12(d)) of
the cat.

4.3. An analysis of viewpoint invariance

In a view-based 3D object recognition system, an object
is represented by a collection of views. The more viewpoint-
invariant an image representation is, the fewer the number
of views needed to represent the object. In the above experi-
ments, we computed the saliency map graphs for the full set
of 72 views for each of the 20 objects. In this section, we
explore the viewpoint invariance of our representation by
considering a smaller sample of views for one of our
objects.

Our experiment, as shown in Fig. 15, consists of succes-
sively removing every second view (model SMGs) of a
given object (in this case, the piggy bank) and computing
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Fig. 12. A second sample of views for the second experiment.

Table 2
Pairwise distance between figures in Fig. 12. Entries above the diagonal are
distances as computed by SMGBM, while entries below the diagonal are
computed by SMGAT

12(a) 12(b) 12(c) 12(d) 12(e)

12(a) – 6.64 7.11 12.24 13.77
12(b) 5.31 – 6.76 13.93 14.71
12(c) 8.24 4.12 – 11.45 12.61
12(d) 39.35 34.43 36.40 – 21.72
12(e) 45.88 41.47 41.15 58.18 –

Table 3
An exhaustive test of the two matching algorithms. For each image in the
database, the image is removed from the database and compared, using both
algorithms, to every remaining image in the database. The closest matching
image can be either one of its two neighboring views, a different view
belonging to the correct object, or a view belonging to a different object

Algorithm % Hit % Miss

right object wrong object

SMGBM 89.0 8.4 2.6
SMGAT 96.6 2.9 0.5



the distance, using both SMGBM and SMGAT, between
each removed view to the remaining views. Thus, at the
first iteration, we will remove every second view from the
original set of 72 views, leaving 36 views of the model
object. Each of the 36 views that was removed will then
be compared to each of the 36 remaining model views. If the
closest matching model view is adjacent to the removed
view’s position in the original set of 72 views, then one
can argue that the intermediate view (that was removed) is

extraneous. At the next iteration, we remove every second
view from the 36 model views and repeat the experiment
with the 18 removed views.3

The results are shown in Table 8. For example, when
leaving out 36 views, 91% of the SMGBM searches
(using a removed view) resulted in a closest view that is
adjacent to the removed view at the next level up (72 views),
while for SMGAT, 99% of the searches were successful.
Furthermore, this percentage gradually declines for
SMGAT and rapidly declines for SMGBM. As one might
expect, when geometric information is included in the
search, neighboring views of a test view exhibit the least
geometric distortion. For the SMGBM algorithm, however,
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Fig. 13. Occluded object matching: (a) original image; (b) saliency map; and (c) saliency map graph.

Table 4
Distance of Fig. 13(a) to other images in Fig. 11. The correct piggy bank
view (Fig. 11(b)) is the closest matching view

Algorithm 11(a) 11(b) 11(c) 11(d) 11(e)

SMGBM 9.56 3.47 8.39 12.26 14.72
SMGAT 24.77 9.29 21.19 30.17 33.61

Table 5
Distance of Fig. 13(a) (after removing from its SMG the subgraph corre-
sponding to the matched piggy back image) to other images in Fig. 11

Algorithm 11(a) 11(b) 11(c) 11(d) 11(e)

SMGBM 12.42 14.71 14.24 4.53 9.83
SMGAT 18.91 20.85 17.08 7.19 15.44

Table 6
Distance of Fig. 14 to other images in Fig. 12

Algorithm 12(a) 12(b) 12(c) 12(d) 12(e)

SMGBM 22.71 29.64 33.97 30.57 62.11
SMGAT 39.16 47.92 66.04 85.19 105.72

Table 7
Distance of Fig. 14 (after moving from its corresponding SMG the subgraph
corresponding to the matched duck image) to the other images in Fig. 12

Algorithm 12(a) 12(b) 12(c) 12(d) 12(e)

SMGBM 78.68 62.41 71.27 27.59 51.03
SMGAT 75.92 81.39 68.41 44.37 90.29

Fig. 14. Image of occluded object used in second occlusion experiment.

Table 8
Evaluating viewpoint invariance of the SMG representation. The first row
indicates the number of model views remaining in the model view set for
the piggy bank object after removing every second view. The second and
third rows indicate the percentage of SMGBM-based and SMGAT-based
searches, respectively, between each of the removed views and the remain-
ing model views that result in a ‘closest’ view that is adjacent to the
removed view

Views in Tree 36 18 9

SMGBM % 91 50 35
SMGAT % 99 84 61

3 Then views removed at stepl are maximally distant from then remain-
ing views; there is no need to match the views removed at stepl 2 1 to the
views remaining at stepl.



the topological structure of a test view may, in fact, be similar
to other views of the object despite geometric differences.

