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Abshncl-Recent work in L e  object recognition commu- 
nity bas yielded a class of interest paint-based features that 
are stable under significant changes in scale, viewpoint, and 
illumination, making them ideally suited to landmark-based 
nmjgation. Although many such features may be visible 
in a given view of the robot’s environment, only B few 
such features are necessary l o  estimate the robot’s position 
and orientation. In this paper, we address the problem of 
automatically selecting, from the entire set of features visible 
in the robot’s environment, the minimum (oplimal) set by 
which the robot can navigate its environmenL Specifically, 
we decompose the world into a small number of maximally 
sized regions such that a1 each position in a givcn region, 
the same small set of features is visible. We introduce a navel 
graph theoretic formulation of the problem and prove that it is 
NP-complete. Nexl, we introduee a number of approximation 
algurilhms and evaluate them on both synthetic and rral dau. 

I. INTRODUCTION 
In the domain of exemplar-based (as opposed to generic) 

object recognition, the computer vision community has re- 
cently adopted a class of interest point-based features, e.g., 
[ I ] .  [3],  [ 5 ] .  Such features typically encode a description 
of image appearance in the neighbourhood of an interest 
point, such as a detected comer or scale-space maximum. 
The appeal of these features over their appearance-based 
predecessors is their invariance to changes in illumination, 
scale, image translation and rotation, and minor changes 
in viewpoint (rotation in depth). These properties therefore 
make them ideally suited to the problem of landmark-based 
navigation. If we can define a set of invariant features that 
uniquely define a particular location in the environment, 
these features can, in tum, define a visual landmark. 

To use these features, we could, for example, adopt a 
localization approach proposed by Basri and Rivlin [61 and 
Wilkes et al. 171, based on the LC (linear combination 
of views) technique. During a training phase, the robot 
is manually “shown” two views of each landmark in 
the environment by which the robot is to later navigate. 
These views, along with the positions at which they were 
acquired, lorm a database of landmark views. At runtime, 
the robot takes an image of the environment and attempts to 
match the visible features to the various landmark views it 
has stored in its database. Given a match to some landmark 
view, the robot can compute its position and orientation in 
the world. 

There are two major challenges with this approach. 
First, from any given viewpoint, there may he hundreds 
or even thousands of such fealures. The union of all 
pairs of landmark views may therefore yield an intractable 
number of distinguishable features that must be indexed 
in order to determine which landmark the robot may he 

viewing. Fortunately, only a small number of features are 
required (in each model view) to compute the robot’s pose. 
Therefore, of the hundreds of features visible in a model 
view, which small subset should we keep? 

The second challenge is to automate this process and 
let the robot automatically decide on an optimal set of 
visual landmarks for navigation. What constitutes a good 
landmark? A landmark should he both distinguishable from 
other landmarks (a single floor tile, for example, would 
constitute a bad landmark since it’s repeated elsewhere 
on the floor) and widely visible (a landmark visible only 
from a single location will rarely be encountered and, 
if so, will not he persislent). Therefore, our goal can 
he formulated as partitioning the world into a minimum 
number of maximally sizcd contiguous rcgions, such that 
the same set of features is visible at all points within a 
given region. 

There is an imponant connection between these two 
challenges. Specifically, given a region, inside of which all 
points see the same set of features (our second challenge), 
what happens when we reduce the set of features that 
must he visible at each point (first challenge)? Since this 
represents a weaker constraint on the region, the size of 
the region can only increase. yielding a smaller number 
of larger regions covering the environment. As mentioned 
earlier, there is a lower bound on the number of features 
that can define a region, based on the pose estimation 
algorithm and the degree to which we want to overconstrain 
its solution. 

Combining these two challenges, we arrive at the prob- 
lem addressed by this paper: from a set of views acquired 
at a set of sampled positions in a given environment, 
partition the world into a minimum set of maximally sized 
regions. such that at all positions within a given region, 
the same set of k features is visible, where k is defined by 
the pose estimation procedure (or some overconstrained 
version of it). We hegin by introducing a novel, graph 
theoretic formulation of the problem, and proceed to prove 
its intractability. In the absence of optimal, polynomial- 
time algorithms, we introduce six different approximation 
algorithms for solving the problem. We have constructed 
a simulator that can generate thousands of worlds with 
valying conditions, allowing us to perform exhaustive 
empirical evaluation of the six algorithms. Following a 
comparison of the algorithms on synthetic environments, 
we adopt the most effective algorithm, and test it on real 
world imageiy of a real environment. 
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In previous work on visual robot navigation using point- 

size of the landmark database or the number of landmark 
based features, little or no attention has heen given to the 

use scale- and rotation-invariant features as landmarks, j 1,' 1 
extracted using the scale-invariant feature transform (SIIV 
[I] .  The robot automatically updates a 3D landmark map 

