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Abstract

The problem of segmenting image sequences based on 2D motion has been under study for many years now. Most early approaches were either

region-based, doing some sort of robust motion estimation, or boundary-based, preferring instead to track the bounding contours of the moving

image region. In this paper, we explore an approach based on a synergy between these two previous approaches. For example, while motion

constraints are often in violation of their underlying assumptions at region boundaries, image edges are a rich source of information. The approach

we propose uses feed-forward to use region-based information to propagate boundary estimates, feedback to use boundaries to improve motion

estimation, and finally uses motion-based warping to compare image appearance between frames in order to provide additional information for the

boundary estimation process.

We show results from an implementation in which a hierarchical, layered-motion estimation using parametric models is coupled with a

distance-transform based active contour. The system is shown to provide stable and accurate segmentation in sequences with background motion,

and multiple moving objects. Quantitative measures are proposed and reported for these sequences. Finally, a modification is detailed which

allows the system to incorporate a Condensation algorithm tracker, but without requiring off-line learning in advance.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Segmentation; Motion estimation; Boundary recovery; Parametric models; Motion layers
1. Introduction

The detection and measurement of object motion in image

sequences is a central problem in computer vision and video

processing. Accurate and reliable estimates of object motion

and spatial extent are required for tasks such as video coding,

object recognition, object avoidance during navigation, and

accurate determination of the observer’s motion in an

environment where objects may have their own motion

independent of that of the observer.

Attempts at motion estimation in image sequences have

typically focused on the problems of optical flow computation

and motion layer segmentation, yet has paid relatively little

attention to recovering accurate boundaries of moving objects.

When determining the motion of an image pixel, layered
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motion approaches generally utilize no information about the

motion of neighbouring pixels and, as such, often yield support

maps that are highly sparse. On the other hand, the object

tracking community has typically focused on tracking the

shape of a moving object, often assuming manual initialization

of the tracking region, active contour, or model pose (in the

case of model-based tracking). Trackers that do not assume an

a priori model typically focus on object boundaries while

ignoring the rich motion information encoded within the object

boundaries.

Each of these paradigms assumes a model of spatial

coherence. The motion community seeks to label the pixels

defining the region of the moving object, while the boundary-

based tracking community seeks to label the pixels defining the

boundary of the moving object. Each approach is not without

its limitations. Motion constraints can be weak in areas of

limited texture, while boundary constraints can be weak in

areas of limited contrast. We attempt to bring together these

two components in a novel manner to detect, track, and recover

the shape of a moving object, effectively drawing on the

strength of each component to overcome the weakness of the

other. The approach, which is described in detail in Section 3,
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is general, and makes no assumptions about a static back-

ground, a static camera, or the number of moving objects. In

the following sections, we review related work, provide an

overview of the approach, describe the components in detail,

and demonstrate the approach on image sequences in which

both the object and the background/camera are moving. We

conclude with a discussion of the limitations of the approach,

along with directions for future research.

2. Related work

The notion of spatial coherence in visual motion analysis

has been in the literature for quite some time. Yuille et al.

([1–3]) explore the notions of both spatial and temporal

coherence, and present a mathematical theory which claims to

provide explanations for a variety of motion perception

phenomena, including the aperture problem and motion

capture. The theory proposes the notion of a dense velocity

field defined even where there is no local image evidence for

motion, and which is estimated from image measurements.

Previous work on object segmentation and tracking can be

divided into region based approaches ([4–10]) and boundary-

based approaches ([11,12]; [13,14], [15]). Among the region-

based approaches, some ([6–9]) can be classified as layered

approaches, with the latter two using models to describe image

regions. In [8], layered flow is computed using octagonal-

shaped regions to limit the region of support for a particular

motion. In addition to the parameters for each motion,

parameters for the size, shape and pose of each region are

also computed, as well as a visibility ordering. This method

does not attempt to fit an accurate boundary to any region. In

[9], an elliptical appearance model is learned and tracked. Both

short-term (2-frame) and longer-term structure is represented

and tracked. A model-less, layered approach is taken in [10],

where the authors perform motion-based segmentation by

computing motion parameters for fixed regions, then merging

based on adjacency and similarity of motion parameters.

Another model-less approach is found in [4,5], where a method

for nonparametric flow estimation is given. A Markov random

field model is used to provide a prior encoding the notion that

neighbouring image points are likely to be related. A mean-

field approximation is used to make the method computation-

ally feasible, but the method gives no explicit estimate of the

region boundaries.

Boundary-based approaches fall into two categories:

probabilistic contour tracking ([11,12]) and active contour

approaches ([16]; [13,14], [15]; [17,18]). A probabilistic

formulation of curve tracking is presented in [11] that

propagates a set of sampled states to approximate a posterior

distribution on possible states given the observed data. The

method requires an initial curve template and a learning phase

to acquire a motion model, after which it can operate

uninitialized on new image sequences.

It appears to require a stationary background as this is how

the motion model is learned, and no results to the contrary are

shown. This approach is furthered in [12] where the motion-

learning phase is replaced with an explicit boundary motion
model augmented with rough estimates of boundary motion

derived from a layered flow model. The model does not

directly address the issue of grouping motion edges to identify

the boundary of a particular object. The approach in [12] can

also be thought of as region-based in that an explicit flow

model is provided for non-boundary regions.

