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Abstract. We have been developing a theory for the generic representation of 2-D shape, where structural de-
scriptions are derived from the shocks (singularities) of a curve evolution process, acting on bounding contours.
We now apply the theory to the problem of shape matching. The shocks are organized into a directed, acyclic
shock graphand complexity is managed by attending to the most significant (central) shape components first. The
space of all such graphs is highly structured and can be characterized by the rud®ok graph grammarThe

grammar permits a reduction of a shock graph to a unique rooted shock tree. We introduce a novel tree matching
algorithm which finds the best set of corresponding nodes between two shock trees in polynomial time. Using a
diverse database of shapes, we demonstrate our system’s performance under articulation, occlusion, and moderate
changes in viewpoint.
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1. Introduction to the category—dog—before more detailed, or subor-
dinate levels, are refined. This motivating example is at

Upon entering a room, one first notices the presence of the heart of this paper: we seek a technique for object

a particular object, such as a dog, before realizing it is recognition based on such entry-level, generic descrip-

either a Siberian Husky or that it is “Loki”, a particu- tions. We interpret “entry-level” to mean generic in a

lar Siberian. This example, modified from important technical sense, and then proceed to develop a formal

studies by Rosch et al. (1976), suggests that there issystem for matching based on it.

an organization to our object memory, and that this or-

ganization facilitates recognition. Initially, particular 1.1. Classical Aspects of Shape Recognition

instances are not recognized; rather, objects are first

categorized at a “basic level of abstraction” (Rosch Rosch’s experimental observation that basic-level de-