~ . _  8' I I with the reliable landmarks seen from the current position. 
The position of the robot is estimated using the cdomeuy of 
the robot as an initial guess, and is improved using the map. 

li 
lookups required for localization. Lowe, Se and Little [2] (a) ' (b) (C) 
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I Trinocular vision is used to estimate the 3D locations of 

landmarks and their regions of confidence, with all reliable 
landmarks stored in a dense database. 

i 
1 , _ ~  

The view-based approach of Sim and Dudek 141 consists (g) (h) 6 0 )  
of an off-line collection Of monocular images 
Over a space of Poses. The landmarks consist of PCA 
encodings of the neighbourhoods of salient points in the 
images, obtained using an attention Landmarks 
are tracked between contiguous poses and added to a 

Fig. 1. (a) A rimplc world with a q u a e  penmctcr (in grccn). a square 
(blue) obstacle in its ccnierand eight fearures (red cl icks on its perimeter). 
@)-&I Vlsiblliry areas ofsomefearures. (h) Acov-g of the worldusing 
4 feat=. (0 A covering of the world using 2 features. 

database if stable through a region of reasonable size. The 
localization is performed through a linear combination of 
views technique after finding matches between the visible 
landmarks and those in the database. 

The linear combination of views technique was first 
introduced by Ullman and Basri, and later applied to 
vision-based navigation by Basri and Rivlin 161 and Wilkes 
et al. [7]. In these original applications of the LC method, 
the features comprising the model views were typically 
linear features extracted from the image. While all of 
these approaches demonstrate how robot localization can 
be performed from a set of landmark observations, none 
consider the issue of eliminating redundancy from the 
landmark-based map, which at times can grow 10 contain 
tens of thousands of landmark models. 

Some authors have considered the problem of landmark 
selection for the pulpose of minimizing uncertainty in the 
computed pose estimate. Sutherland and Thompson [9] 
demonstrate that the precision of a pose estimate derived 
from point features in 2D is dependent on the configuration 
of the observed features, and provide an algorithm for se- 
lecting an appropriate set of observed features from which 
to compute a pose estimate. While maximizing precision is 
clearly an important issue, our work is concerned primarily 
with selecting landmarks that are widely visible.' 

feature in the database, we know from which grid points 
it is visible. Consider the example shown in Figure 1. 
Figure I (a) shows a simple 2-D world having a square 
perimeter, a square obstacle in its center, and eight features 
evenly distributed along its perimeter. In figures 1 (b) - 
1 (g), the area of visibility of some of the features is shown 
as a coloured region. The feature visibility areas. computed 
from a set of images acquired at a set of grid points in the 
world, constitute the input to our problem. 

In a view-based localization approach, the current pose 
of the robot is estimated using, as input, the locations of a 
small number of features in the current image matched 
against their locations in the training images. This set 
of simultaneously visible features constitutes a landmark. 
The minimum number of features necessary for this task 
depends on the method employed for pose estimation. For 
example, three features are enough for localization in Basri 
and Rivlin's linear combination of views technique [6 ] .  
which uses a weak perspective projection imaging model. 
The essential matrix method 1121, that properly models 
perspective projection in the imaging process, requires at 
least eight features to estimate pose. 

To reduce the effect 01 noise, a larger number of features 
can be used to overconstrain the solution. This presents 
a trade-off between the accuracy of the estimation and 

111. PROBLEM DEFINITION 

In an off-line training phase, images are first collected 
at known discrete points in pose space, e.g., the accessible 
veltices (points) of a virtual grid overlaid on the floor of 
the environment. During collection, the known pose of the 
robot is recorded for each image, and a set of interest point- 
based features are extracted and stored in a database. For 

features in the database are visible. Conversely, for each 

the size (in features) of the landmark. Requiring a larger 
number of features for localization, i.e., larger landmarks, 
will yield better pose estimation. However, the larger and 
more constrained a landmark is, the smaller its region of 
visibility becomes. We will define the parameter k as the 
number of features that will he employed to achieve pose 
estimation with the desired accuracy, i.e., the number of 
features constituting a landmark. 

from the features extracted from an image taken at that 

each of the ~d points, we therefore know exactly which localization from a given position is if, 
I ~ ~~~~~ 

ine d80rithms presenred in work can be easily position, there exists a subset of k features that exist in the 
database and that are simultaneously visible from at least seis of features that ful6ll any given additional conrminls. 
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two known locations. For a large environment, the database 
may he large, and such a search may he costly. For each 
image feature, we would have to search the entire database 
for a matching feature until not only k such matches were 
found, hut that those k features were simultaneously visible 
from at least two separate positions (grid points). 

