image
vision
COMPUTING

oW 7 3 >
ELSEVIER Image and Vision Computing 16 (1998) 275-292

PLAYBOT
A visually-guided robot for physically disabled children

J.K. Tsotsos"*, G. Verghese?, S. Dickinson®, M. Jenkin®, A. Jepson®, E. Milios®, F. Nuflo® S. Stevenson”,
M. Black!, D. Metaxas®, S. Culhane®, Y. Ye, R. Mann®

“Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario, Canada M5S 3G4
h[)epartmenr of Computer Science, Hill Center for Mathematical Sciences, Ruigers, The State University of New Jersey, Piscataway, New Jersey 08855
‘Department of Computer Science, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
“Xerox Palo Alto Research Center, 3333 C oyote Hill Road, Palo Alto, CA, USA
‘GRASP Laboratory, 3401 Walnut Street, Suite 300C, University of Pennsylvania, Philadelphia, PA 19104-6228, USA
"IBM Research. T.J. Waison Labs, Yorkiown Heights, New York, NY, USA
ENEC Research Institute, 4 Independence Way, Princeton, NJ. USA 08540

Received | November 1996; revised | September 1997; accepted 22 September 1997

Abstract

This paper overviews the PLAYBOT project, a long-term, large-scale research program whose goal is to provide a directable robot which
may enable physically disabled children to access and manipulate toys. This domain is the first test domain, but there is nothing inherent in
the design of PLAYBOT that prohibits its extension to other tasks. The research is guided by several important goals: vision is the primary
sensor; vision is task directed; the robot must be able to visually search its environment; object and event recognition are basic capabilities;
environments must be natural and dynamic; users and environments are assumed to be unpredictable; task direction and reactivity must be
smoothly integrated: and safety is of high importance. The emphasis of the research has been on vision for the robot this is the most
challenging research aspect and the major bottleneck to the development of intelligent robots. Since the control framework is behavior-based.
the visual capabilities of PLAYBOT are described in terms of visual behaviors. Many of the components of PLAYBOT are briefly described
and several examples of implemented sub-systems are shown. The paper concludes with a description of the current overall system

implementation, and a complete example of PLAYBOT performing a simple task. © 1998 Elsevier Science B.V.

Kevwords: PLAYBOT; Visually-guided robot; Physical disability; Computer vision

1. Introduction

The experimental goal of the project is the development of
a prototype environment which will assist disabled children in
play, thereby enhancing their innate capabilitics. Imagine a
child seated in a robotic wheelchair. This robot possesses a
robotic arm and hand, a sterco-colour vision robot head, and a
communication panel (an artist’s view of the target PLAY-
BOT system is shown in Fig. |, which includes the actual
robot arm and head). The communication panel design is
motivated by the BLISS symbolic language, invented by
Charles Bliss in 1941 and successfully used by cerebral
palsy patients [1]. Tt is assumed that the child can point to a
picture of a toy (or toys) on the panel and point to a sequence

* Correspondence to: John K. Tsotsos, Dept. ot Computer Science, 6
King's College Rd., University of Toronto, Toronto, Ontario. Canada
MS5S TA4. Tel: 416 978 3619: fax: 416 978 1455; e-mail: tsotsos@vis.
toronto.cdu

0262-8856/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved

PII S0262-8856(97)00088-7

of pictorially represented actions that he/she wishes the robot
to perform with that toy (or toys). In effect, a play sentence is
specified in terms of a grammatically formed sequence of
actions. The play sequence could involve bringing toys to
the child’s table for close inspection and manipulation, it
could also involve the starting or stopping of various auto-
mated aspects of the environment (i.e. motorized trains). The
robot would visually locate the toys, plan the execution of the
play sequence, and then together with the child, move to the
proper position and carry out the actions.

Current robots in use for the disabled all rely on the user’s
intact visual system to be an integral part of a closed-loop
control system. For example, in one class of robotic aids,
specialized sensors are developed for a controllable muscle
the user might have (a finger. eye brow, eye movement.
etc.). The user decides what the robot manipulator should
grasp, and then through a long series of micro-activations of
the robot, visually guides the manipulator to the target

276 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

Fig. 1. Artist’s conception of PLAYBOT (actual child in a wheelchair on
which is superimposed PLAYBOT specific components, robot arm, user
interface and TRISH stereo head).

object. Each micro-activation might move a particular joint
of a robot arm a small amount. The key to success here is
that the user’s visual system senses the progress of the arm
in comparison to the target, and the user’s planning system
determines which micro-activation to perform next in order
to move closer to the target. This can be very tedious; the
user may tire easily and the amount of work that might be
done in a given unit of time is very small. Nevertheless, the
user does have some independence, and this is important. In
the long run, however, improvements are needed. PLAY-
BOT’s goal is to provide a further step along the path of
enhanced mobility, functionality and independence for
physically disabled children.

2. PLAYBOT overview

PLAYBOT is designed with the goal of ‘short-circuiting’
the control loop described above. The user’s visual system is
still needed, of course, to determine what the goal of a
manipulation is, and to communicate with the robot. But
the robot’s visual system then takes its place in the
closed-loop control of the robot in the execution of the
task. The big research questions then are: what kind of inter-
face is best so that the user’s goals are easily and effectively
communicated? and, how exactly is the vision problem to be
solved? The remainder of this paper describes our progress
in answering these two questions.

As must be obvious, this is a long-term, large-scale pro-
ject. This overview paper will briefly address many of the
components of PLAYBOT. The bulk of our research con-
cerns vision, since this is central to the motivations for the
project. In the following sections, overviews of the user
interface, stereo vision head, object recognition, visual
attention, and other aspects will be given (with references
to sources for further details). It should not be too difficult to
see how, in the context of PLAYBOT, each component is
necessary. The paper concludes with a short example show-
ing how the pieces fit together for a simple task, and how
PLAYBOT actually executes a simple task.

Neither the research nor the implementation of the
PLAYBOT system are complete at this point; it is antici-
pated that perhaps three or four years of further develop-
ment are required to achieve a system with a broad set of
competencies. Section 4 provides a description of the
current implementation.

2.1. System goals

There are several guiding goals which have united the
research efforts over the past six years:

1. Vision as primary sensor. Humans rely on vision as their
major source of world input and we wished to explore
vision as the primary sensor for PLAYBOT. One might
consider the overall project as not only a development
task with a particular application domain, but also as an
experiment in furthering our understanding of how far
computational vision can advance. There is no attempt in
the basic research of the project to find ‘tricks’ or clever
short-cuts to solving the vision problem. Each of the
vision behaviors described represents a genuine attempt
at furthering the state-of-the-art for that particular visual
sub-task.

2. Task direction. Previous research has shown the impor-
tance of task direction as a major complexity reduction
strategy for visual perception and intelligent behavior
([2]). For this reason, PLAYBOT is task-driven, the
task being specified by the user. Effort has been devoted
to the development of a simple, yet powerful, task direc-
tion language and user interface through which an unso-
phisticated user may provide natural commands to the
system. It is clear that it would be highly cumbersome for
a user to provide all details of task execution. Each task
that may be specified may be considered as a ‘macro’
instruction, which is expanded into a default sequence of
internal instructions.

3. Visual search. A PLAYBOT-like robot is useless with-
out the ability to search the world for particular objects or
events. It will not always be the case that the toys
requested by the child will be in the current camera
view. This search function is a component of many of
the other behaviors the system; efficient search strategies
are critical.