et al.,, 1976). The object is recognized as belonging scriptions precede particulars was made about the same
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time that Fu (1977) and others were introducing syn- 1990) via singular or catastrophic events. For example,
tactic pattern recognition. Fu’'s goal was to define a when a cup is rotated, there is a particular viewpoint
grammar for patterns, and then to specify automata that from which the handle just becomes visible; thereafter,
could recognize this grammar. However, this program only geometric variations take place until, at another
lost favor because there was no clear indication of those singular viewpoint, the handle disappears. However,
pattern features on which the grammar should be based.aspect graphs and other methods based on algebraic
Bounding and interior image curves were typical, but and differential invariants (Forsyth et al., 1991) were
the graph matching rapidly became intractable. Miss- successfully defined only for specific classes of alge-
ing and bogus edges were a problem, and the complex-braic surfaces that fit only few (man-made) objects.
ity of curve possibilities exceeded the grammars. With The techniques are typically difficult to extend to nat-
the exception of array grammars (Rosenfeld, 1979), ural objects.
little progress was made. Research continues on graph Computer vision approaches to view-based mod-
isomorphism algorithms for vision applications, butex- eling fall broadly into two classes. First, there are
amples are still typically based on graphs derived from feature-based methods which represent each view as
feature points and image curves (Gold and Rangarajan,a collection of line segments, curves, corners, regions,
1996). Probability measures have also been placed onetc. (Ikeuchi and Kanade, 1988; Burns and Kitchen,
images and image curves in an attempt to provide a pri- 1987; Dickinson et al., 1992; Pope and Lowe, 1993).
ori information suitable to guide matching (Grenander, The success of such methods depends largely on the
1996). extent to which the features are present and can be re-
Image curves are also at the heart of boundary-basedliably extracted; once again they are not easily applied
descriptions, such as those of Hoffman and Richards to natural objects. Second, a number of appearance-
(1985), as well as alignment techniques (Basri and based methods have emerged which essentially treat
Uliman, 1988). However, the Hoffman and Richards the raw image as a single feature in a high-dimensional
“codon” vocabulary is only an intermediate step toward space (Turk and Pentland, 1991; Murase and Nayatr,
more abstract part descriptions, and remains to be com-1995). Whereas such techniques might succeed at rec-
pleted. It is an attempt to restrict the graph represen- ognizing particulars of a specific class, e.g., instances
tation to the boundary, which eliminates contours that of faces, they cannot predict entry-level categories be-
span several objects. In alignment schemes, the emphacause there is no abstraction from image data to a
sis is not on boundary encoding, but on accounting for model. Returning to the problem of database organiza-
the differences between an observed and a stored shapdion, such techniques would succeed at finding specific
A clever algorithm by Uliman and Basri (1991) inter- instances of Loki’s body in a database of photographs
polates fromalinear combination of 2-D views, andim- of animals, but would fail at clustering together, for ex-
pressive results on a Volkswagen image were reported. ample, photographs of horses or photographs of hands.
However, to achieve these results, the edge maps were In important contrast to the boundary based tech-
manually edited so that only those appearing in all niques discussed earlier was Blum’s (1973) medial
views were included (Uliman, 1995). In effect, thisim- axis transform—or skeleton—which preceded Rosch
plies that edges are significant if and only if they appear by about a decade. Blum'’s skeleton is area-based, and
in all views of an object which, of course, isimpossible provides a description of shapes via the loci of cen-
to achieve in general. Furthermore, no acceptable so-ters of covering balls. Variations on this theme include
lution for automatically finding edge correspondences smoothed local symmetri¢Brady and Asada, 1984)
has been offered. In general, such approaches suggesand the process inferring symmetric axi@_eyton,
that the geometric variations of boundaries are too se- 1988). The skeleton has the advantage of providing
lective; in effect, the global trends get lost in the local a different (from Fu et al.) type of graph on which
details. Our goal is to find these global trends. to base matching, but again sensitivity causes prob-
Considering the boundaries of objects implies a lems. Proper skeletons can be found interactively, but
viewpoint dependency to shape recognition (Bulthoff not automatically, and as with the Fu and the Ullman
and Edelman, 1992), but does not specify which fea- approaches, the features have to be edited to provide a
tures to use for each view. Aspect graphs were intro- basis for matching. One option that is worth stressing
duced by Koenderink and van Doorn (1979) to enumer- is the use of hierarchical skeletons (Pizer et al., 1987;
ate topologically-distinct views (Kriegman and Ponce, Ogniewicz and Kibler, 1995), because it attempts to
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capture a notion of “scale” for objects. This is impor- have proposed a linear diffusion equation which can
tant because, should such scales be available, coarsebe used to build skeletal descriptions directly from
to-fine matching strategies could be employed. Recent greyscale images (Tari et al., 1997), and is computa-
work towards this goal includes Burbeck and Pizer's tionally more efficient than those based on standard
core model (Burbeck and Pizer, 1995), and Liu et al.'s level set methods (Osher and Sethian, 1988). Their
symmetric axis tree (Liu et al., 1998). work leads to an approximation of the reaction diffu-
In work on 2-D shape matching, Sclaroff and sionspaceintroduced by Kimiaetal. (1995), buthasyet
Pentland have used a modal representation correspondto address the problem of shape recognition. Tek et al.
ing to a shape’s generalized axes of symmetry (Sclaroff have used an orientation propagating distance function
and Pentland, 1995). This compact representation hasto extract symmetries from fragmented contours, label-
been used for indexing (Sclaroff, 1997), and offers ing the resulting singularities according to whether or
a frequency-like (coarse to fine) decomposition of a not the colliding waves carry “true” orientation infor-
shape. However, its global nature makes it sensitive mation (Tek etal., 1997). This framework has recently
to large occlusion. Zhu and Yuille have decomposed been applied to the problem of shape matching; see
2-D shapes into connected mid-grained skeletal parts, Section 5.
and have designed a matching system where simi- Insummary, a substantial body of work on 2-D shape
larity between parts is computed as a joint probabil- has contributed a positive set of desiderata, although
ity (Zhu and VYuille, 1996). Whereas preliminary re- no technique exists that satisfies all of them. Thus, we
sults are encouraging, several parameters have to beseek a representation that is viewpoint dependent to
set, and there appears to be no hierarchy among thestart; thatis generic in the sense that a notion of equiva-
parts used for matching. Furthermore, the model “ lence classes of (qualitatively similar) shapes emerges;
was created to deal with animate objects and would that is applicable to natural as well as man-made ob-
have to be completely modified to deal with man- jects; that is reliably and stably computable; that is
made objects like houses and industrial parts (Zhu and capable of supporting efficient (e.g., polynomial-time)
Yuille, 1996, p. 209)". Fraogis and Medioni have pro-  recognition in the presence of occlusion and noise, and
posed a connection hierarchy of parts for planar shapethat places special importance on certain boundary seg-
recognition (Frangis and Medioni, 1996), obtained ments. We build our representation on the singularities
from an axial decomposition introduced by Rom and of a curve evolution process, described next. We shall
Medioni (1993). Pauwels et al. have proposed the use later abstract this representation into a graph that is par-
of semi-differential invariants for planar shape recog- ticularly suited to efficient and generic shape matching.
nition under affine distortions, with some robustness to
occlusion (Moons et al., 1995; Pauwels et al., 1995).
Basri et al. have proposed various models for measur-

ing the cost of deforming one contour into another, . . . )
: S ; X Particular shapes can vary in detail from one another;
while taking into account its part structure (Basri et al., o . .
) variations between shapes derive from an organiza-
1995). Gdalyahu and Weinshall have also proposed .. . : :
. : ) T tion of these particular shapes into equivalence classes.
metric functions for measuring the similarity between A .
: Thus certain discrete events are required to separate
two closed planar curves (Gdalyahu and Weinshall, : ; .
. equivalence classes of continuous ones, and in math-
1996). Mokhtarian has proposed a method for recog- . ; . ) .
ematics such discrete events derive from singularity

nizing occluded objects (Mokhtarian, 1997), based on - ;
a curvature scale space introduced by Mokhtarian and theory (Amnold, 1991). Kimia et al. (1995) applied