The first attempt at integrating region information with an

active contour boundary model is found in [16]. Here the

authors use a constant, affine or homomorphic warp computed

through a correlation approach to compute the displacement of

the entire region, and to update the active contour between

frames. The active contour is then allowed to settle on image

edges. Motion information is not used between frames to

update the contour after the initial warp, and as such is not

expected to discover evolving object structure except through

image edges. All sequences presented by the authors have a

single moving object against a static background or a single

motion over the entire image.

Perhaps the closest work to that described in this paper is the

geodesic active contour formulation, which automatically

handles contour splitting and merging based on a single energy

function. It is proposed in [13–15], which assumes a static

background, so that an image differencing approach can be

used to detect motion. Difference images, local intensity

statistics and intensity warping within the active contour region

are all used to control the active contour. Whereas the geodesic

active contour framework focuses on a more elegant active

contour formulation (while assuming a simpler motion model),

we opt for a more elegant motion formulation while assuming a

standard active contour model. As a result, while our active

contour implementation is not currently topologically adaptive

(although, in principal, we could also employ geodesic active

contours), our approach does not assume a static background or

a static camera. More recently, work by [17,18] employs level

set contours for object boundary tracking, using colour and

texture information to drive the active contour, in a manner

similar to our proposed intensity constraints.

3. Integrating region and boundary constraints

An overview of the proposed system is shown in Fig. 1. The

basic approach is to use a feed-forward, feed-back approach to

combine region-based information, in our case motion

constraints and intensity-consistency constraints, and bound-

ary-based information, in our case the object boundary as

determined by an active contour. Instead of relying solely on

either type of information, we use the two types together to

improve the results.

In our region-based module, gradient-based motion con-

straints are used to compute a parametric, layered flow model

to estimate local image motion. Since motion constraints are

often too sparse to perform proper boundary estimation due to

lack of texture, we use the estimated motions to perform an

intensity-based consistency check of each pixel against each

motion layer. This is achieved by warping each pixel location

according to the recovered motions, and comparing image

intensities in the two frames accordingly. This yields a denser



Fig. 1. This figure illustrates the basic structure of our approach. Region-based

information is used to derive flow constraints, which are typically sparse. This

information can be made denser by warping image pixels to find pixels with

matching intensities in the two images. These constraints provide data for the

active contour, and the contour is warped between frames according to the

motion parameters. The contour reinforces spatial coherence by allowing us to

only consider motion constraints within the contour during the motion

estimation stage.
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constraint representation that can be used to assist the active

contour model. The boundary-based module consists of a

distance-transform active contour. In addition to the usual

edge-based energy terms in the contour’s cost function, we

introduce an additional, novel term based on the intensity

consistency data from the region-based module. This places

higher weight on image edges that carry relevant information

about motion boundaries.

In addition to using the intensity consistency constraints

(ICC’s) to assist the active contour in finding motion-relevant

boundaries, the motion model for the layer associated with the

active contour is used to warp the contour between frames, thus

providing it with a more accurate starting location. This feed-

forward improves the contour’s performance by minimizing

the iterations required to update the contour between frames,

and avoiding nearby, extraneous image edges that might

otherwise attract the active contour.

Finally, in order to improve motion estimates, only motion

constraints within the contour are used to update motion

estimates in subsequent frames. This feed-back allows the

parametric flow model to focus on the motion characteristics of

the object being tracked, without being distracted by similar

motion elsewhere in the image. In the initial frames, the motion

is estimated without this information, and the initial contour

location is determined by connected-components analysis of

motion constraints owned by each motion layer.
3.1. Region-based motion estimation

The first step in tracking objects is to estimate a layered

motion model for the image sequence. Layered motion models

have been explored extensively in the literature ([7,19,20]). In

[7] the authors start with pre-computed optic flow, and cluster

affine motion models in layers to account for the input flow

field. In [19] multi-layer parametric optic flow is computed

using a mixture of Gaussians augmented with a constant

probability layer to accommodate outliers in the measure-

ments. In formulating the model, the measurement conditional

probabilities are assumed to be independent and identically

distributed (i.i.d.). The paper describes fitting constant-flow

models to each layer, although suggests the extensions

appropriate for more complex models such as locally affine

flow. In [20] a mixture approach is again used, although robust

estimators are used instead of an outlier process in the mixture

and a minimum-description-length (MDL) approach is used to

determine the correct number of layers. Both assume i.i.d.

image measurements. We follow the formulation of [19] in

using a mixture model together with the EM algorithm to both

integrate motion constraints and estimate motion parameters.

While our approach uses a parametric model for flow, a dense,

non-parametric method can (in principle) be substituted.