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292 277

4. Recognition. A key component for successful execution
of a PLAYBOT task is the ability to recognize objects
and perceive events in the world. Much of our research
is devoted to these tasks, coupled tightly to the search
capability referred to above.

5. Minimal re-engineering of environments. In general, it is
highly undesirable that environments in which intelligent
robots are placed be re-engineered to simplify the robot
tasks. In the case of the physically disabled, any addi-
tional environment engineering would only further
emphasize the disability for the user. Thus, it would be
desirable that PLAYBOT function in a ‘normal’ indoor
environment such as one available in a home. However,
even PLAYBOT must make some concessions. It is thus
further assumed that the PLAYBOT system requires spe-
cific visual targets in the environment. For example, the
room may be re-painted in bright colours with strong
colour boundaries and wall edges may be emphasized
with contrasting colours. Objects with strong contrast
may be added, such as a white play table with black
edges and contours. Paintings of toys or wall paper
may be added, again including strong contrast. In any
case, these changes may be made on system installation.
They would appear to the users as natural and ‘fun’
decorations in their new play room; however, they also
serve the critical function of providing many visual cali-
bration targets throughout the room which PLAYBOT
uses as needed.

6. Unpredictability of environment and user. Careful
design dictates that any user of a computer system
must always be considered unpredictable. Further, any
real world environment must be considered to have some
inherent unpredictability. PLAYBOT must be able to
deal sensibly with user unpredictability: incomplete
instructions; illogical instructions; improper system
use; and so on. PLAYBOT should have a reasonable
set of default actions and behaviors, and must be able
to respond to the user in a helpful manner. The play
cnvironment will also have characteristics which require
special actions: a sibling or parent entering a room; new
toys being added to the room; playmates cooperating
with the user; other PLAYBOT-enhanced children
wishing to cooperate in play; and so forth. Again, PLAY-
BOT must react in the appropriate ways. One particularly
interesting supplementary visual behavior of PLAYBOT
is dynamic environment mapping. A typical user may
take some time to express an instruction and there
might be sizable gaps in time between successive
instructions. Any ‘idle time’ of this type can be used to
advantage. PLAYBOT would detect such delays and re-
awaken an always active visual reconstruction behavior.
This behavior would be the same object recognition
behavior invoked for recognizing particular toys, but
now would be used to update the 3-D map of the play
cnvironment.

7. Reactivity. Task direction is helpful for visual search,

object recognition and event perception; however, it
does not suffice for an intelligently functioning robot.
PLAYBOT must be able to interrupt task execution in
order to react to events in its environment such as; new
persons in the room; events which have unknown con-
sequences on the robot and child’s safety; and so on.
These constraints mean that if vision is the primary sen-
sor, the sensing system must have good peripheral vision,
and a robust attention system which can re-direct the
system’s gaze if needed. Further, it may be that in
order to satisfy fully safety constraints, other sensor
schemes must be added to act as the ‘eyes in the back
of the head’. PLAYBOT currently does not have these
extra eyes. The future addition of ‘ears’ to the PLAY-
BOT head will assist, because auditory stimuli may be
localized and, if out of camera view, can direct the head
to fixate the source.

8. Safety. Little need be added here; it is clear that a PLAY-
BOT system must satisfy the most stringent guidelines.

To the above, one must add robustness and reliability of
the overall system under changes in lighting, playroom
characteristics, and other such variations.

Due to the size of the project, we acknowledge at the
outset that we do not do justice to related research in this
presentation. The reader is encouraged to look at the litera-
ture cited in order to see proper comparisons to other work.
Previous descriptions of PLAYBOT have appeared in [3.4].

2.2. New hardware components

The user interface for the child is critical and for this
a new hardware and software design is proposed. The
ActiveDeskTop is a large-scale, touch-sensitive video
display [5]. It is the table-like object in front of the child
in Fig. 1. The video surface will be constructed by adjoining
a large number of flat screen display devices of a given
shape and size, tiling some arbitrary surface. Each screen
on this surface is controlled by its own computer processor,
and these processors are networked together. Superimposed
over this surface is a tiling of transparent touch-sensitive
screens, which allow for user input. Each display unit con-
tains its own processing sub-system networked to all the
others. In this way, each processor is responsible for both
generating the graphics for its own tile as well as dealing
with any local touch interactions. Each processor is also
responsible for communications with the remainder of the
network as required in order to achieve the global results
desired. The resulting display device is thin, has a very high
resolution, appears to be a single large screen to the user.
and is capable of supporting many different types of
human—machine interaction.

On this hardware substrate, a user interface is designed.
For PLAYBOT, there are a number of specific requirements
that must be met to ensure that the child is able to commu-
nicate with the robot in a natural manner. The child must be

278 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

told what toys might be on the table and what actions the
robot can perform on those toys. The child must be able to
easily specify the toys that she wants the robot to manipu-
late, and the actions that she wants the robot to perform on
them. The interface must show the child what the robot sees,
so that she understands what objects the robot knows about
within its environment. How these requirements are met is
highly restricted by the fact that not only is the intended user
not computer-literate, she is also unable to use the typical
means of communicating with a computer through a key-
board and a mouse.

At this time, the ActiveDeskTop has not been con-
structed. We use a standard workstation display with
mouse interaction as the interface. However, the details of
the interface are well-defined and implemented, as can be
seen in Fig. 2. There are several windows within this
interface:

1. Actions. The ‘verbs’ of the command language are
depicted using animated buttons (real hand and object
performing the action) in individual icons. A user may
touch this button in order to request the action. The
actions grasp, place and push are shown in Fig. 2.

2. Objects. The ‘nouns’ of the command language are
depicted using actual images in individual icons. A

touch of this button requests the toy. A touch on an object
in the camera or scene views will also suffice to specify
an object. In these instances, however, the object recog-
nition behavior must be invoked to recognize the object
at the specified location so that its type is known. Blocks
of different colours are shown in the figure.

3. Locations. Objects may be placed in specific spatial rela-
tionships with other objects, such as on top of, to the left
of, or to the right of, some other object. These three
relationships are shown in Fig. 2 as red blocks related
to black blocks with an arrow.

4. Scene View. A graphical depiction of the actual environ-
ment in which PLAYBOT and the play table exists is
shown here from the user’s current point of view, i.e. this
view dynamically changes with user movement. Users
may touch objects or locations within the window,
including room locations to which they may wish to be
moved. The table and room are pre-specified; the table
contents are recovered by PLAYBOT as it operates.

5. Left and Right Camera Views. The actual images seen by
the stereo head are shown. Users may touch objects or
locations within the windows.

6. Message Window. Feedback from the system to the user
may appear here.

7. Parameters. Additional buttons are provided here for

Windows

e s ey i e

dptions

Grigiend

Sispla Cofetr .o

Simple Coloux

Fig. 2. The current interface. The correspondence with the window and icon descriptions in the text is: Actions—right hand side, third row of icons from the

top; Objects—right hand side, second row of icons; Locations—right hand side, bottom row of icons; Scene View

window in bottom left corner; Left and

Right Camera Views—Ileft hand side, middle two windows; Message Window—right hand side, top window; Parameters—four icons in top left corner;
Commands—hidden. The bottom right hand corner is just screen background and may be ignored.

J.K. Tsotsos et al /Image and Vision Computing 16 (1998) 275-292 279

users who may wish to ‘play’ with the robot itself; that is,
to move the arm, platform, etc., independently of a play
command.