Mackworth (1992). However, these latter methods do singularity th_eory to shape by expl_onng the conse-
not explicitly account for a shape’s interior, which is guences of slight boundary deformations. Specifically,

. . for simple closed curves in the plane the following evo-
key for determining more global properties such as | .. ) .
lution equation was studied:
symmetry.

Among the many applications of curve evolution to C = L+ a)N
problems in computer vision and image processing, C(s.0) = Co(S) 1)
e.g., see (Alvarez et al., 1992; Sapiro and Tannenbaum, ’ '
1993; Malladi et al., 1995), only a handful have ad- HereC(s, t) is the vector of curve coordinates(s, t)
dressed the problem of shape representation. Tari et al.is the inward normals is the path parameter, ands

1.2. Shapes and Shocks
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the evolutionary time of the deformation. The constant
a > 0 controls the regularizing effects of curvature
When« is large, the equation becomes a geometric
heat equation; whea = 0, the equation is equiva-
lent to Blum’s grassfire transformation (Brockett and
Maragos, 1992; Kimia et al., 1995). In this paper, we
shall only be interested in the latter case, under which
the evolution equation is hyperbolic asHockgLax,
1971), or entropy-satisfying singularities can form.
Here we shall ignore the dynamics of the shock for-
mation process, and will consider only the static pic-
ture obtained in the limit: the locus of shock positions
gives Blum’s medial axis (Brockettand Maragos, 1992;
Kimia et al., 1995). However, even in this static limit,
the shocks provide additional information beyond that
available from their loci: consider a “coloring” of the
shocks according to the local variation of the radius
function along the medial axis (see Fig. 1). The col-
ored description provides a much richer foundation
for recognition than that obtained from an unlabeled
(Blum) skeleton.

To illustrate the coloring, imagine traversing a path
along the medial axis. At a 1-shock the radius function
varies monotonically, as is the case for a protrusion.
At a 2-shock the radius function achieves a strict lo-
cal minimum such that the medial axis is disconnected

whenthe shockisremoved, e.g., ataneck. Ata 3-shock

the radius function is constant along an interval, e.g.,
for a bend with parallel sidésFinally, at a 4-shock
the radius function achieves a strict local maximum, as
is the case when the evolving curve annihilates into a
single point or a seed.

First—Order Second-Order
ez
Third—Order Fourth—-Order

Figure L A coloring of shocks into four types. A 1-shock derives
from aprotrusion and traces out a curve segment of 1-shocks. A
2-shock arises atr@eck and isimmediately followed by two 1-shocks
flowing away from it in opposite directions. 3-shocks correspond to
an annihilation into a curve segment due tbemd and a 4-shock
an annihilation into a point or seed The loci of these shocks gives
Blum’s medial axis, while the coloring provides an organization of
the skeleton upon which our matching algorithm is based.

With the above picture in mind, the coloring can be
formalized as follows. LeK be the open interior of a
simple closed curve, anfde(X) its medial axis (the set
of points reached simultaneously by two or more fire
fronts). LetB(x, ¢) be an open disk of radiksentered
atx € X, and letR(x) denote the radius of the largest
such disk contained itX. Let N(x,¢) = Me(X) N
B(Xx, €)\{x} define a “punctured-neighborhood ox,
one that does not containitself. A medial axis point
X € Me(X) is

1.
2.

type 4if 3¢ > 0 st. R(X) > R(y) Vy € N(X, ¢);

type 3if 3¢ > 0 st. R(X) = R(y) Vy € N(X, €)

andN(x, €) # @;

. type 2if 3¢ > 0 st. R(X) < R(Y) Yy € N(X, ¢)
andN(x, €) # @ andN(X, €) is not connected; and

. type 1otherwise.

It should be clear that there is a relationship between
the above coloring and the velocity functiatfr/dx
along the medial axis (Serra, 1982). In Fig. 7 we
provide numerical examples of colored medial axis de-
scriptions. As we shall now show, theloringcoupled
with a measure o$ignificancederived from the time
of shock formation, is the key to abstracting a repre-
sentation that supports generic shape matching.