Pecalling that k is typically far less than the number 
of Features in a given image, one approach to reducing 
search complexity would he to prune features from the 
dat$base subject to the existence of a minimum of k 
feaiures visible at each point, with those same k features 
being visible at one or more other positions. Unfortunately, 
this is a complex optimization problem whose solution still 
maintains all the features in a single database, leading to a 
potentially costly search. A more promising approach is to 
partition the pose space into a number of regions, i.e., sets 
of contiguous grid points, such that for each region, there 
are at least k features simultaneously visible from all the 
points in the region. Such a partitioning of the world, in 
tum, partitions the database of features into a set of smaller 
databases, each corresponding to what the robot sees in a 
spatially coherent region. 

Let’s return to the simple world depicted in Figure 1. 
Assuming that a single (k = 1) feature is sufficient 
for reliable navigation, one possible decomposition of the 
world into a set of regions (such that each pose of the 
world sees at least one feature) is achieved using features 
2, I ,  6, and 8, as shown in Figure 1 (h). It is clear that 
all four features in this set are needed to cover the world, 
since rcmoving any one of them will yield some portion 
of the world from which the remaining three features are 
not visible, meaning that the robot is blind in this area. 
However, this decomposition is not optimal, since other 
decompositions with less regions are possible. Our goal is 
to find the minimum decomposition of the world which, in 
this case, has only two regions, corresponding lo the areas 
of visibility of features 1 and 5, (or its symmetric solution 
using features 3 and 7). as shown in Figure 1 (i). This 
minimum set 01 maximally sired regions is our desired 
output, and allows us to discard from the database all hut 
features I and 5. Since at least one of these two features 
is seen from every point in pose space, reliable navigation 
through the entire world is possible. 

A partitioning of the world into regions offers additional 
advantages. While navigating inside a region, the c o n -  
sponding k features are easily tracked between the images 
that the robot sees. If the expected k features are not all 
visible in the current image, this may indicate that the 
robot has left the region in which it was navigating and 
is entering a new region. In that case, the visible features 
can vote for the regions they belong to, if any. according 
to a membership relationship computed offline. The new 
repi&) into which the robot is likely moving will be 
those with at least k votes. Input features would therefore 
be matched to the I; model features defining each of the 
candidate regions. ’Ibis approach also provides a solution to 
the kidnapped roborpmblem, i.e., if the robot is blindfolded 
and released at an arbitrary position, it can estimate its 

current pose. 
IV. A GRAPH THEORETIC FORMULATION 

Before we formally define the minimization problem 
under consideration, we will introduce some terms. 

Definition 4.1: The set of positions at which the robot 
can he at any time is called the pose space. The discrete 
subset of the pose space from which images were acquired 
is modeled by an undirected planar graph G = (V,E) ,  
where each node v E V corresponds to a sampled pose, 
and two nodes are adjacent if the corresponding poses are 
contiguous in 2D space. 

Definition 4.2: Let F he the set of computed features 
from all collected images. The visibilityser of U is the set 
& c F of all features that are visible from pose u E V .  

Definition 4.3: A world instance consists of a tuple 
(G = (V, E ) ,  F, {Fu}vE~). where the graph G models a 
discrete set of sampled poses, F is a Set of features, and 
{.Fu}VEV is a collection of visibility-sets. 

Definition 4.4: A set of poses R c V is said 
to he a region iff for all poses u , u  E R, there 
is a path between U and v completely contained in 
R, i.e., Vu3u E R : 3{u  = 0 0 : .  . . ,uh = U }  2 R, such that 
(U,, vi+l)  E E for all 0 5 i < h. 

Definition 4.5: A set of regions 
D = {R1,. . . ~ Rd} c 2V is said to be a deconzposirion of 
V iff Ul<t<d R, = V .  

DefinitTois 4.1 to 4.5 define the set of inputs 
and outputs of interest to our problem. In view of 
our optimization problem, for a given world inslance 
(G = (VtE)>F.{Fu}uG~), one would like to create a 
minimum cardinality D. In addition, it will be desirable 
for a given solution to the optimization problem to satisfy 
a variety of properties. One properly of interest is that of 
ensuring a minimum amount of overlap between regions 
in the decomposition. The purpose of overlap is to ensure 
smooth transitions hetween regions, as different sets of 
features become visible to the robot. When one region’s 
features s m t  to fade at its border, the robot can be ensured 
to he within the boundary of some other region, where the 
new region’s landmark is clearly visible. The following 
definitions formalize this property: 

Definition 4.6: The p-neighborhood of a pose U E V 
is the set N J v )  = (U  E V : b(u:v )  5 p} .  where S(u,v)  
is the length of the shortest path between nodes U and v 
in G. 

of V is said to bc p-overlapping iff (Vu E V )  
(3) :A$(.) c Ri. 