The brightness constancy constraint, V
T
ðx IðuððxÞC ItZ0; is

well known, and is the starting point for the estimation of 2D

image velocity ðuððxÞZ ½uxððxÞ uyððxÞ�
T. Each image location

provides a constraint vector ðcððxÞZ ½Ix Iy It�
T that satisfies (in

the absence of noise) ðcððxÞTðuhZ0; where ðuhZ ½ðuððxÞT1�T is a

homogenous representation of ðuððxÞ; and ðuððxÞ is assumed to be

the motion experienced by the pixel at image location ðx: The
inner product of a constraint with a motion vector from another

layer will be expected to yield a non-zero value, in general,

thus providing a way to determine which constraints support

which motion layers. The spatial image gradients are estimated

by convolving with GxZ(G(x,y;s)/vx and GyZ(G(x,y;s)/vx
where G(x,y;s) is a 2D Gaussian kernel with sZ1.5 pixels. A

constraint that has a zero value for VðxI corresponds to an image

region with uniform intensity values, and provides no

information about local motion. In practice, constraints with

jjVðxIjj below a threshold of 2.5 intensity levels/pixel are

ignored due to insufficient signal to noise ratio (SNR). Also,

since in a coarse-to-fine flow estimation approach an upper

limit can be placed the magnitude of ðuððxÞ; it is possible to

enforce the constraint jItj=kVðx
TIVðxIk!kðukmax in order to

reject erroneous constraints. We use kðukmax 2 pixels/frame.

Each motion layer has an associated parametric model that

is either constant or affine, although any parametric model can

be used. Associated with each parametric model and its

parameters ðq is a likelihood function pððcððxÞjðq; ðxÞ that indicates
how well a constraint ðc ðxð Þ matches the motion. For example,

for the constant motion model, we have pconstantððcððxÞjðu; sÞZ
GððcððxÞTðuh; 0;svÞ; where G is a Gaussian density function. The

likelihood of a particular constraint ðcððxÞ with respect to all

motion layers is pððcððxÞÞZ
Pn

jZ1 pjpjððcððxÞjðqj; ðxÞ; where the pj

are called mixing parameters and satisfy 0%pj%1 for all j and

SjpjZ1.
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It is worth pointing out that the use of gradient-based

approaches implicitly assumes, in practice, a certain amount of

spatial coherence in the image velocity. This is due to the fact

that the image spatial and temporal gradients have to be

estimated using discrete approximations over a finite region.

Constraints derived from image gradient measurements

become anomalous if this region contains a motion boundary,

and the traditional approach has been to use robust estimation

techniques to remove these outliers, for example mixture

models with outlier distributions ([19]) or robust estimators

([20]), or RANSAC ([21–23]) or something similar ([24]). We

use an outlier layer with constant probability density in the

range of 0.26–1.5 (based on value for sv that decreases from

0.6 to 0.1 over the course of the EM iterations in a manner

similar to simulated annealing) is used to model constraints not

accounted for by other motion layers. An initial mixing

proportion of 0.1 is assigned to the outlier layer, with the

remaining mixing proportions being given an equal share of the

remaining 0.9.

The probability that a constraint comes from any particular

layer j can be computed as

OððcððxÞjjÞZ
pjpjððcððxÞjðqj; ðxÞPn

kZ1 pkpkððcððxÞjðqk; ðxÞÞ
(1)

and is called its ownership by that layer. Finally, the likelihood

of the entire model with respect to a set of measured constraints

fðcððxqÞg
m
qZ1 is given by

Lð ðQÞZPm
qZ1pððcððxqÞj ðQ; ðxqÞ;

where

pððcððxqÞj ðQ; ðxqÞZ
Xn
jZ1

pjpjððcððxqÞjðqj; ðxqÞ

and ðQZ ½ðq
T

1.ðq
T

np1.pn�
T is the collection of all model

parameters. The EM algorithm ([25]) is an iterative technique

for maximizing a model’s likelihood with respect to the

observed data. Since, in general, the likelihood is a non-linear

function, the method may find a local minimum as opposed to

the desired global minimum, so a good initial guess for

parameters is helpful. For each EM step, we first compute the

ownerships via Eq. (1), and then use these as weights in a least

squares, analytic solution for the motion model parameters

(either affine or constant) in the M-step. Standard singular

value decomposition is used to compute the optimal parameter

estimates.

Each iteration of the EM algorithm requires that the number

of models n be known, so it is necessary to determine this from

the input sequence. Following [26–28], we perform a

sequential analysis of dominant motions in the images. We

start by computing a model for a single motion plus an outlier

process designed to catch constraints not well-modelled by the

single motion. This can be considered a robust procedure for

estimating the dominant image motion. By examining

constraints owned by the outlier process, we can decide

whether or not to add another motion to the model. This
continues until no further processes are added, or newly added

processes become identical to existing ones.

To complete the discussion of the motion-layer estimation

stage, it should be noted that our implementation is based on a

multi-scale approach following that of [29]. The images are

pre-processed into a pyramid representation, and motion

estimation begins at the coarsest level of the pyramid, where

presumably maximum displacement is on the order of one pixel

or less, thus motivating the need for the kðukmax parameter

discussed above. Parameter estimation at each subsequent

(finer) level computes residual flow after prewarping one of the

images according to motion parameters from the coarser

level—this is done separately for each motion layer. The

residual flow parameters are then combined with those from

the coarser level to get a final estimate for the current level, and

the process moves on to the next level. At the coarsest levels

there may not be enough constraints to reliably estimate full

affine (or higher-level) parameter sets, and in such cases the

model falls back to a translational model until finer resolution

levels are reached.

3.2. Intensity constraints

One reason that layer-based motion estimation has

traditionally not been used to provide boundary estimates is

the relative sparseness of the recovered motion constraints.