2. The Shock Graph

We shall now abstract the system of shocks derived
from the curve evolution process into a graph, which
we call theshock graphor SG. This construction is
inspired by Blum’s classic work on axis-morphologies,
in which he explored the use of directed graphs based
on the medial axis for defining equivalence classes of
objects (Blum, 1973). The shock types will label each
vertex in the graph and the shock formation times will
direct edges to provide an ordering for matching, and
a basis for subgraph approximation.

By the Jordan Curve Theorem, any simple closed
curve divides the plan®? into exactly two compo-
nents, one bounded and the other unbounded. We are
interested in the bounded interiors of Jordan curves.

Definition 1. A 2-D shapeQ is the bounded interior
of a simple closed (Jordan) curve.

From the coloring of shocks into four types in the
previous section, it can be seen that 2-shocks and 4-
shocks are isolated points, whereas 1-shocks and 3-
shocks are neighbored by other shocks of the same



type. To build the shock graph we shall group together
shocks of the same type that form a connected com-
ponent, denoting the groups with labéls2, 3 and 4,
and breaking apart th¥s at branch-point8.Let each
shock group be indexed by a distinct integeand let

ti denote its time (or times) of formation, correspond-
ing to the radius function evaluated at the shocks in the
group. Hencet; will be an interval for &l ; for 2's,3's

and 4’s it will be a single number. Finally, let # denote

a start symbol and® aterminal symbol. TheSG is

a connected graph, rooted at a vertex labeled #, such
that all other (non-terminal) vertices are shock groups,
and directed edges to non-terminal vertices indicate the
genesis of new shock groups.

Definition 2. The Shock Graph of a 2-D shape,
SG(0), is a labeled grapls = (V, E, y), with:

e verticesV ={1,...,n};

e edges(i, j) € E C V x V directed from vertex to
vertex j if and only ifi # j,t > tj, andi U j is
connected in the plane;

e labelsy : V — |, with| € {1,2, 3 4,# ®}; and

e topologysuchthatyj e Vwithy(j) ## 3i eV
with (i, j) € E.

The SGis built by “reversing” the grassfire evolu-
tion, analogous to growing a shape by adding lumps of
material onto its seeds. The children of the unique ver-
tex labeled #, at which the graph is rooted, are the last
shock groups to form. Vertices with lab&lare leaves
of the SG, whose parents are the first shock groups to
form. This reverse-time dependency is important be-
cause the last shocks to form correspond to the most
significant (central) shape features.

Proposition 1. Any 2-D shap&) has a unique cor-
responding shock grap8G (O).

Proof: The uniqueness of the skelet80X) follows
from its definition as the union of maximum open discs.
Hence the medial axisle(X), which is strictly con-
tained in the skeletoB(X) (Serra, 1982, pp. 382-383),
is also unique. (In fact the two sets are very close since
Me(X) = S(X) (Matheron, 1988).) The coloring of
medial axis points into four types in Section 1 is unique,
which implies that a unique set of vertices exists for the
correspondingG. Finally, by Definition 2, the direc-
tion of an edge between two abutting vertices is am-
biguous only whert; = t; for all shocks ini and j.
Due to the continuity of the radius function along the
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skeleton (Serra, 1982, pp. 381-382), the only possibil-
ity is that the two vertices share the point where they
touch, in which case we have the contradiction that all
shocks ini and j would lie in thesame3, and hence

in a single vertex. The uniqueness of the shock graph
follows. |

2.1. The Shock Graph Grammar

The notion of entry-level categories for shape that we
seekisintimately connected to the topological structure
of the shock graph. This structure is highly constrained
because the events that govern the birth, combination,
and death of shock groups can be abstracted into a
small number of rewrite rules, shown in Fig. 2. In anal-
ogy to Leyton’s Process Grammar (Leyton, 1988), the
rules have been grouped according to the semantic pro-
cesses that they characterize, although the alphabet of
shock types that they operate on is quite different from
boundary-based codons. A related system of rules was
developed by Siddigi and Kimia (1995), for the pur-
pose of enumerating the possible types of shocks in a
sequence. In contrast, the set of rules in Fig. 2 apply
to the construction of a graph, based on an alphabet of
shock groups.

Definition 3. The Shock Graph Gramma&GgG, is a
quadrupleG = (V, Z, R, §), with

1.V ={1, 2,3, 4, # @}, the alphabet;

2. X = {®}, the set of terminals;

3. S=#, the start symbol; and

4. R={Ry,..., Rio}, the set of rules given in Fig. 2.

The rewriting system emphasizes the generative pro-
cess of growing a shape by placing seeds, adding pro-
trusions, forming unions, and so on. It operates by be-
ginning at the start symbol and repeatedly replacing the
left-hand side of a rule by the corresponding right-hand
side until no further replacements can be made (Lewis
and Papadimitriou, 1981). It is tf®GG that captures

the beauty of shock graphs, because the rules embody
constraints from the domain of curve evolution. In par-
ticular,

Proposition 2. The rewrite rules of th&€GG are suf-
ficient to derive the shock grag®G (O) of any 2-D
shapeO.