8. Commands. System debugging windows and related
information.

Note that: (1) the windows permit users to specify objects
and locations in many different ways, but actions in only
one way: and (2) there are scroll buttons for each of the
object, action and location icons since all cannot be dis-
played simultaneously. The grammar which ties these con-
cepts together is presented below.

The current objects are geons (see Section 3.1.3): Block;
Cone; Cylinder; Pyramid; Truncated Cone; Truncated Pyr-
amid; Ellipsoid; Bent Block; Bent Cylinder; Truncated
Ellipsoid. Although these are not really toys, a large number
of objects may be constructed out of combinations of geons.
Thus, we expect that the representation of many simple toys
will not prove difficult, once recognition of geons is a basic
competence of the system. The current actions are: Pickup;
Drop; Push; Bring; Inspect; Separate; Place; Locate;
Assemble; Disassemble; Use; and Move-Me-To.

A second new hardware addition is that of the finger
sensors. We use the CRS Plus robot arm, a five degree of
freedom robot with a gripper that has a two-finger force
sensitive manipulator. It can move the parallel fingers
together or apart, and is able to limit the force it exerts on
the object between its fingers. We have constructed infra-red
sensors, and embedded them within new finger attachments to
allow the new fingers to sense the presence or absence of solid
objects in their vicinity [6]. The specific algorithm employed
to perform this function is presented later.

The final major new hardware component in PLAYBOT
is the vision sensor. TRISH (Toronto IRIS Stereo Head) is a
robotically controlled binocular hcad, consisting of two,
fixed focal length, colour cameras with automatic gain con-
trol forming a verging stereo pair [7]. TRISH is capable of
version (rotation of the eyes about the vertical axis so as to
maintain a constant disparity), vergence (rotation of the eyes
about the vertical axis so as to change the disparity), pan
(rotation of the entire head about the vertical axis), and inde-
pendent tilt (rotation of each eye about the horizontal axis).

One novel characteristic of the design is that each camera
can rotate about its own optical axes (torsion). Torsion
movement makes it possible to minimize the vertical com-
ponent of the 2-D search which is associated with stereo
processing in verging stereo systems. Thus, TRISH is a
seven degree of freedom robot. The utility of these degrees
of freedom is such that not only can TRISH point to differ-
ent locations in the world, but also actively control the geo-
metry of the head to reflect the best horopter arrangement
for stereo processing given a task. The control and use of
TRISH is beyond the scope of this paper (see [8,9,7,10]).
TRISH is seen in Fig. | in the upper center-left region, and
plays a prominent role in the overall examples later in the

paper.

2.3. An example scenario

Suppose a user wishes to find a cube in order to put it onto
an existing stack of blocks. The play sentence might be
something like: touch pickup icon, touch cube icon, touch
place icon, touch location in the scene view. Exactly how
would PLAYBOT execute this task? One might imagine
that a wide variety of visual, reasoning, and robot motion
behaviors must be invoked in the proper sequence, beha-
viors such as:

¢ look for the cube

e move robot so that cube is within reach of robot arm
while fixating cube and stabilizing for robot’s motion

e determine robot manipulator path and grasp parameters
for cube

e grasp cube and retract arm from play table area

Now suppose the task was changed slightly to be: pick
up cube, place in boxcar of moving train (which could
simply be pointed to in the scene view window). How is
the above solution modified? The following must be
inserted:

locate train boxcar
track boxcar model
plan robot manipulator path and cube pose parameters so
that cube might be dropped into the boxcar when it
passes under cube position

e determine timing of drop given tracked boxcar motion
parameters and knowledge of train track path

Our research has as a primary goal the development of
solutions for the visual behaviors required by tasks of this
complexity. A secondary, but no less important, goal has
been the development of behaviors for the non-visual tasks
which are necessary to execute such tasks. The next section
will briefly overview the behaviors investigated in the
project.

3. Behaviors to support PLAYBOT

The approach chosen to imbue PLAYBOT with useful
intelligence is based on a set of interacting behaviors.
Although behavior-based, the limitations of previous beha-
vior-based robot architectures are not found in PLAYBOT.
Those limitations are documented and discussed in [2]. We
take a radically different view, and intend to extend the
applicability of a behavior-based framework to include
behaviors which reason, perceive, manipulate, and so on.
The controlling framework is S*, described in [11], and a
bricf overview will appear below.

As a result, all actions of the system are defined as
behaviors which take some set of representations as input
and act on other representations. PLAYBOT thus contains a

280 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

broad collection of behaviors: visual; kinematic; language
understanding; and so on. The following sections describe
the behaviors within these broad classes. No claims are
made about the completeness of this behavior set at this
point.

3.1. Visual behaviors

The list of visual behaviors which the PLAYBOT team
has investigated is substantial, and includes:

visual attention

gaze stabilization

object recognition
active object recognition
object tracking

object search

event perception
calibration

hand—eye coordination

The list of behaviors is by no means complete nor
claimed sufficient. For example, visual collision detection,
visual floor anomaly detection, and recognition of flexible
objects have not yet been addressed. The behaviors will be
integrated using the control framework described in Section
3.3 and, for the purposes of this paper, may be considered as
autonomously and continuously operating robot capabilities
that may be tuned by task demands. The remainder of
Section 3.1 reports progress on each of these problems,
each sub-section providing a brief description plus pointers
to available literature for further details. The best motivation
for these behaviors is to simply consider how humans per-
form everyday manipulation tasks; all of the above are part
of our normal cognitive repertoire. The goal of PLAYBOT
is to perform using similar capabilities.

3.1.1. Visual attention

Vision (or perception systems in general) requires atten-
tion mechanisms, because the search space is too large [3].
The model is based on the concept of selective tuning. It
provides for a solution to the problems of selection in an
image, information routing through the visual processing
hierarchy, and task-specific attentional bias. The central
thesis is that attention acts to optimize the search procedure
inherent in a solution to vision. Attention does so by
selectively tuning the visual processing network, which is
otherwise an approximate process for recognition. The
selective tuning is accomplished by a top-down hierarchy
of winner-take-all processes embedded within the visual
processing pyramid.

The use of attention is to locate the strongest instances of
object features which are relevant to objects which are being
searched for in the world. The instances are found in order
from strongest to weakest, and may point to matching can-
didates for the object recognition system. Several different
features may be searched for simultaneously depending on

the specification of the target. An example sequence using
only blue colour saliency is shown in Fig. 3.

We have tested the attention system implementation
using separate representations of luminance, edges, colour,
abrupt onsets and offsets, peripheral visual field, and optic
flow pattern correlations [12]. Two of these representations
provide input to the TRISH control system; both the abrupt
onset/offset detector and the peripheral event detector may
direct the head to fixate particular positions. In the former
case, the head would fixate on potentially unexpected
changes in the visual environment, while in the latter, the
head has an input that assists in its exploration of the visual
world outside the current image. The onset/offset mechan-
ism is particularly important for detecting potentially hazar-
dous situations affecting the safety of the robot (and, more
importantly, the child).

3.1.2. Gaze stabilization

Suppose PLAYBOT had only one eye, that is, its camera
system was monocular. When PLAYBOT moves, how is the
object of interest stabilized in the images it sees? This is
important, since after the robot moves, it would be desirable
for it to not have to search again for the object of interest. A
method based on mixture models of motion which can com-
pensate for purposeful or accidental motion of the robot’s
camera system has been developed [13]. A point or object
must be identified as the one to be stabilized.