This is a natural consequence of using the spatial gradient as

part of the motion constraint: image regions with little or no

texture do not provide useful constraints. Even if the image

gradient is non-zero, the signal to noise ratio of each constraint

must be considered, and a constraint is rejected if it fails to

meet a minimum SNR (Section 3.1). Further, even if an image

region has sufficient texture, if the spatial gradient vectors are

perpendicular to the local motion then no useful constraints

will be recovered, as It will be zero in this case. The lack of

motion constraints along edges parallel to the direction of

motion is enough on its own to deter attempts at boundary

recovery using only motion constraints. In practice, it is usually

found that motion constraints alone are insufficient to drive

boundary recovery.

In attempting to recover boundary constraints using motion

constraints alone we are ignoring a rich and stable source of

information, namely the intensity values themselves. Intui-

tively, we do not expect the appearance of an object to change

radically from one frame to the next. While this notion is at the

heart of gradient-based motion constraints, it can also be used

directly. We propose a novel method for incorporating

intensity information into the boundary recovery process.

Given an estimate of the motion parameters for a particular

object motion in the scene, it is possible to compare intensity

values between frames to check for consistency with the

proposed motion. For any pixel location in the first frame, ðxðt1Þ;
we can compute its new location according to motion model j

by warping the pixel location according to the proposed

motion, ðxjðt2ÞZ ðxðt1ÞC ðuððxðt1Þ; ðqjÞ.
The comparison of intensity values is done assuming a

Gausian distribution for the intensity values. If G(I;m,s) is



Fig. 2. The middle image shows the intensity ownerships for the horizontal

motion of a cup and hand from the frame shown at the top. Note that the

reflection of the cup in the table surface is correctly identified. The lower image

shows intensity ownerships for the (stationary) background. In each image,

black is 0.0, white is 1.0, and values in between are given by levels of grey.
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a Gaussian density, then the likelihood of a given pixel location

ðx matching the j-th motion model is given by

Ljððxðt1ÞÞZGðIððxðt1Þ; t1ÞKIððxjðt2Þ; t2Þ; 0; sccdÞ

where sccd is the expected pixel-noise standard deviation for

the camera in use. For modern CCD cameras, this value will

typically be in the range 1–2. It should be noted that it might be

worthwhile considering signal dependent noise models (such

as that suggested by [30]) in which the value of sccd is

dependent on the expected image intensity, giving what is

typically referred to as signal dependent noise.

A low value of LjððxÞ suggests a low likelihood of motion j at

image location ðx; whereas a high value indicates a higher

likelihood. However, a high value for LjððxÞ alone is not

sufficient, as the same image location may have high likelihood

for other motion layers. This situation is expected in regions

that have uniform intensity values. More than one motion layer

may map ðx onto a location with the same intensity value,

especially if the size of the uniform region is large compared to

the motion magnitudes. It could be argued that intensity

constraints are no better than motion constraints in this respect,

but this is not the case. Intensity constraints may still be useful

in uniform regions in helping to distinguish between motions of

differing magnitudes when one or more of the motions is large

enough to move into a region of different texture or intensity, as

might be expected near an object boundary. Also, they show (in

practice) better performance in regions of low texture where

noise considerations preclude the use of motion constraints. In

regions with strong texture, it is expected that one motion layer

will have a stronger likelihood than the others for a particular

image location. An example of intensity constraint likelihoods

for two motion layers is given in Fig. 2.

To provide a more meaningful context for intensity

constraints, we again invoke the notion of process ownership

as used in a mixture model. Here we assign each pixel an

ownership by each motion layer by combining the various

intensity likelihood values as follows,

QjððxÞZ
pjLjððxÞP
kpkLkððxÞ

:

In computing this ownership, the index k ranges from 0 to N

where N is the number of motion layers in the model. A special

meaning is attached to L0. It is a constant value that assumes

the role of an outlier process. This is important in order to

account for any pixels that are not well modelled by any

existing motion layer. Instead of forcing ownership by the

motion layer that fits the data least poorly, the outlier process

can assume ownership. In Section 3.3 we will use the intensity

constraint ownerships to provide an additional force for the

active contour, thus it is important to discount data that is not

consistent with any motion layer.

While others have used the notion of warping image

intensities and comparing them between frames, none have

done so with the purpose of combining information across

layers to provide additional support for a boundary hypothesis.

Both [16], and [13] warp image intensities as part of their
motion estimation, although neither considers relative like-

lihoods between different motion layers. In both cases, each

pixel intensity is warped only according to a single motion

model, not considering information contained in other motion

layers. In [31] intensity mapping is considered as part of the

minimization term used to estimate motion layer parameters.

Jepson et al. [8] warp pixel intensities for multiple motion

layers, but not for the purpose of developing boundary

constraints.

In this section we have talked about ‘intensity constraints’

as if they were referring to grey-scale values, however, this is

overly restrictive. The same concept can be used for colour

values (either with or without brightness information retained),



D. Chung et al. / Image and Vision Computing 24 (2006) 680–692 685
and it can be applied to other pixel features, for example phase

response when a complex-valued filter has been used to pre-

process the image, or even measures of local texture. Multiple

cues can be used simulataneously.
3.3. Boundary estimation using active contours

The boundary-based information used in our model is

derived using an active contour model. Active contours, or

‘snakes’ as they are sometimes called, have been used by vision

researchers since their introduction by [32]. Our implemen-

tation uses distance transform (DT) contours ([33,34]),

although we have also successfully employed gradient-vector

flow (GVF) contours ([35]). The advantage of these formu-

lations is that they descend into deep concavities easily, and

converge quickly when initialized away from features of

interest. Since we will initialize our contour using a convex

hull based on intensity constraints (Section 3.3.1), these are

useful characteristics. Each motion layer has an associated

active contour, except for the outlier and background layers.