Proof: A constructive proof appears in Appendix 3.
The strategy is to derive the rules by enumerating all
legal parents and children for each vertex type. O
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Figure 2 The Shock Graph GrammaBGG. Dashed lines partition distinct ends oBa The rules are grouped according to the different
semantic processes (on the left) that they characterize. Note that the grammar is not context-free, e.g., rule 3 indidatesthalyebe added
onto an end of & that has no parerit

We can now make several observations. First, since that semantically equivalent rules exist fo8 &ules 6

the same shock cannot be born at two distinct times gng 1). Hencea 2-shock is semantically equivalent to
there exists no path from a vertex back to itself. Hence, 33 in a particular context, and a 4-shock to3ain a

theSGis a directed acyclic graphThis has important  different context.

consequences for object matching because the prob- TheSG's for a variety of shapes are shown in Fig. 8.
lem of searching directed acyclic graphs is computa- All the graphs were generated automatically from the
tionally much simpler than that of searching arbitrary output of the shock detection process (Siddigi and
graphs (Kobler, 1993). Second, since there exist rules Kimia, 1995) displayed in Fig. 7. Following the third
intheSGGwhose left-hand sides do not consist of sin-  observation, in our numerical experiments only label
gle nonterminalsthe SGG is not context-freeThird, typesl and3 will be explicitly assigned. A with a
the rewrite rules indicate that a 2-shock and a 4-shock parentl at each end acts as a 2-shock (a neck), &hd a
can only be added by rules 5 and 1 respectively, and with a # as garent as a 4-shock (a se€d).
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In the next Section we show that a shock graph can where|| - || is a measure of the similarity between the
be reduced to a unique rooted shock tree, which in turn labels of corresponding nodes in the two shock graphs
implies a hierarchical ordering of shape information (see Section 3.4).

(shock vertices). We then develop a formal approach

to significance-based matchinghere the key idea is The above minimization problem is known to be NP-
to defeat complexity (when the database of shapes ishard for general graphs (Garey and Johnson, 1979),
diverse and large) by attending to the most significant however, polynomial time algorithms exist for the spe-
(central) components first, via a depth-first search of cial case of finite rooted trees with no vertex labels.

the underlying shock trees. Matula and Edmonds (1968) describe one such tech-
nique, involving the solution of i n, network flow
3. Shock Graph Matching problems, where1; and n, represent the number of

vertices in the two graphs. The complexity was fur-
ther reduced by Reyner (1977)@(n}°n,) (assuming
_ ) _ . ni >ny),through areduction to the bipartite matching
Given two shock graphs, one representmg an objegt i algorithm of Hopcraft and Karp (1973). If we could
the scene\(;) and one representing a database object ansform our directed acyclic shock graphs to finite
(V1), we seek a method for computing their similarity.  q4ted trees, we could pursue a polynomial time solu-
Unfortunately, due to occlusion and clutter, the shock tign to our problem.
graph representing the scene object may, in fact, be |, the following subsections we show that for any
embedded in a larger shock graph representing the en-ghock graph, there exists a unique rooted tree. Next,
tire scene. Thus we havelargest subgraph isomor- e present a method for comparing the coarse topo-
phismproblem, stated as follows: Given two graphs |qgical structure of two shock trees which draws on
G =(V1, By andH = (Vz, Ey), find the maximumin- yoqits from the domains of eigenspaces of graphs and
tegerk, such that there exists two subsets of cardi- gemigefinite programming. Namely, the eigenvalue de-
nality k, E; & Eis andE; < Ep, and the induced  ¢omposition of an adjacency matrix corresponding to
subgraphs (not necessarily connect&d)= (Vi, E) a shock tree leads to a property that is invariant to
andH’ = (V,, E;) are isomorphic (Garey and Johnson, 4.y consistent permutation or reordering of its sub-
1979). Further, since our shock graphs are labeled yees (submatriced) After defining a suitable mea-
graphs, consistency between node labels must be en-re of shock distance between corresponding nodes
forced in the isomorphism. _ in two shock trees, we present a novel modification
The largest subgraph isomorphism problem, can be , Reyner's algorithm (Reyner, 1977) which combines
formulated as 40, 1} integer optimization problem.  arse topological matching with shock distance to

The optimal solution is 0, 1} bijective mapping ma-  gq|ye our largest isomorphic subgraph problem in poly-
trix M, which defines the correspondence between the o mial time.

vertices of the two graph& andH, and which min-

imizes an appropriately defined distance measure be-

tween corresponding edge and/or node labelsinthetwo3.2. Shock Graphs to Shock Trees
graphs.