With these definitions in hand, the problem can now be 
stdted as follows: 

Definition 4.8: Let k he the number of features re- 
quired for reliable localization at each position, according 
to the localization method employed. The p-Minimum 
Overlapping Region Decomposition Problem (p-MORDPJ 
for a world instance (G = (V:E);F,{Fc}uE~) con- 
sists of finding a minimum-size poverlapping decompo- 

Rd} of I’ into regions, such that 

Definition 4.7: A decomposition D = ( R I ,  

vi : I nUERi F,I 2 k. 
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Note that given a solution of size d to this problem, the 
total number of features needed for reliable navigation is 
hounded by d .  k .  

Before we consider the complexity of p-MORDP, we 
will present two theorems indicating that p-MORDP can 
he reduced to 0-MORDP (p  = 0). and that a solution 
to the reduced 0-MORDP can be transformed hack to 
a solution of the more general p-MORDP. The first of 
the following two theorems states that if there is a p 
overlapping decomposition such that k features are visible 
in each region for a certain world instance, then there 
is a 0-overlapping decomposition for the related problem 
also with k features visible in each region. This theorem 
guarantees that if a solution exists for the p-MORDP, then 
there is also a solution for the related 0-MORDP. 

The second theorem states that whenever the related 
0-MORDP has a solution D,  then the p-MORDP has a 
solution too, and it presents the method to construct it 
from 0. The proofs of these theorems are presented in [8]. 
It should be noted that while the transformation from p- 
MORDP to 0-MORDP and hack to p-MORDP may create 
a dilTerent p-overlapping decomposition, the cardinality of 
the decomposition under this two-step transformation will 
remain the same, hence the optimality will not be affected. 

Theorem 4.1: If D = {RI:. . . ;Rd} is a p 
overlapping decomposition of V for a world instance 

for all i = 1:. . . ,d,  then b = {RI , .  . . , Rd), where 
R; = { U  E R, : .h'#(v) C Ri), is a 0-overlapping decom- 
position-for a world instance (G = ( V > E ) , F 3 i F c ) u G ~ ) ,  

all i = 1:. . .: d. 
Theorem 4.2: If 0 = ( R I , .  . . ~ R d )  is a solution to 0- 

MORDP for a world instance (G = (V.E),F~{Fc]us~), 
then D' = {R;:. . . ~ Ri},  where R: = Uut~ ,  N J v )  
is a solution to 0-MORDP for the world instance 

(G=(V.E) ,F .{F~) , ,v ) .  such that ln,,RiFu;;l t k 

where Fu = nWGA7,(,) FW, such that I nCEa, Ful 2 k for 

(G = N E ) ,  F, {F"'V),EV). 
The transformation applied in Theorem 4.1 from a p 

overlapping to a 0-overlapping solution effectively shrinks 
the regions of D by p. and reduces the visibility-set of each 
vertex v to correspond to only those features that are visible 
over the entire neighborhood Xp(v) of U , *  Theorem 4.2 
assumes that the collection of visibility-sets input to 0 
MORDP is defined hy a reduction of the p-overlapping 
instance of the problem to a 0-overlapping instance using 
the transformation described in Theorem 4.1. 

V. COMPLEXITY OF 0-MORDP 
Now we will show that 0-MORDP is NP-complete. 

The proof is by reduction from the Minimum Set Cover 
Problem. 

Definition 5.1: Given a set U, and a set of subsets 
S = (SI: .  . . ~ S,} of U ,  the Minbnuni Sef Cover Problem 
(MSCP) consists of finding a minimum set C c S such 
that each element of U is covered at least once, i.e., 
US&C sa = U .  

2Stnclly spe8king. the rqion rcduclion i s  imperuious to boundary 
effects at Ule boundary of G, due io Ihe definition of A'o(u). 

Figure 2 presents an instance of MSCP. The optimal 
solution for this instance is C = {{A,B),{C;D}} and, 
in fact, this solution is unique. An instance (U. S ,  r )  of the 
Set Cover decision problem, where r is an integer, consists 
of determining if there is a set cover of U ,  by elements of 
S, of size at most T.  The decision version of SCP was 
proven to he NP-complete by Karp [IO]. 