Our contour implementation uses the standard model of

internal forces, used to promote even control point spacing

(continuity) and smoothness, and external forces used to draw

the contour to image features of interest. For active contour

control points fðxig
s
iZ1; where ðxiZ ½x1i x2i�

T; we have

Econtour Z
Xs

iZ1

½EintððxiÞCEextððxiÞ�:

The internal energy term is given by

EintðiÞZaðx 0i Cbðx 00i:

Here, a and b represent the relative weighting of each term,

and ðx 0i and ðx 00i are first- and second-order difference

approximations, respectively. Image edges, motion constraints,

and intensity constraints are represented in the external term,

EextðiÞZgEDTððxiÞCdEmotionððxiÞCkEintensityððxiÞ:

The values of aZ0.05, bZ0.01, gZ1 and dZ1 were used

for all image sequences. Image edges are represented by their

DT field ([33]), with

EDTððxÞZ
K1; dððxÞ!1

K1=dðxÞ; otherwise

(

where d(x) is the distance (in pixels) of image location ðx to the

nearest edge. Motion constraints are incorporated by using

them to identify image edges owned by the current motion

process, and subsequently providing an additional DT

attractive force

EmotionððxÞZ
EDT; QjððxÞO0:5; where j is the current motion

0; otherwise

(

to those edges. Motion edges are therefore, used to modulate

the external force exerted on the active contour by nearby

image edges. When a motion edge is aligned with an image
edge, the influence of that edge is boosted. Image edges normal

to the object’s motion direction that do not have motion

constraint support have their influence attenuated, as pre-

sumably they belong to a different motion layer. Motion edges

parallel to the object’s motion, and even though they do not

receive support from the motion constraints, still have support

from the image edges, and in the absence of motion constraints

give the active contour something to attach to.

To incorporate the information provided by the intensity

constraint ownerships, we incorporate an additional force into

the active contour cost function. This force, which takes the

form of a balloon force (directed in or out along the contour

normal at a control point, ([34])), is based on comparing the

intensity constraint ownership of the motion layer to which the

active contour is associated, with the largest ownership by any

other layer. The force acting on contour point ðxi is

ðf intensityððxiÞZ kMððxiÞðnððxiÞfVEintensity

where ðnððxiÞ represents the vector normal to the active contour

at ðxi and

MððxiÞZQjððxÞKmax
�j;�js0

Q�jððxÞ:

We see that ðf intensityððxiÞ will be positive when the motion

layer associated with the contour has greatest ownership of the

intensity consistency data, and negative if not (a net force of

zero occurs when there is no unique strongest owner). Here the

maximum of the other ownerships is computed excluding the

outlier process. The reasoning for formulating the force in this

way is as follows. If any motion layer has a strong ownership

for this image location, it will dominate this force. If it is the

layer associated with the active contour, then the force will be

positive, otherwise it will be negative. In the event that all

motion layers have roughly equal ownership of the location

(suggesting a uniform region), then the resulting force will be

small and have little effect on the contour. The sign of MððxiÞ
indicates the direction of the intensity constraint force

(expansion or contraction), and its magnitude indicates the

strength of the force, scaled by weighting factor k. So assuming

ðnððxiÞ is directed outward, a positive MððxiÞ value encourages

expansion, a negative value contraction, and a zero value

neither. Note that in regions where this force is zero, the active

contour moves to the nearest motion constraint supported edge

or the nearest image edge. The value of k was set to a value in

the range of 0.9–1.3 for regions identified as not belonging to

the current motion (with a negative value of MððxiÞ providing a

contraction force), 1.3 for regions identified as belonging to the

current motion (thus providing expansion), and a value in the

range K0.01 to K0.02 for neutral regions to provide slow

contraction in regions of uncertain ownership. The active

contour’s optimization follows ([32,35]), which describe an

iterative solution to the active contour energy minimization

problem, incorporating the two internal force terms described

above, and external force maps. Every five iterations a point

management routine is invoked to add or remove points so that

the distance between control points always remains in the range

of 4–8 pixels. When the distance between two control points



Fig. 3. This figure shows the convex hull of intensity constraints used to

initialize an active contour around the tow truck. The red line is the active

contour’s starting point in the first frame.
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exceeds 8 pixels, a new control point is added midway, and

when two points move closer than 4 pixels one of the control

points is removed.

3.3.1. Active contour initialization

The active contour’s initialization in the first frame is

automatic, and is based on a convex hull contour placed around

the target object’s estimated bounding pixels. This is

accomplished by thresholding the intensity constraints from a

motion-only analysis in the first pair of frames, and then using a

median filter to remove spurious constraints, and finally

performing connected-components analysis (CCA) clustering

([36]) on the intensity-consistency constraint data. The CCA

clustering is necessary because we do not want to allow outlier

constraints to adversely affect the convex hull, nor do we want

to initialize a contour around multiple objects moving with the

same motion. An example is shown in Fig. 3. The CCA

analysis starts by defining an affinity matrix

Wij Z
exp

kðxiKðxjk
2

2s2

8<
:

9=
;; jðxiKðxjj!dmax

0; jðxiKðxjjRdmax

8>><
>>:

for all pairs of points in a motion layer ðxi and ðxj
1. A threshold t

is used for comparing affinity values and determining whether

to mark the corresponding labels as equivalent or generate new

labels. The working values of dmaxZ5, sZ3 and tZ0.8 were

determined through a series of experiments on representative

image sequences.