The computation of optical flow relies on merging infor-
mation available over an image patch to form an estimate of
2-D image velocity at a point. This merging process raises a
host of issues, which includes the treatment of outliers in
component velocity measurements and the modeling of
multiple motions within a patch which arise from occlusion

Fig. 3. Selectively fixating on blue objects in a typical image of objects;
candidate regions for the object recognition system are localized.

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

boundaries or transparency. Our approach is based on the
use of a probabilistic mixture model to explicitly represent
multiple motions within an image patch. We use a simple
extension of the EM-algorithm to compute a maximum
likelihood estimate for the various motion parameters.
Preliminary experiments indicate that this approach is
computationally efficient and can provide robust estimates
of the optical flow values in the presence of outliers and
multiple motions. The basic approach can also be applied
to other problems in computational vision, such as the com-
putation of 3-D relative motion, which require the integra-
tion of several partial constraints to obtain a desired
quantity. An example is shown in Fig. 4.

Using the TRISH stereo camera head, however, a
different solution is available for gaze stabilization for
PLAYBOT. The object tracking algorithm described in
Section 3.1.5 plus stereo position triangulation suffice to
solve the problem. This is the method used in the example
shown in Section 4. However these two methods are com-
plementary. The monocular method does not require an
object model for tracking, and can operate in cluttered and
textured scenes. The stereo method does require a model,
and is best suited for objects where line and point features
are readily detectable. It is clear that if each of the methods
is used in their appropriate contexts, the overall robustness
of PLAYBOT with respect to gaze stabilization is greatly
enhanced.

3.1.3. Object recognition

A new approach to shape recovery for 3-D object
recognition has been developed, that uses qualitative
shape recovery and recognition techniques to provide strong
fitting constraints on physics-based deformable model
recovery techniques. Deformable models are fit to occluding

281

image contours in image data captured under general ortho-
graphic, perspective, and stereo projections. On one hand,
the integration of qualitative knowledge of the object being
fit to the data with knowledge of occlusion supports a much
more robust and accurate quantitative fitting. On the other
hand, recovering object pose and quantitative surface shape
not only provides a richer description for indexing, but sup-
ports interaction with the world when object manipulation is
required [14,15].

The object recognition system must support the following
four recognition behaviors (in addition to being used by the
object search algorithm):

¢ Unconstrained bottom-up recognition: the system must
be able to identify as well as locate in space all objects
within the field of view. In the system, this behavior
would be invoked as a background behavior when the
child is not executing a task.

e Constrained bottom-up recognition: the system must be
able to identify as well as locate in space the object at a
particular location within the field of view. This beha-
vior would be invoked when the child points to some
object in the interface windows.

¢ Unconstrained top-down recognition: the system must
be able to search the image for a particular object.

¢ Constrained top-down recognition: the system must be
able to search a particular location for a particular
object. This might entail movement of the sensors so
that the location specified is seen.

Objects are modelled as object-centered constructions of
qualitatively-defined volumetric parts chosen from some
arbitrary, finite set. The part classes are qualitative, in the
sense that they are invariant to degree of curvature, relative
dimensions, degree of tapering, etc. Aspects are used to

(b)

Fig. 4. The top sequence shows five images of an image sequence, taken by a camera moving roughly upwards and to the right along an unknown path. The
bottom sequence shows the result after applying the stabilization algorithm fixating on the base of the toy tower. Although the rest of the image is severely
warped. the fixation region holds the tower base firmly in position throughout the camera motion.

282 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

represent these volumetric parts. Consequently, the goal is
to use aspects to recover the 3-D volumetric parts that make
up the object, in order to carry out a recognition-by-parts
procedure, rather than attempting to use aspects to recognize
entire objects. The advantage of this approach is that since
the number of qualitatively different volumes is generally
small, the number of possible aspects is limited and, more
important, independent of the number of objects in the data-
base. The disadvantage is that if a volumetric part is
occluded from a given 3-D viewpoint, its projected aspect
in the image will also be occluded. Thus we must accom-
modate the matching of occluded aspects, which we
accomplish by use of a hierarchical representation we call
the aspect hierarchy.

The aspect hierarchy consists of three levels, consisting
of the set of aspects that model the chosen volumes, the set
of component faces of the aspects, and the set of boundary
groups representing all subsets of contours bounding the
faces. The ambiguous mappings between the levels of the
aspect hierarchy are captured in a set of upward and down-
ward conditional probabilities, mapping boundary groups to
faces, faces to aspects, and aspects to volumes. The prob-
abilities are estimated from a frequency analysis of features
viewed over a sampled viewing sphere centered on each of
the ten volume classes. Fig. 5 shows two recovered parts,
which together make up the volume which is a cup.

To find instances of a target object in the image, a Bayesian
approach is employed which exploits the probabilities in the
aspect hierarchy. Given a target object, the utility of search-
ing for its various volumetric subparts is computed. Similarly,
the utility of searching for the various aspects of the target
volume was determined, as was the utility of searching for the
various faces of a target aspect. Since the preprocessed face
topology graph contained at each node a number of face
hypotheses ranked in decreasing probability, a set of ranked

search locations was defined from which the target aspect,
volume, and object could be recovered.

3.1.4. Active recognition

In general, single-view object recognition is subject to
many difficulties, mainly due to viewpoint-related ambi-
guities, occlusions and coincidences. Recognition which is
active, that is, that has the ability to vary viewpoint accord-
ing to the interpretation status, overcomes many of these
difficulties. We have investigated two approaches to this
problem.

In the first approach, the aspect hierarchy is used [16]. If,
for example, in a top-down recognition task, a particular
volume is recovered from an aspect that is ambiguous, i.e.
the conditional probability mapping the aspect to the
volume is less than 1.0, then the system should be able to
guide the camera to an unambiguous viewpoint. By combin-
ing a single-part aspect graph with the probabilities asso-
ciated with the hierarchy, we derived a representation,
called the aspect prediction graph, that could support the
following queries: 1) Is there a less ambiguous view of a
given recovered volume? 2) If so, in what direction relative
to the aspect-centered coordinate system defined by the
recovered volume’s aspect should the camera move? 3)
Finally, what visual events (appearing/disappearing faces)
will be encountered as the camera is moved in that direc-
tion? In preliminary experiments, the approach was success-
fully demonstrated on single-part objects drawn from our
shape vocabulary, such as is shown in Fig. 6.

Wilkes and Tsotsos [17] have developed a different active
recognition strategy. The system has been demonstrated on
images of jumbled piles of origami objects. Each object in
the model base has associated with it a set of special views,
viewpoints in the sphere around an object from where its
features may be most easily detected unambiguously. A

Fig. 5. Aspect-based object recognition by parts. The cup is composed of two parts, the handle and the body. Although the cup grasp and pose are perhaps not
those usually encountered in day-to-day use, the example is illustrative of the recognition process. The parts must be visible in an image in order to be
recognized and this is possible in a wide variety of poses.

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292 283

a

b

Fig. 6. An cxample of active object recognition. The first view of the cylinder is ambiguous; the object might be a cylinder or it may be a cube. Shifting the
imaging system geometry reveals the circular base of the object, confirming that it is a cylinder.

simple behavior-based viewpoint control is used in order to
achieve the robustness necessary to reach a special view
reliably. The behaviors are interesting in that they are driven
primarily by the current image data, making little use of
inference concerning the 3-D structure of the scene. Quali-
tatively, the three behaviors perform image-line-centering,
image-line-following and camera-distance-correcting.
Together, these form the motion control component in
Fig. 7.