Theorem 5.1: The decision problem (0-ORDP, d) is 
NP-complete. 

Proof It is clear that 0-MORDP is in NF', i.e., 
given a world instance (G = (V.E),F.{Fu}u,~) and 
D = {RI,.  . . Rd). it can be verified in time polynomial 
in [VI if D is a p-overlapping decomposition of V such 

We now show that any instance of SCP can he reduced 
to an instance of 0-ORDP in time polynomial in IVI. Given 
an instance (U. S = {SI,. . . ~ S,)) of the Minimum Set 
Cover Problem, we consmct a 0-ORDP for the world 
instance (G = (V. E ) ,  F. {Fu)uE~) in the following way: 

Let U* he an element not in U then V = U U { U * }  - E = {(U,.') : U E U )  (Note that the graph G thus 

. F = {Jl, . . .  .J,) where J; =Si U { U * }  

. k = l  
The introduction of the dummy vertex U *  will he used 

in the proof to ensure that elements of U that belong to 
the same subset S, can be p m  of the same region in the 
decomposition, by virtue of their mutual connection to U*. 
Each visibility-set Fu in the transformed problem instance 
corresponds to a list of the sets S, in the SCP instance that 
element v is a member of. 

Now we show that from a solution to 0-ORDP of size 
d, we can build a SC of size d. Let D = {RI, 
a solution to the transformed 0-ORDP instance, i.e., 

1) R, C V is a region, for i = 1,. . . ~ d, 

3) lniGi,Ful 2 k = 1, f o r i  = l : . .  . ,d .  
Claim: C = {Cl:.  . .  :Cd) ,  with 

C; = firsttez(nueR, F,,) - {U*} is a Set Cover for 
the original problem, where firstleZ(A) returns the first 
element in lexicographical order from the non-emply set A. 
(For each C;, thc choice of an element J from Fu 
is arbitrary in that any such f yields a valid solution.) 
Note that C; is well-defined, since I nu,,, Fcl 2 1. 

that V i  : 1 F,,( 2 k. 

generated is planar.) 

. F " = ( f E F : v E J }  

2) Ul<i<d R, = V ,  and 

Proof We must show that: 
1) Vi  = 1:. . . , d  : Ci E S 

From the definition of G; we can affirm that 
( 3 j )  : [l 5 j 5 m and C; = J, - { U ' ) ] .  Hence 
C, = sj E s. 
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2, U1s;sd c. I = U :  
From the definition of Fu: 

nFv = n{fE.:...f) 
" € R ,  "ER. 

= ( f E F : R i C f ]  

Therefore, from the definition of Ci: 

Ci = firstLe& E F : Ri G f )  - [ U * )  

Finally, we have to show that if there is a set cover 
of size d. then there is a decomposition of size d for the 
0-ORDP. Let 6' = (e;,. . . , Ci)  be a set cover for the 
original SCP instance. 

Claim: D' = {Ri>.  . . ,Xi), wherc R: = C; U ( U * } ,  
is a 0-overlapping region decomposition such that 
I neER: K I  2 k .  

Proof We must show that: 
1) Each RI C V is a region? 

Vz : 1 5 i 5 d, since C: U, then 
R: = C: U ( v ' )  5 V. 
Ri is a region because D' E RI and, by the definition 
of the graph G, U* is connected to all other nodes in 
R;. 

2) U l < i < d R :  = V :  _ _  
U R:= U C ~ U ( z ; * ) = U U ( v * ) = V  

l s i g d  lS i<d 

3) I nutRI F"I 2 k = I: 

Ci is a set cover 
* c:ts 
=+ 3 j  = I , .  . . ;m ; C: = Sj 
==+ R: = S j U ( v ' ) = f j  E F 
* 1 5 I ( f t F : R : C f } l  

= I  n ( f E F : u t f } ~ = ~  n F"I 
U E R :  =€RI 

U. 

VI. HEURISTIC METHODS FOR 0-ORDP 

The previous section eslablished the intraclability of our 
problem. Fortunately, the full power of an optimal de- 
composition is not necessary in practice. A decomposition 
with a small number of regions is sufficient for practical 

'Recall that a region corresponds 10 a subsea R of vertices in V for 
which a path exists between any two wnicei in R that lies entirely u,ithin 
R. 

purposes. We therefore developed and tested six different 
greedy approximation algorithms, divided into two classes, 
to realize the decomposition. 

The A.x class of algorithms decomposes pose space by 
greedily growing new regions from poses that are selected 
according to three different criteria. Once a new region 
has been started, each growth step consists of adding the 
pose in the vicinity of the region that has the largest set of 
visible features in common with the region. This growth 
is continued until adding a new pose would cause that 
region's visibility set to have a cardinality less than k .  