3.1. Problem Formulation

In this section we present a reduction that takes a

Problem 1 We seek the matriM, the global opti-  DAG representing a shock graph to a unique vertex la-
mizer of the following (Kobler, 1993; Mjolsness etal., peled rooted tree whose size is polynomially bounded
1989): by the size of the original shock graph. To begin, let
1 G =(V, E) be a DAG representing a shock graph on
min -5 Z Z M (u, v)||u, v|| n vertices. A loopL is a subgraph o6 formed by the
ueVy veV, intersection of two directed paths. More formally,
st Z MU.u) <1 YueV, originates at a vertel, follows two pathsP; and P,
= ) and ends at the vertéx\We denoté as thebaseof L,
t thetip of L, andP; and P, thewingsof L. Referring
Z M@, v) <1, Yo' eV, to the protrusion and birth rewrite rules (rules213
veVL and 4), in Fig. 2, the base &f can be a vertex whose

M(X,y) € {0,1}, VXxeVy,VyeVW, type is drawn from the sd#, 4, 3, 1}. The wings,P;
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and P,, are directed paths consisting of a sequence of In order to efficiently compute the submatrix eigen-

vertices whose types are drawn from the &eB3, 1} value sums, we turn to the domain of semidefinite

(rules 1 2, 3, 4, and 6). Finally, the tip oL can be a programming. A symmetrio x n matrix A with real

vertex of type either 2 o8 (rules 5 and 6). entries is said to be positive semidefinite, denoted as
Assume thatthe tipof L is a vertex of type 2. Then A > 0, if for all vectorsx € R", x' Ax > 0, or equiva-

by rule 9,L will be terminated at a vertex labeléd lently, all its eigenvalues are non-negative. We say that

Next, ift is a vertex of typd, thenP, andP, represent U =V if the matrixU — V is positive semidefinite.
two directed sequences of shocks that enter at oppositeFor any two matricetJ andV having the same di-
ends oft. In this caset can not satisfy rule 3, and must mensions, we defing - V as their inner product, i.e.,
be the root of a single node subgraph having label U -V =}, Zj Ui jVij. For any square matrild,
(rule 8). We therefore conclude that the tips of all loops we define trac&)) = ), U; ;. Let| denote the iden-
are adjacent to nodes having typén G, and thateach  tity matrix having suitable dimensions. The following

such tip participates in exactly one loop. result, due to Overton and Womersley (1993), charac-

In our reduction, for each such tip nodeve will terizes the sum of the firdt largest eigenvalues of a
maintain duplicate copiets andt,, and redefind to symmetric matrix in the form of a semidefinite convex
be the union ofb and two new disjoint path®; = programming problem:

PLU{t1} U{®}andP, = P, U {tp} U {®}. Itis easy to
see, by induction on the number of tips®) that such
areduction is unique and produces a directed, or equiv-
alently, a rooted tree. Further, sinGehas onlyO(n)

tips, each of which is duplicated at most once, there is

Theorem 1. For the sum of the first k eigenvalues
of a symmetric matrix Athe following semidefinite
programming characterization holds

an O(n) increase in size of the graph. To perform the A (A) £+ A(A) = max A-U
reduction, we need only check the in-degree of 3By st tracqU) = k
and 2’s, and duplicate them if necessary. The complete 0<U <1,
reduction is therefore a linear time process in terms of -~
the number of vertices i. or, in a dual setting

In order to enforce geometric consistency, a related
modification is carried out during the matching phase, A1(A) + - - + A(A) = min kz+ tracgV)
to be described later. The matcher will maintain two st. zZI+V>=A
copies of every3 with at least onel child on each V = 0.

side (rule 3), each with its respective children, e.g., the
top level3's for the hand, plier, brush and screwdriver
shock graphs in Fig. 8. As correspondences are found,
a match of one such will force a match of its copy.