Probabilistic algorithms are used for efficient storage and
retrieval of sets of feature vectors. An error model is used to
prunc the search for the best model for a given query. The
usc of an error modcl also allows quantification of the
degree of ambiguity in object identification. A method is
provided for sclecting additional special views in the case in
which there remains uncertainty in the identity of the object
of interest from the first special view acquired. Examplcs
can be found in Refs [17,18].

The first method is object face (aspect) based, while the
second uses line features. The first method is more appro-
priate to situations where the object has a simple model,

/{ indexing M»—) object name

) if uncertain,
acquire new
viewpoint image

ki motion
Lracking control
camera
- system
P . /
extraction T~ image

Fig. 7. Control of an active recognition strategy.

where faces are mostly un-occluded, and the part decom-
position is simple. The second method is preferred where
there is significant occlusion initially, and for objects where
the volumetric modelling approach becomes less obvious.
PLAYBOT will have both active recognition behaviors,
thus enabling more robust object recognition in difficult
settings.

3.1.5. Object tracking

For objects in motion in the environment, or objects with
induced image motion due to PLAYBOT's motion, a
method is required for reliable tracking even under severe
occlusion situations (such as a human hand picking up a
fallen or new toy and placing it on the table). Perspective
Alignment is a new analytic method for performing (non-
linear) back-projection from 2-D to 3-D in real-time
monocular model-based tracking [19,20]. It avoids the
instabilities and false positives associated with iterative
locally-linear approximation methods. More importantly,
it provides maximally constrained pose solutions in under-
constrained situations (caused by occlusion, noise, etc.), and
thereby avoids the need for combinatorial re-recognition in
many of these situations.

The overall tracking algorithm has a pipeline organiza-
tion with four stages: edge detection; feature tracking; vali-
dation; and perspective alignment. The edge detection stage
uses a standard magnitude of gradient operator. The feature
tracking stage maintains a set of 2-D line-segments origin-
ally projected from the object model. The goal of this stage
is to maintain each segment’s correspondence with image
edge peaks. The validation stage maintains and monitors the
persistence and reliability of all linc-segments. The valida-
tion stage produces an ordered list of image line-segments
and corresponding paired model edges. The perspective
alignment back-projection stage considers features in the

284

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

Fig. 8. The perspective alignment method tracking an object moved by hand.

order provided by the previous stage. Analytic relationships
between rcal-world features and their perspective
projections are used to allow each feature in the sequence
to contribute the maximal additional geometric constraint to
the previous constraints on object pose. Thus, as many
degrees of freedom as possible arc determined given the
available feature information. An example is shown in
Fig. 8.

3.1.6. Object search

Although an attention system may locate good candidates
for matching to object models in a single image, and may
help with some forms of eye movements as described above,
it does not by itself suffice. If the object sought is not within
the current image, then a strategy for locating it efficiently is
needed. Ye and Tsotsos [21-23] have developed an
approach to visual search for 3-D objects in the real world.

Object search is the task of finding a given 3-D objectin a
given 3-D environment. The searcher is assumed to be a
mobile platform equipped with a camera and a method of

(@

(b)

calculating depth, like stereo or a laser range finder. The
search space is characterized by the probability distribution
of the presence of the target. A priori knowledge may be
incorporated into these distributions. In the example of
Fig. 9, suppose that a priori knowledge is available specify-
ing that a target (a baseball) is more likely to be found on a
table, so those regions have initially higher probability. The
table position and characteristics are given in advance; in
general, this method requires that the environment be par-
tially known. The goal is to find a sequence of sensing
parameters that will maximize the expected probability of
detecting the target for a given time constraint. In this way,
the problem of search is transformed into an optimization
problem, where the best sequence of actions is sought that
will reliably find the object. An action here is a sensing
action which may involve robot motion and setting of sen-
sing parameters such as camera pan-tilt angles, distance to
candidate, vergence angles, ctc. In other words, the acquisi-
tion of the next image to be searched is entirely determined
by the robot, using current probability distributions. The

Fig. 9. Object search example. (a), (b) and (c) show the scquence of images acquired in the search for a baseball; when the ball is found in the third image. itis
marked by a cross. Initial probability distributions biased search for table tops.

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292 285

detecting ability of a recognition algorithm is characterized
by the probability of successful recognition when the
sensing parameters and the target center is given. The
probability of detecting the target by applying a given
operation can be calculated by combining the current prob-
ability distribution of the search space and the detection
probability. An objective function is then used to locate
the highest probability actions to be tried next, and these
actions determine camera viewing angle size and viewing
direction. The result of the sensing operation is used to
update the status of the search space using Bayes’ law,
and this updated status is used to direct the next operation.
An example is shown in Fig. 9.

3.1.7. Event perception

Understanding observations of image sequences requires
one to reason about qualitative scene dynamics, that is, in
terms of the forces acting on objects and the nature of forces
between interacting objects. For example, on observing a
hand lifting a cup, we may infer that an ‘active’ hand is
applying an upwards force (by grasping) on a ‘passive’
cup. In order to perform such reasoning we require an ontol-
ogy that describes object properties and the generation and
transfer of forces in the scene. Such an ontology could
include, for example: the presence of gravity; the presence
of a ground plane; whether objects are active or passive;
whether objects are contacting and/or attached to other
objects; and so on (see Fig. 10). In this work we make
these ideas precise by presenting an implemented computa-
tional system that derives symbolic force-dynamic descrip-
tions directly from camera input.

The approach to scene dynamics is based on an analysis
of the Newtonian mechanics of a simplified scene model.
The critical requirement is that, given image sequences, one
can obtain estimates for the shape and motion of the objects
in the scene. It is assumed that the scene can be described by
a collection of rigid bodies in continuous motion. Further-
more, it is assumed that the objects can be approximated by
a 2-D ‘layered’ scene model. Given such a representation a
system that extracts force-dynamic descriptions directly
from camera input can be developed. Several computational
examples demonstrate that the ontology is sufficiently rich
to describe a wide variety of image sequences [24].

This work makes three central contributions. First, an
ontology suitable for describing object properties and the

@ . (b) (©)

generation and transfer of forces in the scene is provided.
Second, a computational procedure is defined to test the
feasibility of such interpretations by reducing the problem
to a feasibility test in linear programming. Finally, a theory
of preference ordering between multiple interpretations
along with an efficient computational procedure to
determine maximal elements in such orderings is employed
[25].

An example is given in Fig. 11, showing the results for a
complicated image sequence. In this sequence three boxes
are arranged in the form of an arch. A hand approaches and
pulls the left box out from the arch. When the left box is
removed, the top block tips, falls, slides and finally comes to
rest on the table top. In Frame 45 there are two preferred
interpretations: either the hand is ‘pulling’ the left block or
the left block is ‘carrying’ the hand. In both cases, the hand
is attached to the block. At Frame 52, the top block is tip-
ping while the hand continues to pull the left block away.
Note that even though there is significant acceleration of the
top block, the system sees it as a passive object since the
motion can be explained by gravity. As with Frame 45,
however, there is still ambiguity as to whether the hand or
the left block is causing the remaining motion in the image.
Additional details and other examples are provided in Ref.
[24].