With the proper indexing structure, it is clear that in a
recognition framework, the number of candidates returned
from a topological index will be higher than that returned
from a geometric index, given the ambiguity inherent in a
topological index. On the other hand, shape deformations
within an object’s class may be accommodated by SMGBM
and not by SMGAT. Finally, it must be pointed out that the
above analysis was performed on only one object. Although
we would expect the same trend to occur with other model
object view sets, the percentages will vary with the shape
and appearance of the object. For example, for an object
with many degenerate views, we would expect the percen-
tages to fall when a sample lies directly on a degenerate
view. We are currently conducting more comprehensive
experiments in order to predict what kind of view sampling
resolutions are appropriate for each algorithm.

4.4. Limitations of the experiments

The approach presented in this paper has not addressed
the indexing problem. For the recognition experiments, each
(possibly occluded) ‘query’ view was compared to each and
every model view to return the closest matching view.
Although the method returns the closest model view with
high probability, the resulting linear search of the database
is simply not feasible for large databases. In current work,
we are exploring the use of recovered local SMG structure
(SMG subgraphs covering local regions in the image) to

index into the database of model views and return objects
whose model view trees have similar structure at their
leaves. In addition, we are exploring hierarchical represen-
tations of the model views corresponding to a given object,
leading to a more efficient (O(log n)) search of an object’s
model views than the current linear search. The evaluation
of our approach is also limited in that by using the Columbia
University image database, we were unable to change the
lighting conditions, scale, etc., of the images. In future
work, we plan to construct our own image database, allow-
ing us to more effectively evaluate the transformation invar-
iance of our representation.

5. Conclusions

There is a gap in the view-based object recognition litera-
ture between the image-based systems and the feature-based
systems. While the image-based systems have been shown
to work with complex objects, e.g. faces, they are highly
sensitive to occlusion, scale, and deformation. These limita-
tions are due, in part, to the global nature of the representa-
tion and the lack of abstraction in the resulting descriptions.
The feature-based systems, on the other hand, rely on highly
sensitive feature extraction processes that perform poorly in
the presence of surface markings or texture. We have intro-
duced an image representation that fills this gap. Our
saliency map graph offers a robust, transformation invariant,
multiscale representation of an image that not only captures
the salient image structure, but provides the locality of
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Fig. 15. An experiment exploring the viewpoint invariance of the SMG representation and matching algorithms.



representation required to support occluded object recogni-
tion. We have presented two graph matching algorithms,
SMGBM and SMGAT, that offer an effective mechanism
for comparing the topological and geometric structure,
respectively, of a test image SMG and a database image
SMG.

The success of our preliminary experiments suggests that
our SMG representation is rich enough to distinguish (using
our two matching algorithms) between the various views of
a database of objects. Furthermore, we have evaluated the
performance of the two matchers as a function of model
view sampling resolution. However, the occlusion and illu-
mination experiments, although supporting our claims of
invariance, are incomplete. Much more experimentation is
needed, whereby both the size and position of the occluder
and the position and intensity of the light source are system-
atically varied. We are in the process of building a labora-
tory that can support this type of experimentation.

Finally, our graph matching formulation, in terms of
topological and geometric similarity, is applicable to any
multiscale image representation, e.g. a Laplacian pyramid,
which can be mapped to a vertex-weighted, directed acyclic
graph. In current work, we are not only seeking to improve
our saliency map construction, but are exploring other
multiscale image representations within this framework.
We are also embedding our matching algorithms in an
object recognition system that uses SMG subgraphs as an
indexing structure.
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Appendix A. Choosing a suitable error function

The requirement of feasibility assures that the partial
mapping preserves the path structure betweenG1 and G2.
It is essential that the error functione is carefully selected so
as to yield optimal results. Our error function incorporates
two components with respect to any partial mapping: (1) we
would like to reward corresponding nodes which are similar
in terms of their topology, geometry, and salience; and (2)
we would like to penalize a set of correspondences the more
they exclude nodes from the model. Excluding the second
component, our measure is similar to the objective function
used in the {0,1} integer programming formulation of the
largest subgraph isomorphism problem [33, 34].

Given two SMGs,G1 � (V1,E1) andG2 � (V2,E2), and a
partial mapping,f:V1! V2, we define the mapping matrix,
M(f), betweenG1 andG2, to be auV1u × uV2u, {0,1} matrix

as follows:

Mu;v �
1 if u [ V1; v [ V2;u� f �v�
0 otherwise

(
Sincef is a bijective mapping,M(f) will satisfy the following
conditions:X
v[V2

Mu;v # 1 ;u [ V1

X
u[V1

Mu;v # 1 ;v [ V2

Given this formulation of the mapping,f, we define the
error off to be:

e�f � � e
X

u[V1

X
v[V2

Mu;vv�u; v�us�u�2 s�v�u 1 �1 2 e�

�
 X

u[V1

1 2
X
j[V2

Mu;j

0@ 1As�u�1
X

v[V2

1 2
X

i[V1

Mi;v

0@ 1As�v�
!
�5�

wheree � u1tM( f )1u/uV1u represents the ratio of the number
of matched vertices to the number of vertices (uV1u) in the
model SMG (with1 the identity vector of the appropriate
dimension) ands(v) denotes the strength of regionv in its
saliency map. For the SMG topological similarity algo-
rithm, defined in Section 3,v (u,v) is always one, while
for the SMG geometrical similarity algorithm, defined in
Section 3,v (u,v) represents the Euclidean distance between
the centres of the regions,u andv. Clearly, in the case of
perfect similarity,e (f) � 0, while e (f) will be Su[V1

s�u�1
Sv[V2

s�v� if there is no match (1tuM(f)u1 � 0).
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[13] M. Jägersand, Saliency maps and attention selection in scale and
spatial coordinates: an information theoretic approach, Proceedings
of the 5th International Conference on Computer Vision, Boston, MA,
June 1995, pp. 195–202.