3.4. Motion feed-forward

In addition to Emotion, the region-based motion estimation of

Section 3.1 is combined with the active-contour-based

boundary estimation of Section 3.2 through a feed-forward

mechanism. After the motion layer parameters have been

estimated for any frame pair at t and tC1, the associated active

contour is updated based on edge information for the current

frame, and the motion information. In order to correctly

propagate the active contour between frames, the motion

model for the contour is used to estimate motion for each of the

contour’s control points. These points are then updated

according to

ðxiðtC1ÞZ ðxiðtÞC ðuððxiðtÞ; ðqjÞ:

In this way, the active contour is propagated between frames

in a manner that is consistent with the motion estimates. The

advantage of this is that when it comes time to update the active

contour in the next frame, its control points will already be

close to their final positions, and very few iterations of the

contour optimization will be needed. Also, if the relative

motion between frames is large, this method of propagation

will help the active contour bypass spurious image structure,
1 Here the subscripts to not refer to control points of an active contour, but

rather provide a way of indexing over all points in a motion layer.
such as edges internal to the object or part of another image

region, which otherwise might cause the active contour

optimization to settle into an incorrect local minimum.

It is worth noting that the shape of the contour may change

as an object is tracked over time. This can happen as a result of

the object deforming, or becoming partially occluded. In this

case, the change in the contour shape will be primarily driven

by image edges (EDT), intensity consistency (Eintensity) and

motion constraints (Emotion). Normal contour optimization is

sufficient to track such changes.

3.5. Boundary feed-back

The second manner in which the region- and boundary-

based information are integrated is through feed-back from the

active-contour boundary to the motion estimation stage. In a

traditional layered-flow model, motion parameter updates are

based solely on the EM ownerships for individual motion

constraints. However, once an object with a bounding contour

has been identified, it is desirable to set these ownerships to

zero outside the contour in order that the motion estimates for

the object being tracked are not affected by similar, but

possibly unrelated, motions outside the region. Other regions

with similar motions can be tracked separately by spawning

new motion layers for them with similar motion parameters,

but with separate ownerships. In this sense, the active contour

provides a computationally simple yet effective way in which

to enforce the notion of spatial coherence in the motion

estimates.
4. Results

In the following results, the assumed value for CCD sensor

noise is sccdZ1.0, and the pj’s are assumed equal in computing

the intensity constraint ownerships. Computation time is

roughly 1–2 s per frame using Matlabe on a 2.6 GHz dual

Xeon processor workstation with 4 GB of physical ram

(although only one processor actively performs the compu-

tations). Before presenting the results, we begin with a brief

description of the sequences considered.
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4.1. Sequences

The results presented are from four sequences, two from the

authors’ lab and two that have been used by multiple

researchers. Each sequence is described below:

4.1.1. Scoop sequence

In this sequence, a toy construction vehicle rolls down a

ramp from left to right. The vehicle has a complicated shape,

and the background is stationary.

4.1.2. Tow truck sequence

In this sequence, a toy tow-truck rolls down the same ramp,

but the background is no longer stationary. The camera is

handheld, with dominant motions in both the left and right

horizontal directions. The tow truck also has a complex shape

due to the towing boom and hook arrangement. A second

version of this sequence, the same except for having a

stationary background, is used for comparison purposes.

4.1.3. Frey–Jojic sequence

In this sequence, first used in [37], two subjects move

horizontally against a stationary (but noisy) background. They

move towards each other, and in the full sequence one passes in

front of the other, fully occluding the other.

4.1.4. Flower garden sequence

In this standard test sequence, an observer translates roughly

fronto-parallel to a scene with a tree in the foreground, a flower

garden, which slopes away from the observer behind the tree,

and a house in the background. While there are no

independently moving objects here, the amount of parallax

between the tree and the garden and house is substantial.
Fig. 4
The motion and the geometry of the flower garden, mean that a

simple translational model is insufficient. Strictly speaking, a

full projective model is required to account for the

foreshortening in the flower garden region, but our analysis

is based on fitting an affine model.
4.2. Performance

Results from each of the four sequences are shown in

Figs. 4–7. In the top row of each figure are shown two frames

from the sequence with bounding contours shown for the

independently moving objects (or, in the case of the flower

garden sequence, the tree). In the bottom row of each figure are

shown the intensity constraint maps for the moving objects,

with each map corresponding to the frame displayed above it.

In each case the foreground objects are seen to be correctly

identified, and their boundaries recovered accurately. A

number of specific cases are worth commenting on further.

In general, shape is well recovered in most instances. In

particular, the complex shapes of the towtruck and even the

construction vehicle (the latter with deep concavities) are seen

to be well recovered. It should be noted that small and very

narrow concavities are somewhat problematic (e.g. the space

between the tree branches in the flower garden sequence). This

is partially due to the difficulties of propagating active contours

into deep concavities, and partially due to the finite spatial

extent of the gradient filter kernels Gx and Gy used to generate

the motion constraints.