3.1.8. Calibration

Robotic tasks are plagued by the problem of calibration,
and PLAYBOT is no different. In order to maintain a true
representation of the world, and in order to be able to exe-
cute user requests, the robot must ensure that errors inherent
with robot motions, or with unpredicted (but natural)
changes in the environment, do not interfere.

PLAYBOT uses natural objects of the environment for
calibration. A calibration behavior is available whose results
may be accessed by any other part of the system. This beha-
vior is based on the object tracking algorithm described
earlier. If natural objects, with known 3-D models, are avail-
able, then as the robot moves about, they can be tracked and
can be used as calibration targets. Of course, several such
objects must be available in several different areas of the
room, to ensure that at least one calibration object is in the
scene at all times. For the current implementation of PLAY-
BOT, a set of small platforms on the play table, with dis-
tinctive white edges are used. The walls of the room itself.

1L g

(d) (e))]

Fig. 10. In the presentation of results to [ollow, we use: (a) small circles to depict sliding contact: (b) small disks for non-sliding contact: (¢) large disks for
attachment: while (d). (e) and (f) depict a lincar motor. angular motor. and body motor. respectively. For the first two motors, the closed curve surrounds the

contact region over which the motors operate. while for body motors the large circle is placed at the object center.

286 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

46

Frame 45, Model 1

52

Fig. 11. Results for the arch sequence. (a) Frames with overlayed objects and acceleration vectors. Angular accelerations are denoted by the arcs. (b) Preferred
interpretations for selected frames of the sequence. The numbers on the top of each image in part (a) are the frame numbers of the image sequence.

distinct drawings on the walls or floors or ceiling can be
added (colourful wall drawings would only enhance the
room’s appearance in a real setting). Fig. 12 shows how
these calibration objects are tracked as the robot moves to
grasp an object. The perspective alignment method is
invaluable in such examples, since it does not lose
tracking with occlusion, due to its incremental constraint
strategy.

3.1.9. Hand—eye coordination

Although not a specific separate behavior, all actions
performed by PLAYBOT require the cameras to track the
robot arm during the execution of the action. This is
desirable from the perspective of ensuring the action is
properly completed. Tracking of the arm and/or hand is
accomplished in the same way that object tracking is done
in general. Visual servoing is employed to achieve camera

Fig. 12. Tracking of calibration target, a set of natural platforms on the play table. Tracking is not lost even though the robot arm and fingers present large

amounts of occlusion.

J.K. Tsotsos et al/Image and Vision Computing 16 (1998) 275-292 287

viewpoints such that both the object to be manipulated as
~well as the robot are in the same view. The complete
example presented in Section 4 shows these functions as
well as details of the algorithm.

3.2. Non-visual behaviors

There are two major types of non-visual behaviors that
are currently part of PLAYBOT. First, there is the language
parsing and semantic analysis component, which reads the
sequence of touches on the ActiveDeskTop and translates
them into well-formed commands for the robot. The second
is the object grasping behavior. It is likely that other non-
visual behaviors will soon become part of the system, such
as sonar-based collision avoidance, auditory attentional
cues, sensors on toys themselves which provide input for
behaviors that control their functions, and so on.

3.2.1. PLAYBOT command language

In order to provide an efficient command interface that a
child can quickly master, the command language consists of
a highly restricted subset of English imperatives. The
possible commands are described by a simple semantic
grammar, whose terminals are expanded by a simple syn-
tactic grammar. The sentences of the language have a flat
structure, which ensures that there are no ambiguous
constructions.

The semantic grammar defines four types ot commands:

Command « Action
I Action Object
| Action Location
| Action Object Location

Each action in the language can appear in exactly one of
these rules. The appropriate rule is associated with each
action, and describes the arguments the action must occur
with in a command specification. The first rule captures the
scmantics of actions that take no arguments (e.g. Quit). The
sccond rule is for actions that manipulate a toy (e.g. Pick
up). The third rule describes actions that take a single
location argument (for example, Inspect). The fourth rule
covers actions that manipulate a toy in terms of a location
(e.g. Push). The syntactic grammar is as follows:

Action < verb
Object + {adjective} noun

Location «~ preposition Object

Adjectives may be colours or sizes, whereas prepositions
specity locations such as on or beside. By cxpanding the
semantic and syntactic rules. we can derive a general

description of commands in the language as:
Command <« verb [{adjective} noun]| [preposition {adjective} noun]

Thus the linguistic knowledge of the interface can be
divided into a single general syntactic rule and specific
semantic knowledge associated with individual verbs.
Commands may be concatenated in a list, each beginning
with an action as long as each is well-formed.

3.2.2. Object grasp behavior

The CRS robot arm’s gripper can rotate about the central
axis parallel to the fingers. A full rotation takes about 1 s,
during which time we can reliably sample the forward finger
sensor about 800 times. With the fingers separated fully,
these samples trace out a circle (of radius | inch). We ana-
lyze the samples to determine which sectors of the circle the
object occupies and which represent free space into which
the fingers could be placed for grasping. This information is
used for grasp planning in the absence of object model or
pose information.

The object grasp behavior begins with the assumption
that the gripper is pointing downward, and the forward sen-
sor senses the object of interest. The goal is to move the
gripper to a position and orientation where part of the object
of interest is between the fingers.

The first step is to open the fingers (to the maximum
2 inches). Then we perform the following loop:

1. Rotate gripper to obtain circular occupancy map from

finger sensor.

It all free space, check for small object, end loop.

If no free space, object too large to pick up, end loop.

If free space in only one sector of sensor circle try to find

two disjoint free space sectors move arm maximum

amount in direction that reduces size of free space sector

and repcat from Step 1.

5. If free space in two disjoint scctors of sensor circle, end
loop.

Rl

o

After the above loop terminates, we know whether: (1)
the object is too large to pick up, in which case we return
with failure; (2) the object is very small, in which case the
gripper orientation for pick-up is not critical; or (3) we can
pick the object up provided the fingers are n free space, in
which case we calculate the amount by which to rotate the
gripper. If we have not returned with failure, we perform the
final steps to place the fingers around part of the object of
interest:

1. Rotate gripper to place fingers in free space.
2. Lower gripper until object sensed between fingers.

3.3. Integration of behaviors

In subsumption-style behaviour definitions, a behaviour

288 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

acts directly on the physical world. In §*, the overall control
framework for PLAYBOT, this notion is generalized: the
‘world’ on which a behaviour may act may be an internal
(logical) representation or an external (physical) representa-
tion. The world is added to the sense-model-plan-act
(SMPA) cycle. A behavior is taken to mean any process
which uses input available in one or more representations
and causes an effect to one or more (may be the same)
representations. Each behavior is represented as such an
SMPA-W cycle. Behaviors may thus act on the external
world, by manipulating physical objects or causing the
robot to move, or may act on the internal world of the
robot. That is, a behavior may manipulate internal represen-
tations, taking input from an internal representation and
making changes to or creating another internal representa-
tion for use by subsequent processes. Intermediate
representations, hierarchical organizations, attentive selec-
tion, and explicit goals are thus all facilitated.

Whereas the sense, model, plan and act portions of a
control cycle are commonly used and understood, the
world node employed here as the fifth node of the cycle
requires further elaboration. The world node contains two
representations, an event window and an action window.
The event window opens up (or makes accessible) a relevant
portion of some set of representations within the system.
Similarly, the action window opens up onto some set of
representations (may be overlapping with the event win-
dow). The world node also contains a set of demons
which monitor the contents of the event window. These
demons detect changes to the event representations of rele-
vant types, which act as triggers for the activation of the
behavior. The behavior is quiet until the demons awaken it.
In this way, the representations arc not limited to be those of
the external world only, and more sophisticated forms of
intelligent reasoning are permitted.