The pseudocode of this class of algorithms is shown in 
Figure 3. Algorithms A.1, A.2 and A.3 implement each of 
three different criteria fM selecting the pose from which a 
new region is grown. These three algorithms differ only in 
the implementation of line 3 (Figure 3): . A.l selects the pose v E U at which the least number 

of features is visible, i.e., v = argminUcu 13J . A.2 selects the pose v E U at which the greatest num- 
ber of features is visible, i.e., v = argmaxuEU IFu[. . A.3 randomly selects a pose v t U. 

In cases of ties in lines 3 and 12 of the algorithm, they are 
broken randomly. 

Algorithms B.x and C lake an incremental approach to 
defining the k features, staning with a large region that 
"sees" one feature, and iteratively shrinking the region as 
additional features (up to k) are added. The resulting region 
is added to the decomposition, a new region is started, and 
the process continued until the world is covered. These 
algorithms select as a new region lhe set of pnces from 
which the most widely visible feature, taken from a set 
3, is seen among the poses that are not yet assigned to a 
region. Algorithms B.x and C differ in the criteria by which 
3 is defined, as shown in Figures 4 and 5 ,  respectively. In 
the case of algorithm B.x, 3 is just the set of all features, 
while algorithm C systematically selects as F the set of 
features commonly visible in a circular area centered at 
each pose v E V. If the number of uncovered poses in the 
circular area is less than a certain fraction a of che size of 
the circular area, or the size of F is less than k ,  then no 
set F is selected for the current U.  

The class B.x comprises two algorithms, B.1 and B.2, 
that differ only in their weatment of the decomposition 
D after adding to it a new region R (line 12). While 
Algorithm B.1 leaves D as it is, Algorithm B.2 greedily 
eliminates regions from D as long as the total number of 
poses that become uncovered is less than a monotonically 
decreasing value q. (This q is initialized as cc at the begin- 
ning of the algorithm. As a new region R is added to D. q 
i s  updated to be the minimum between its previous value 
and the number of uncovered cells in R.)4 This algorithm 
is adapted from the algorithm "Altgreedy" appearing in 
[13], where it is empirically shown to achieve very good 
approximation results for the set cover problem. 

4Notiee that flus drcarding rule ensures that the number of covered 
poses SVIctIy " a m  with each iteration. so that rhe algorithm always 
1e"N"utes. 
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Algorithms B.x and C are based on the assumption 
that the set of poses from which each feature is visible 
form a connected region, and that the intersection of such 
feature visibility areas is also a connected region. This 
assumption is true if all feature visibility areas are simple 
and convex. In our experiments with real data, we have 
observed that although the visibility areas of features are 
generally convex, they sometimes have some small holes. 
Since the number of extracted features is quite large, we 
can afford to exclude from the decomposition process those 
features with significant holes in their visibility regions. 
Algorithm C may terminate leaving some poses unassigned 
to a region. A process is therefore applied to cover those 
areas. This process is equivalent to Algorithm B.l, but with 
step 1 making U equal to the set of unassigned poses. 

All algorithms, except 8.2, can terminate with a solution 
that is not minimal. Redundancy is therefore eliminated 
from their solutions by discarding regions one by one 
until a minimal solution is obtained. This process greedily 
selects for elimination the region R from the solution 
D with the largest minimrim-oeerlapping-counr w value, 
where w = min(l{R' t D : U  E E'}\ : 21 E R}, i.e., it is 
the minimum number of  regions that overlap at a pose 
contained in the region. The worst-case running time 
complexity of algorithm A.x is bounded by O(~Vlz lFl ) ,  
while algorithms B.x and C are bounded by O ( k \ V ~ z ~ F ~ ) .  

There are sampled poses of the world at which the count 
of visible features is less than the required number k. This 
is generally the case for poses that lie close to walls and 
object boundaries, as well as for areas that are located 
far from any visible object and are therefore beyond the 
visibility range or most features. For this reason, the set 
of poses that should be decomposed into regions has to 
include only the li-coverable poses, i.e., those sampled 
poses whose visibility-set sizes are at least k.  

A decomposition that tries to cover all k-coverable poses 
may include a large number of regions in total, since many 
regions will serve only to cover small "holes" that could 
not be otherwise covered by larger regions. These holes 
generally lie in areas for which the size of the visibility- 
set is very close to k, leaving very few features to choose 
from. In order to avoid the inclusion of regions that are 
only covering small holes, our implementations of the 
algorithms add a region to the decomposition only if its 
number of otherwise uncovered poses is greater than a 
certain wlue U? 