Before applying the above theorem, we must first
convert our shock trees to adjacency matrices. Given a
bounded degree, rooted trée= (V, E) with [V| =n
and|E| = m, we define the adjacency matrixof G
3.3. An Eigenvalue Characterization of a Shock Tree to be an x n symmetric,{0, 1} matrix with its(i, j)-th

entry A equalto 1if(i, j) € E, and O otherwise. For
The shock tree can be represented @ &} adjacency each vertex € G, let§(v) be the degree af, and let
matrix, with 1's indicating adjacent nodes in the tree. §(G) be the maximum degree over all verticesGn
Any shock subtree therefore defines a submatrix of the For every vertexi € G, we definey (u) to be a vector
adjacency matrix. If, for a given shock subtree, we in R*®~1 obtained through the following procedure:
compute the eigenvalues of its corresponding subma-
trix, then the sum of the eigenvalues is invariant to  For any childv of u in G, construct the adjacency
any similarity transformation applied to the submatrix. matrix A, of the induced subtree rooted at and
This means that the eigenvalue sum is invariantto any  for A,, compute the quantity, = A1(A,) +--- +
consistent re-ordering of the subtrees! In terms of our  A5¢,)—1(A,). Constructy (u) as the vector formed by
largest subgraph isomorphism problem, findingthetwo  {A,,, ..., A, } forwhichx, > ... > 2
shock subtrees whose eigenvalue sums are closest rep-
resents an approximation to finding the largestisomor-  The above procedure yields a vector assigned to
phic subtrees. each vertex in the shock tree, whose elements are the

Us(u) Us(u) *



individual eigenvalue sums corresponding to the node’s
(subtree’s) adjacency submatrix. Furthermore, for any

Shock Graphs and Shape Matching 21

number of shocks in &, in the appropriate context,
approaches 1 (see Section 2). Each shock in a segment

rooted subtree, such a decomposition and vector color-s further labeled by its position, its time of formation

ing of the vertices is uniquely defined. As stated earlier,
the power of the above formulation lies in the fact that
if a symmetric matrixA undergoes any orthonormal
transformation of the fornP! AP, the sum of its eigen-
values remains invariant. This, inturn, implies that this
vector labeling of all rooted trees isomorphicGonot

(radius of the skeleton), and its direction of flow (or ori-
entation in the case &'s), all obtained from the shock
detection algorithm (Siddigi and Kimia, 1995). In or-
der to measure the similarity between two vertices
andv, we interpolate a low dimensional curve through
their respective shock trajectories, and assign a cost

only has the same vector labeling but spans the samec (u, v) to an affine transformation that aligns one in-

subspace inR*© -1, Moreover, this extends to any

terpolated curve with the other. Intuitively, a low cost

rooted tree which has a subtree isomorphic toa Subtreeis assigned if the under|ying structures are scaled or

of G. Interms of our shock graphs, invariance to a per-
mutation matrixP implies invariance to a re-ordering
of the subtrees of the rooted tree described\by

It now remains to be shown that such a vector label-
ing can be computed efficiently, i.e., that thdunction
can be calculated in polynomial time. The elegance of
Theorem (1) lies in the fact that the equivalent semidef-
inite programming problem can be solved, for any de-
sired accuracy, in time polynomial inO(n./nL) and
log (1/¢), whereL is an upper bound on the size of the
optimal solution, using a variant of the Interior Point
method proposed by Alizadeh (1995). In Section 3.5,
we embed this procedure in our own algorithm for find-

rotated versions of one anotter.

Assume thatS and S are two (sampled) shock
sequences of the forB=(s;,...,Sp) and S =(s;,
..., %), where each shock poigtrepresents a 4-tuple
(X, Yy, t, @) corresponding to its Euclidean coordinates
(X, y), formation timet, and directiona. Note that
when the samples are obtained frorh,ahe sequence
is ordered by time of formation. On the other hand,
for a 3 there is a partial order to the samples, but no
preferred direction, since all shocks in the sequence
formed at the same time. In the latter case, both di-
rections will have to be tried. In order to find the 4D-
simplex corresponding to the basis for the affine trans-

ing the largest isomorphic subtrees corresponding to formation (in a 4-D space) between the two sets, we

two shock graphs. In addition, we factor in a measure
of similarity between shock geometries, which we now
discuss.

3.4. The Distance Between Two Vertices

The eigenvalue characterization introduced in the pre-
vious section applies to the problem of determining
the topological similarity between two shock trees. Re-
turning to the opening scenario, this, roughly speaking,
defines an equivalence class of objects having the sam
structure but whose parts may have different qualita-

tive or quantitative shape. For example, a broad range

of 4-legged animals will have topologically similar
shock trees. On the other hand, when one is inter-

ested in discriminating between a bear and a dog, or

between a short-legged Dachshund and “Loki”, a par-
ticular Siberian Husky, geometric properties will play
a significant role.