A number of representations would be required in any
typical robot control application, and would include the
following: state; actuator commands; mission/task direc-
tion; environment; recognized aspects of the environment;
sensed data: and so on. Three representations are special:

1. Exception record (ER). Failures during the execution of a
behavior must be detected; exception records encode this
information. Each exception contains a specification of
what must be sensed in order to confirm that the excep-
tion occurred.

2. Event windows (EW). The parameters of all event win-
dows are included in the EW representation, that is, the
subsets of the representations to be considered are defined.

3. Perception systems internal parameters (PP). The PP
representation is a database of parameters used by the
perception systems and their values. This includes all
thresholds, filter tuning values, any constants, etc. PP is
partitioned, one partition for cach sensor system. Beha-
viors which read PP need only consider the partition
refevant to their own sensor. These facilitate attention,

goal-direction and hierarchical processing strategies and
are further described in Ref. [11]. S* is currently being
implemented.

4. Current implementation

PLAYBOT is controlled by a network of computers in a
client—server architecture. Each robot component (arm,
head, cameras, platform) has a hardware connection to
one computer on the network, and this computer imple-
ments the server for the robot components. The above beha-
viors are mapped onto client computers, and clients send
requests to the servers for robot components to perform
actions or return status information. The network currently
runs at 10 Mbits, and has a hardware TCP bridge to the
Internet. Hardware servers include:

. Datacube server. SUN SPARC 1l running SunOS 4.1.2
and Imageflow 2.5 as host to a Datacube with two
DigiColor and two MV200 boards.

2. User interface, Geometry server, Planner server, and
Arm server. Silicon Graphics Power Series 4D/
380VGX with eight processors running Irix 4.3, with a
serial interfacc to a CRS Plus five degree of freedom
robot arm, and serial interfaces to two custom-made
infrared proximity sensors in the arm’s fingers.

3. Mobile platform server. Silicon Graphics Indigo running
Irix 5.3, with serial interface to a Cybermotion K2A
mobile platform.

4. Head server. Intel Pentium running Linux 1.2.8 with a
Digital Motion Control DCX ISA interface card and
cight MC-110 servo modules controlling a custom-
made robot head.

Each of these machines runs a socket-based TCP/IP
server dacmon for the attached device. TCP/IP client pro-
grams connect to servers required for the behaviour the
client implements. The User interface starts client connec-
tions to all the servers.

In addition to C and C++ application programmer inter-
faces, we have compiled all client functions into the CLIPS
programming language. CLIPS is an expert system tool
developed by the Softwarc Technology Branch (STB),
NASA/Lyndon B. Johnson Space Center. It is an object-
oricnted LISP-like interpreted language with inference, pat-
tern matching, and tracing capability. PLAYBOT's Planncr
server is written in CLIPS, and has client connections of its
own to all other servers. The Planner receives commands
and goals dircctly from the user interface, to which it reports
its results. It also has the ability to pre-empt any goal or
robot action in progress.

The Head server has a client connection to the Datacube
server to perform the object tracking behaviour. It instructs
the Datacube server to track the target object in both left and
right images, and uses the centroids returned by the

J.K. Tsotsos et al /Image and Vision Computing 16 (1998) 275-292 289

Datacube server in real time to adjust the eyes’ vergence and
tilt degrees of freedom, as well as the neck’s pan degree of
freedom, to stabilize gaze upon the tracked object. The
Datacube produces updates at the rate of 30 Hz. When
calibrated, the head motor encoder values can be used to
triangulate the positions of tracked objects to within one
cubic inch for objects up to 5 feet away. The head can fixate
objects moving up to about 3 feet per second at that dis-
tance. This is approximately the maximum speed of the
mobile platform. We are thus able to fixate an object of
interest while moving the platform, avoiding the need for
object search after most platform motions.

The Geometry server is used for two main purposes. One
is to display a simulated world view of PLAYBOT and its
environment to the user from any chosen viewpoint. The
other is to maintain positions of modeled objects and robots
for planning purposes. The Planner server instructs the Geo-
metry server to update simulated robot and object positions
to reflect their real counterparts, and queries the Geometry
server for current robot and object position and orientation
for planning purposes. We intend to make use of the
Geometry server for collision avoidance and simulation of
proposed plans.

Finally the Arm server performs object manipulation
behaviours (such as pickup and put down) under control
of clients with connections to the visual servers.

A typical plan for the task “pickup object’ follows:

I. Track object 1
2. Pickup object |
2.1. object 1 reachable

2.1.1. verify object 1 visible to both left and
right cameras; verify tracking status of
object | from datacube server

2.1.2. obtain 3-D location of object 1; instruct
head server to triangulate object |

2.1.3. move platform to bring object ! within
arm’s reach
I. raise arm to prevent collision while
moving
2. plan platform motion that avoids
table and wall obstacles
3. fixate object 1 to keep it in view dur-
ing planned platform motion instruct
head server to fixate object | (continu-
ally move eyes to keep object 1’s cen-
troid in center of left and right image)
4. instruct platform server to roll to
desired location
5. stop fixating object |

2.2. object | and fingers visible

2.2.1. raise eyes to look above object but keep
object in vicew; tilt eyes so bottom of
object is 30 pixcls from bottom of
images and/or at least 200 pixels are
visible above the object

2.2.2. obtain 3-D location of object 1; instruct
head server to triangulate object |
2.2.3. obtain gripper position from arm server
2.2.4. move fingers to 1.5 inches above object
1; move incrementally' toward target
1.5 inches above top of object
2.2.5. instruct datacube server to find and
track fingers at target location
2.3. object 1 within finger grasp
2.3.1. obtain finger sensor status from arm
server
2.3.2. move fingers in spiral shaped path,
keeping bottom of visible finger
closely above top of object I in both
left and right images, until finger
senses object |
2.3.3. stop tracking object | and fingers
2.4. object | between fingers
2.4.1. open fingers (to maximum of 2 inches)
2.4.2. position arm such that finger senses
free space around object 1
2.4.2.1. rotate gripper to obtain circular occu-
pancy map from finger sensor
2422, if all free space, check for small
object
2.4.2.3. if no free space, object too large to
pick up
2.4.2.4. if free space in only one sector of
sensor circle try to find two disjoint
free space sectors move arm maxi-
mum amount in direction that
reduces size of free space sector and
repeat from 2.4.2.1.
2.4.2.5. if free space in two disjoint sectors of
sensor circle rotate gripper to place
fingers in free space, lower gripper
until object | sensed between fingers
2.5. close fingers
2.6. lift object !

Using this plan, the images in Fig. 13 show the sequence
of actual actions PLAYBOT executes. It is interesting to
note the wide variation in images PLAYBOT sees during
the execution of this plan; these are shown, for both left and
right camera views, in Fig. 14. Each of the image pairs
corresponds to the images PLAYBOT sees at the stages of
the plan captured as snapshots in Fig. 13.

5. The future
The complete example shown should suffice to convince

the reader that the basic foundation for the system is real and
successfully performs some simple tasks. However. much

' Collision avoidance behavior is not yet implemented.