VII. RESULTS 

We performed experiments on both synthetic and real 
data. Synthetic data was produced using a simulator that 
randomly generates worlds given a set of distributions 
for each world parameter. A world consists of a 2-D 
top view of the pose space defined by a polygon, with 
internal polygonal obstacles, and a collection of features 

%e presence of a few small hales does not prevent rehahle navigation. 
In ~eeneral, whenever the mho1 is 81 a p int  for which the number of visible 
features is less thm k. advancing a shon distance in most di~ctions will 
get it to a pin1 that is =signed to some region. 

Inpkwor ld(G= (V,E);F,{30}.tv) 
Output: dcmmpsiiion D 
I: U =  { u t  V :  1.C.l 2 k ) , D  = 0 
2 while U # B do 
3 
4 R = ( v }  
5: r e p t  
6 
7: 
8: sw#Otha" 
9 u W n U # 0 t h m  
tn- 

Select v E U (See t a t )  

Vicinify(R) = {v E V - R : 3% E R 5.1. (a, v) t E }  
W = {U t VicinityIR) : IF" n inven3J Z I C )  

1 4  endif 
15: un!ilW= 0 
16  U = U - R  
I1 D = D u { R )  
1 8  and while 

Fig. 3. Algorithm A.r 

I n p t :  world (G = (V. E ) ;  F, ( 3 ~ } U ~ ~ )  
Output: demmpriiioo D 
I: U = {U E V :  1F.I t k ) , D = D  
2 rhOe U f 0 do 

8: md for 
9 R = ( u E V : L C F , . )  
IO: U = U - R  

1 2  Purge D (See text) 
13: end rhUe 

11: D = D u ( R )  

Fig. 4. Algorithm B.x 

Fig. 5 .  Algorithm C 

on the polygons (both external and internal). Each feature 
is defined by two parameters, an angle and a range of 
visibility, determining the span of the area on the floor from 
which the feature is visible. An examplc of a randomly 
generated world and the visibility area of some of its 
features is illustrated in Figure 6. 

Independent tests of the algorithms on synthetic data 
were performed for four different world settings. The set- 
tings combined different feature visibility properties with 
different shape complexities for the world and obstacle 
boundaries. Two types of features were used, having visi- 
bility ranges: N(O.G5,0.2) to N( l2 .5 , l )m  with an angular 
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Fig. 6. A randomly generated world. The green polggon defines the 
perimeter of the world. The blue polygons in the inrenor define the 
boundaner of obstacles. The small red f i d e s  on the polygons are the 
features. As an B ~ ~ f r a t i o n ,  the visibility areas of selected features are 
shown as coloured regions. 

Experiment SeHings 

Fig. 7. Results for Experiments on Synthetic Data. The x-axes of 
the cliarrs reprcsenr the four world reltbgs used in the erpefiments. 
(Rectimeuiar wrlds were used in setlines I and 2. while inseularIv 

range N ( 2 5 , 3 )  degrees for Type 1, and N(0.65: 0.2) to 
N(17.5,Z)m with an angular range N(45_4) degrees for 
Type 2 (where N(fiL: a) is normally distributed with mean p 
and variance 0'). " 0  classes of shapes were tested for the 
world and obstacles: irregular and rectangular. For the case 
of irregular worlds, the number of sides of its perimeter was 
generated from the mixture distribution [U(4,4) with p = 

0.1; N(5:0.5) with p = 0.45; N(7,Z) with p = 0.45]}, 
and the number of obstacles from the distribution ( U ( 5 ; 9 )  
with p = 0.5: .n/(S,Z) with p = 0.5) The number of 
obstacles in each rectangular world was generated from the 
niixture distribution [U(6> 9) with p = 0.5; A'(l0, 2) with 
p = 0.5). The generated worlds had an average diameter 

of 40m, and feature visibility was sampled in  pose space 
at points spaced at 50fm intervals. 

The parameters used in the experiments were overlap- 
ping p = 1, and features commonly visible per region k = 
4. (Basri and Rivlin [6] showed that reliable localization 
can be accomplished using their linear combination of 
model views method with as few as three point correspon- 
dences between the current image and two stored model 
views.) The allowed maximum area of a hole was set to 
a = 9 poses, i.e., on average, a hole has a diameter of 
at most 1.5m. The parameter OL of algorithm C was set to 
0.85.' 