Using sequential process generation to determine the number

of motion layers from the outlier constraint population works

well for the first three sequences presented. In the case of the

flower garden, it just gives two motions, although it could be

argued that three might be more appropriate if the house motion
.



Fig. 5.
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is considered separate from the garden motion. This is partly an

issue of the value of sv used in the process ownership function.

An apparent problem in both the Scoop and towtruck

sequences is that the area between wheels of the tow truck, or

between the front wheels and the bucket of the construction

vehicle, are segmented as part of the vehicle and not the

background. This is a consequence of the method employing

no top-down contextual knowledge. Because these regions are

textureless, there is no evidence to support them belonging

preferentially to either the foreground or background. In this

case, the presence of a strong edge along the ramp becomes the

driving force for the contour. In the event that background

texture becomes available in these regions at a later time, as is

the case in the towtruck sequence, the boundary is seen to move

inwards due to negative value of MððxÞ in these regions.
Fig. 6. The false-colour coding for the intensity ownership constraints in the bottom

and red-indeterminate.
In the Scoop sequence the background is visible through the

operator’s cab. It can be seen that this is correctly labelled in

the intensity constraints. This will allow for future enhance-

ments to the method to recover ‘hole boundaries’.

In the Frey–Jojic sequence, it is seen that the lower edge of

the left subject’s shirt is difficult to recover due to lack of

texture and its being along the image boundary-at present the

system does not pay special attention to image dimensions.

Later in the sequence, when the right subject occludes the left

one, the contour of the left subject contracts as should be

expected. There is a slight amount of overlap in the contours—

at present there are no forces acting between the contours to

prevent such occurrences, but this is not difficult to add.

Finally, in the flower garden sequence the tree is seen to be

well segmented along its trunk, although in frame 32 some of
two images is: purple-motion 0 (background), green-motion 1, cyan-motion 2



Fig. 7.
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the flower garden is incorrectly segmented with it. This is

understandable since it has a very similar motion (it lies in

roughly the same plane as the tree trunk) and, as mentioned

above, there is no contextual information employed. Also,

some of the tree’s branches are incorrectly included even

though the recovered motion parameters do not properly

account for their motion. This indicates a slight inaccuracy in

our recovered affine parameters. This has a subsequent effect

on the intensity constraint maps, where the branches are

identified as belonging to the tree model (but they do not lie in

the same plane as the tree trunk), thus attempting to drive the

active contour around them. It is difficult for the contour to

descend into the concavities between these branches, leading to

an inaccurate shape recovery.

The results shown here demonstrate the importance of

combining boundary and motion estimation in the segmenta-

tion problem. Our segmentation is able to incorporate static

edge information via the active contour. This is particularly

important with respect to bounding edges, as motion

constraints generated along these edges are often in violation

of the brightness constancy assumption used to generate them.

Further, the propagation of the contour between frames based

on estimated motion improves the likelihood of tracking the

correct edge from one frame to the next. Some amount of

smooth deformation is also tolerated, as the active contour can

adjust for small amounts of mis-registration when the curve is

propagated.
4.3. Motion warp comparisons

In order to quantitatively assess the quality of recovered

motion parameters, Fig. 8 shows the results of comparing the

tracked object images by warping with the motion parameters

computed for the tracked object, and creating a histogram of
the resulting absolute intensity differences. Cubic interpolation

was used in computing the image warps prior to comparison.

4.4. Ground-truth comparisons

In order to better assess the performance of the system with

respect to the boundary contour, a comparison is made in one

sequence against a manually segmented contour, and the

results are shown in Fig. 9. The average absolute distance of the

recovered contour from that of the ground-truth are 1.5 pixels.

The main regions in which discrepancies occur are seen to have

little texture in the background, leading to an ambiguity of

ownership. For example, the region between the wheels, as

described earlier, can easily be understood as part of the truck if

no prior knowledge of the truck’s shape is assumed. The grey

areas average 13.77% the size of the interior of the ground-

truth contour for a stationary-background sequence involving

the tow truck (ranging from 11.03 to 17.44%), and an average

of 14.92% for the moving-background sequence involving the

same tow truck (ranging from 11.98 to 18.00%).

In Fig. 10, the mean distance of the control points on the

active contour with respect to the ground truth contour is

shown. It shows that the control points remain close to the

ground-truth contour, with a slight bias towards being outside-

this can be attributed to (1) the inclusion of textureless

background regions with the estimated object boundary (as

discussed above) and (2) the finite size of the kernels used to

estimate image spatial gradients, leading to a blurring of edge

information which subsequently acts on the active contour via

the data-based energy terms.

4.5. Incorporation of condensation tracker

In order to show how our proposed region-boundary

paradigm can be related to other tracking techniques,



Fig. 9. The mean distance of the active contour control points from the ground-

truth contour is shown for two tow-truck sequences, one with a moving

background and one without. The somewhat better performance on the moving

background sequence is likely due to larger relative velocities, leading to

stronger forces acting on the active contour. The slight bias can be attributed to

the finite receptive field of the gradient estimation algorithms.