290 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

g h

Fig. 13. Eight successive views of executing a ‘pickup object” task. The correspondence of images to task steps is: (a) 15 (b) 1: (¢) 2.1.1; (d) 2.1.3: (e) 2.2.1: (f)
2.2.4; (g) 2.4.1; (h) 2.6. Note that the object is placed in the field of view by a human, and may be placed anywhere in the camera’s current field of view
constrained by positions that are actually reachable by the robot, for this implementation.

Fig. 14. The left and right camera images seen by PLAYBOT during execution of the “pickup object” task. Each corresponds to the similarly labelled view on

Figure 13.

J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292 291

remains to be done. Among the major outstanding tasks are:
develop the hardware environment to reflect that of Fig. 1
(build the ActiveDeskTop, acquire a computer controlled
wheelchair, acquire a robot arm with a longer reach and
with an articulated hand); complete the implementation of
the S* control framework; enlarge and enhance the network
of computers on which the behaviors run; add the complete
visual behaviors as described; use the geon representation to
represent real toys; expand the database of objects
p and actions that PLAYBOT understands. Of course,
after all this is complete, serious testing with the
intended users will reveal how well the initial vision fits
their needs.

Acknowledgements

We thank the many students and staff at the University of
Toronto and York University who have contributed: Eugene
Amdur, Jonathan Appavoo, Rimon Barr, Robert Day, Brian
Down, Raymond Ghaly, Matthias Goebel, Raoul Jarvis,
Imola Kerekes, Allen Lau, Katy Ly, James Maclean, Bernie
Maillard, Andrew Prior, Dale Singh, Dave Suydam. Devel-

d opment of PLAYBOT has been funded by IRIS (Institute for
Robotics and Intelligent Systems, a Government of Canada
Network of Centers of Excellence), ITRC (the Information
and Technology Research Center, one of the Province of
Ontario’s Centers of Excellence) and NSERC (the Natural
Science and Engineering Research Council of Canada).
Parts of this development have benefited from the

€ collaboration with Lars Olsson and Goran Olofsson at the

Computer Vision and Active Perception Laboratory at

the Royal Institute of Technology, Stockholm, Michael

Chan at the GRASP Lab at the University of Pennsylvania,

and Henrik Christensen at the Laboratory of Image Analysis
at the University of Aalborg, Denmark. We thank the staff
of the Hugh MacMillan Rehabilitation Center, Toronto, for
discussions and comments on the design of PLAYBOT.

Tsotsos and Jepson acknowledge the support of the Cana-

dian Institute for Advanced Research.

References

[1] E. Helfman, Blissymbolics: Speaking without Speech. Elsevier/
Nelson Books, New York, 1981.

[2] J.K. Tsotsos, Behaviorist intelligence and the scaling problem, Arti-
ficial Intelligence 75 (1995) 135-160.

[3] J.K. Tsotsos et al., The PLAYBOT project, in: Proc. JICAI Workshop
on Al Applications for Disabled People, Montreal, 1995.

[4] S. Dickinson, S. Stevenson, E. Amdur, J. Tsotsos, L. Olsson, Integrat-

h ing task-directed planning with reactive object recognition, in: Proc.

SPIE Intelligent Robotics and Computer Vision XII, Boston, 1993, pp.
212-224.

[5] M. Jenkin, J.K. Tsotsos, Large-scale, touch-sensitive video displays,
British Informal Patent, 9201949.6, Jan. 30, 1992. US Patent Pending,.
011,453, 1993.

292 J.K. Tsotsos et al./Image and Vision Computing 16 (1998) 275-292

[6] G. Verghese, 1.K. Tsotsos, Robotic Fingers which determine object
grasp pose, University of Toronto Intellectual Property Disclosure,
1996.

[7] E. Milios, M. Jenkin, J. Tsotsos, Design and performance of TRISH. a
binocular robot head with torsional eye movements, International
Journal of Pattern Recognition and Artificial Intelligence 7 (1)
(1993) 51-68.

[8] M. Jenkin, A. Jepson. J. Tsotsos, Techniques for disparity measure-
ment, CVGIP: Image Understanding 53 (1) (1991) 14-30.

19] M. Jenkin, E. Milios, J. Tsotsos, B. Down, A binocular robotic head
system with torsional eye movements, in: [EEE Int. Conf. on Robotics
and Automation, Atlanta, 1993, pp. 776-781.

[10] M. Jenkin, J., Tsotsos, Active stereo vision and cyclotorsion, in: Proc.
Computer Vision and Pattern Recognition, Seattle, 1994.

|11] Tsotsos, J.K.. Intelligent control for perceptually attentive agents: The
S* proposal, Robotics and Autonomous Systems, 21(1) p 5-21, 1997.

[12] J.K. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. Davis, F. Nuflo, Model-
ing visual attention via selective tuning. Artificial Intelligence 78 (1-2)
(1995) 507-547.

[13] A.Jepson, M. Black, Mixture models for optical flow computation, in:
I. Cox, P. Hansen, B. Julesz (Eds.), Proc. of the DIMACS Workshop
on Partitioning Data Scts: With Applications o Psychology, Vision
and Target Tracking, AMS, Providence RI, 1995, pp. 271-286.

[14] S. Dickinson, A. Pentland, A. Rosenfeld, From volumes (o views: an
Approach to 3-D object recognition, Computer Vision, Graphics, and
Image Processing: Image Understanding 55 (2) (1992) 130-154.

[15] S. Dickinson, D. Metaxas, Integrating qualitative and quantitative
shape recovery, International Journal of Computer Vision 13 (3)
(1994) 1-20.

[16] S. Dickinson, H. Christenscn, J. Tsotsos, G. Olofsson, Active object
recognition integrating attention and viewpoint control, Computer
Vision and Image Understanding, 67(3) (1997) 239-260.

{17} D. Wilkes, J. Tsotsos, Integration of camera motion behaviours for
activeobject recognition, in: Proc. IAPR Workshop on Visual Beha-
viors, Seattle, 1994, pp. 10-19.

|18] D. Wilkes, S. Dickinson, J.K. Tsotsos, Quantitative modelling of view
degeneracy, in: Proc. 8th Scan. Conference on Image Analysis.
Tromso, Norway, 1993.

[19] G. Verghese, J.K. Tsotsos, Real-time model-based tracking using
perspective alignment, in: Proc. Vision Interface 94, Banff, 1994,
pp. 202-209.

[20] G. Verghese, J. Tsotsos, The role of fcature visibility constraints in
perspective alignment, in: Proc. Int. Conference on Image Processing.
Washington DC, 1995, pp. 386-389.

[211 Y. Ye, J. Tsotsos, Where to look next in 3D object scarch, in: IEEE
International Symposium on Computer Vision, Coral Gables FL.
1995, pp. 539-544.

[22] Y. Ye., J.K. Tsotsos, Sensor planning in 3D object search, in: Int.
Symposium on Intelligent Robotic Systems, Lisbon, 1996.

[23] Y. Ye, J.K. Tsotsos, 3D sensor planning: its formulation and com-
plexity, in: International Symposium on Artificial Intelligence and
Mathematics, 1996.

{24] R. Mann, A. Jepson, J.M. Siskind, The computational perception of
scene dynamics, Computer Vision and Image Understanding. in press.

[25] W. Richards, A. Jepson, J. Feldman. Priors, preferences and catego-
rical percepts, in: D. Knill, W. Richards (Eds.), Perception as Baye-
sian Inference, Cambridge University Press, Cambridge, 1996 pp. 93—
122.