[14] T. Lindeberg, Detecting salient blob-like image structures and their
scales with a scale-space primal sketch — a method for focus-of-
attention, International Journal of Computer Vision 11 (3) (1993)
283–318.

[15] B. Olshausen, C. Anderson, D.V. Essen, A neurobiological model of
visual attention and invariant pattern recognition based on dynamic
routing of information, Journal of Neurosciences 13 (11) (1992)
4700–4719.

[16] B. Takac̀s, H. Wechsler, A dynamic and multiresolution model of
visual attention and its application to facial landmark detection,
Computer Vision and Image Understanding, in press.

[17] J.K. Tsotsos, An inhibitory beam for attentional selection, in: L.
Harris, M. Jenkin (Eds.), Spatial Vision in Humans and Robots,
Cambridge University Press, Cambridge, UK, 1993, pp. 313–331.

[18] J. Malik, P. Perona, Preattentive texture discrimination with early
vision mechanisms, Journal of the Optical Society of America 7
(1990) 923–932.

[19] J.R. Bergen, M.S. Landy, Computational modeling of visual texture
segregation, in: M. Landy, J.A. Movshon (Eds.), Computational
Models of Visual Processing, MIT Press, Cambridge, MA, 1991.

[20] R.P.N. Rao, G.J. Zelinsky, M.M. Hayhoe, D.H. Ballard, Model-
ing saccadic targeting in visual search, in: D. Touretzky, M.
Mozer, M. Hasselmo (Eds.), Advances in Neural Information Proces-
sing Systems, Vol. 8, MIT Press, Cambridge, MA, 1996, pp. 830–
836.

[21] L. Wiskott, J.-M. Fellous, N. Kru¨ger, C. von der Malsburg, Face

recognition by elastic bunch graph matching, IEEE Transactions on
Pattern Analysis and Machine Intelligence 19 (7) (1997) 775–779.

[22] J.L. Crowley, A multiresolution representation for shape, in: A.
Rosenfeld (Ed.), Multiresolution Image Processing and Analysis,
Springer Verlag, Berlin, 1984, pp. 169–189.

[23] J. Crowley, A. Parker, A representation for shape based on peaks and
ridges in the difference of low-pass transform, IEEE Transactions on
Pattern Analysis and Machine Intelligence 6 (2) (1984) 156–169.

[24] J.L. Crowley, A.C. Sanderson, Multiple resolution representation and
probabilistic matching of 2-D gray-scale shape, IEEE Transactions on
Pattern Analysis and Machine Intelligence 9 (1) (1987) 113–121.

[25] P. Halvadar, G. Medioni, F. Stein, Perceptual grouping for generic
recognition, International Journal of Computer Vision 20 (1/2) (1996)
59–80.

[26] E. Simoncelli, W. Freeman, E. Adelson, D. Heeger, Shiftable multi-
scale transforms, IEEE Transactions on Information Theory 38 (2)
(1992) 587–607.

[27] I. Marsic, Data-driven shifts of attention in wavelet scale space, Tech-
nical Report CAIP-TR-166, CAIP Center, Rutgers University, Piscat-
away, NJ, September 1993.

[28] S. Mallat, W.L. Hwang, Singularity detection and processing with
wavelets, IEEE Transactions on Information Theory 38 (2) (1992)
617–643.

[29] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, D.J. Heeger, Shiftable
multiscale transforms, IEEE Transactions on Information Theory 38
(2) (1992) 587–607.

[30] E. Emonds, Paths, trees, and flowers, Canadian Journal of Mathe-
matics 17 (1965) 449–467.

[31] H. Gabow, M. Goemans, D. Williamson, An efficient approximate
algorithm for survivable network design problems, Proceedings of the
Third MPS Conference on Integer Programming and Combinatorial
Optimization, 1993, pp. 57–74.

[32] A. Shokoufandeh, I. Marsic, S. Dickinson. View-based object recog-
nition using saliency maps, Technical Report DCS-TR-339, Depart-
ment of Computer Science, Rutgers University, New Brunswick, NJ
08903, August 1998.

[33] J. Kobler, The Graph Isomorphism Problem: Its Structural Complex-
ity, Birkhauser, Boston, MA, 1993.

[34] G.G.E. Mjolsness, P. Anandan, Optimization in model matching and
perceptual organization, Neural Computation 1 (1989) 218–229.

A. Shokoufandeh et al. / Image and Vision Computing 17 (1999) 445–460460