Fig. 8. One measure of the quality of recovered motion parameter is to compare

the intensity value of pixels in an image with the intensity values of a second

image warped according to the motion parameters that relate the two images.

The comparison is performed for pixels within the tracked object contour. Top:

the normalized histogram of absolute intensity differences is given by the solid

line. All intensity differences greater than 20 have been lumped into the final

bin-it can be seen that very few pixels fall into this category, suggesting most

strong edges have been well matched. For comparison, a Gaussian density (sZ
2) for absolute differences is also shown (dotted line), modelling expected

intensity differences due to CCD sensor noise alone. Bottom: this graph shows

the result of performing this operation over an entire tracked sequence. The

difference distribution can be seen to be consistent over the tracked frames.
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a prototype version of the system was developed based on the

Condensation algorithm by [38]. The basic idea is to use the

motion update our technique provides to the active contour

instead of the deterministic component of the update step in the

Condensation algorithm, thus removing the need for a learning

stage to train the dynamical model.

Our Condensation implementation follows its description

in [38], using the six parameters of affine motion as the

system state variables. The state variables thus represent the

affine motion of the object boundary between the previous
frame and the current frame, for which an estimate is

already provided from our flow-based motion estimation

component. As a result, the region information used to

derive motion estimates is directly incorporated in the

contour-based tracker at this stage, replacing the typical

sample propagation model for system state variable sample

ðr ðnÞ;

ðr ðnÞt ZAðr 0
ðnÞ
tK1 CB ðwðnÞ

t ;

with

ðr ðnÞt Z ðQ
ðnÞ

t CB ðwðnÞ
t

where ðw is a vector of normal random variates and B is a

diagonal matrix of standard deviation values that control the

stochastic diffusion of state samples. Here ðQ
ðnÞ

t is the

current motion layer parameter estimate. For the affine state

vector, the leading four diagonal entries of B are identically

assigned to account for small affine deformations, in the

neighbourhood of 0.1, while the remaining entries corre-

sponding to the translation parameters are considerably

higher, in the range of two or more pixels. The observation

measurement and weighting follows the approach described

in [38] for 2D curve matching, by seeking edge features

that lie on lines normal to the boundary curve. In our case,

the normal lines are not explicitly set at uniform intervals of

the curve, but at each active contour control point, the set

of which are roughly evenly spaced along its length. The

observation density is therefore, computed as

P
�
ðzjfðxig

s
iZ1

�
fexp K

Xs
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Fig. 10. The images here show a comparison of the automatically recovered boundary (dashed line) with a hand-segmented boundary (solid line). The left image

shows both contours overlaid on the image, while the right shows the area between the two contours in grey, with the contours themselves in black. Note that the

largest region of discrepancy is between the wheels where there is no discernable texture, and contextual information-available to the person performing the manual

segmentation but not the algorithm-is required to correctly segment in this area.
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where f(n,m)Zmin(n2,m2), and ðz is the location of the

Canny-derived edge point closest to control point ðxi along

the normal to the curve at ðxi: The maximum feature

distance parameter, mz7 pixels, is used to constrain the

feature search along the normal lines to a reasonable

number of standard deviations. The equivalent 1D obser-

vation density along each normal has standard deviation sz,

usually set to a value less than one to ensure close curve-to-

edge alignment. With these changes in place, the standard

Condensation algorithm ([38]) is executed to recover the

object boundary, replacing the functionality of the active

contour component. The resulting performance is found to

be comparable to those results already given in this section.
5. Conclusions

The task of motion segmentation has long been approached

from two separate sides, one in which motion layers are

estimated without regard to the bounding contour of the

moving object, and the other in which the bounding contour is

tracked without regard to motion information inside the

boundaries. In this paper, we have sought to reconcile these

two approaches by making an explicit attempt to exploit spatial

coherence in the motion of the image pixels. These two sources

of information are complementary; for example, boundary

tracking can deal with pixels that often violate constancy

constraints used in motion layer estimation. Their combination

is intuitively satisfying, and yields both improved motion

estimation and boundary recovery. Our proposed framework

allows for a moving background or observer, and multiple

moving objects. We have introduced a novel mechanism that

we call ‘intensity constraints’ to provide driving forces for the

active contour. Finally, the use of feed-forward and feed-back

mechanisms to link the motion layer and boundary estimation

steps leads to a synergistic segmentation and tracking
algorithm. It should be noted that the approach is general, in

that it is not tied to a specific set of motion constraints (for

example, phase- or colour-based constraints can also be used,

or even non-gradient based methods for motion estimation).

We are continuing to develop the proposed method, and

work is currently progressing in the following areas. First,

topologically adaptive active contours are being investigated

that will allow for recovery of non-simply connected object

motions. We are also studying ‘stiffening constraints’ at

contour control points to identify those parts of the bounding

contour that are stable, and those that are articulating. In the

case of articulating objects that are composed of rigid parts,

this approach will allow for decomposition of objects based on

these parts, as well as facilitate the tracking of objects under

occlusion. It is also desirable to investigate the incorporation of

non-parametric flow estimation for two reasons. The first is to

give the method a range of estimation capabilities beyond

constant, affine or other parametric motions. The second reason

is to allow tracking of freely deformable objects. The challenge

in incorporating non-parametric flow estimation lies in assign-

ing ownership probabilities to motion constraints used in the

layered motion model.
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