Figure 7 shows the results of the experiments on syn- 
thetic data. The performance of each algorithm in the 
four settings described above is compared in terms of the 
number of regions in the decomposition, the average area 
of a region in a decomposition, and the size of the set 
formed by the union of the k features commonly visible 
from each region in a decomposition. Each value in the 
figure is the average computed over a set of 300 randomly 
generated worlds. The decomposition of each world took 
only a few seconds for each algorithm. 

Unsurprisingly, the average size of a region is strongly 
dependent on the stability of its defining features in pose 
space. Also as expected, the total number ofregions in each 
decomposition increases as the average size of the regions 
decreases, Tables I and I1 show the number of regions 
and the average number of poses in a region, respectively, 
achieved by each algorithm and setting, averaged over 
all the randomly generated worlds. In the case of worlds 
with widely visible features (settings 2 and 4), the best 
results, in terms of minimum number of regions in the 
decomposition, are achieved by Algorithm B.2, closely 
followed by algorithms B.l and C. For the worlds with 
less visible features (settings 1 and 3). Algorithm 8.2 
outperformed the rest. 

TABLE I 
AVERAGE XUhtBER OF REGlONS IN A DECOMPOSlTlON 

TABLE U 
AVERAGE NUMBER OF POSES PER REGION 

When applied to rectangular worlds, the algorithms 
produced decompositions with significantly more regions 
(between 40% and 55% for the top algorithms) than 
when applied to the irregularly shaped worlds. One of the 
reasons for this is the fact that considerably more features 
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Fig. 8. (a)-(d) The 4 regions of the decomposition of real visibility dam 
collened in a 2m by 2m span. sampled at 20 cm intervals. 

are visible, on average, at each pose in irregular worlds 
(settings 3 and 4) than in rectangular worlds (settings 1 
and 2) .  as can be seen in Table ILL This is likely due to 
the fact that the range of visibility of each feature spans 
a symmetric field of view from a direction more or less 
perpendicular to the side (of the world or,obstacle) where 
the feature is located. With this in mind, for several features 
to be visible in a pose, they have to be located on sides that 
are perpendicularly facing the pose (i.e., sides such that the 
pose location point perpendicularly projects inside the line 
segment defining them). In the case of rectangular worlds, 
this restricts the features visible in the pose to more likely 
come from at most four sides. In irregular worlds, there 
are likely more than just four sides facing each pose, and 
hence a larger number of features is visible from it. 

TABLE U1 
AVERAGE NUMBER OF FEATURES VlSlBLE FROM A POSE 

Setting Average Number of Features 

I , ,  

We took Algorithm B.2, the algorithm that achieved the 
best results on synthetic data, and as a further evaluation 
we applied it to real feature visibility data collected in 
a 2m by 2m space sampled at 20 cm intervals, with a 
total of 46 visible features6 All images were taken with 
the camera in a fixed orientation (looking forward), and 
features were extracted using the Kanada-Lucas-Tomasi 
(KLT) operator [ I  I ] .  The parameters used in the decom- 
position were k = 4, p = 0, a = 3 The four regions 
of the decompositions can be seen in figure 8. The larger 
gray area present in each one of the images of the regions, 
corresponds to the set of k-coverable poses. As can be seen 
from the figure, the union of the four regions covers almost 
completely the k-coverable area of the world. 

In our simulations, we obtained fairly big regions, as 
seen in Table II. Each pose corresponds to a sampled area 
of 0.25m2 (5Ocm by 5 0 4 ,  so the averages achieved by 
the best algorithm correspond to region areas of 20m2 for 
features of Type 1, and 65m2 for features of Type 2. These 
results were achieved with only a few features visible per 

6We used a small world and fearures with reduced visibility IO that such 
a world can be interestingly divided into several regions to exemplify om 
method. For general application$ in l q e  environments an altemate class 
of features aith visibility larger than this should be charen. 

pose, as shown in Table III, where the average number of 
features visible per pose was on the order of a hundred. 
In real image data, however, the number of stable features 
visible per pose is on the order of several hundred, and each 
feature has a visibility range close to that of our simulated 
features of Type 1 (see [I] ,  for example). These findings 
lead us to predict that this technique will successfully 
find decompositions useful for robot navigation in real 
environments. 

VIII. CONCLUSIONS 
We have presented a novel graph theoretic formulation 

of the problem of automatically extracting an optimal set 
of landmarks from an environment for visual navigation. 
Its intractable complexity (which we prove) motivates the 
need for approximation algorithms, and we present six such 
algorithms. To systematically evaluate them, we first test 
them on a simulator, where we can vary the shape of the 
world, the number and shape of obstacles, the distribution 
of the features, and the visibility of the features. The most 
promising algorithm was then tested on real-world data 
with encouraging results. 
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