This geometry is encoded by information contained
in each vertex of the shock tree. Recall from Section 2
that 1's and3's represent curve segments of shocks.
We choose not to explicitly assign label types 2 and 4,

choose five equidistant points on the chains formed by
partial orders(s; < --- < sp) and(s; < --- < sé).
Clearly, to preserve the partial order of the points in
each sequence; should be transferred tg§, ands,
tos).

qut (A, B) be the transformation pair for this par-
tial order and, without loss of generality, assume that
p < g. We apply the transformatiqi, B) to sequence
Sto form the sequencd = (&, ...,8%,). Letw(S
and¥ (S) denote the interpolated 4-D curves passing
through the points of the sefandS, respectively. A

ausdorff distance measure between the cuves)
and ¥ (S) is defined by finding the closest point on
curve W (S) for each point in the sequen& and the
closest point on curveés(S) for each point in the se-
qguenceS’:

AW, WSy =) inf11c—nllz
ceS
+Y_ inf_ig =7l
;ne‘h(é)

We observe that in a fixed dimension Euclidean

because each may be viewed as a limit case when thespace, the distance between a point and a low-degree
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smooth polynomial curve can be efficiently approxi- called My, that can be ranked in decreasing order of
mated. For example, it(S) and ¥ (S) are piecewise  similarity.
linear approximations fo6 and S, A(¥(S), ¥(S)) From M, we choosgus, v1) as the pair that has
can be computed in tim@®(pQ). the minimum weight among all the pairs x4, i.e.,
the first pair inM;. (U, v1) is removed from the list

) ) and added to the solution sbtG, H), and the remain-
3.5. Algorithm for Matching Two Shock Trees der of the list isdiscarded For the subtree§,, and

. ) ] H,, of G and H, rooted at nodes; and vy, respec-
Our recursive algorithm fo_r matching the rooted su.b— tively, we form the matrix1(Gy,, H,,) using the same
treesG andH corresponding to two shock graphs is  hrocedure described above. Once the matrix is formed,
inspired by the algorithm proposed by Reyner (1977). \ye find the matching\, in the bipartite graph de-
The algorithm recursively finds matches between ver- 04 by weight matriX1(Gy,, H,,), yielding another
tices, starting at the root of the shock tree, and proceedsg,qered list of node correspondences. The procedure is
dovyn through the subtreesin a d.epth?first fashion. The recursively applied tou,, v,), the edge with minimum
notion of a match between vertices incorporates two \yeightinA,, with the remainder of the list discarded.
key terms: the first is a measure of the topological  Thjs recursive process eventually reaches the leaves
similarity of the subtrees rooted at the vertices (see o the subtrees, forming a list of ordered correspon-
Section 3.3), while the second is a measure of the sim- yance lists (or matchingM, ..., My}. In back-
ilarity between the shock geometry encoded at each y4cking step, we remove any subtrees from the graphs
node (see Section 3.4). Unlike a traditional depth- G, andH; whose roots participate in a matching pair in
first search which backtracks to the next statically- ®(G, H) (we enforce a one-to-one correspondence of
determined branch, our algorithm effectively recom- ,qdes in the solution set). Then, in a depth-first man-
putes the branches at each node, always choosing th‘?wer, we first recomputé; on the subtrees rooted at
next branch to descend in a best-first manner. One Veryy. and; (with solution set nodes removed). As be-
powerful feature of the algorithm is its ability to match - 516 e choose the minimum weight matching pair,
two trees in the presence of noise (random insertions 5 recursively descend. Unlike in a traditional depth-
and deletions of nodes in the subtrees). first search, we dynamically recompute the branches
~ Before stating our algorithm, some definitions are 4 each node in the search tree. Processing at a partic-
in order. LetG=(Vy, E;) andH =(V2, Ez) be the  jar node will terminate when either subtree loses all

two shock graphs to be matched, wi¥h|=n; and o jts nodes to the solution set. We can now state the
[V2| =n,. Defined to be the maximum degree of any algorithm more precisely:

vertex inG and H, i.e., d= max§(G), §(H)). For

each vertexv, we definey (v) e R91 as the unique  procedureisomorphismG,H)
eigen-decomposition vector introduced in Section’3.3. PG, H) <9

Furthermore, for any pair of vertices and v, let d < maxs(G), 5(H)) _

C(u, v) denote the shock distance betweseandv, as for u € Ve computey (u) R:j (Section 3.3)
defined in Section 3.4. Finally, le (G, H) (initially fOI’"v etvﬂ Con:putex(tv|)_|e R (Section 3.3)
empty) be the set of final node correspondences be- f:turmn?c(;s(tr(gc(’g )i_:(;;’ H)

tweenG andH representing the solution to our match- ’

ing problem. end

The algorithm begins by forming a; x n, ma- procedure match(,v)
trix T1(G, H) whose (u, v)-th entry has the value do
Cu, v)||x(u) — x(v)|l2, assuming thatt and v are {

let G, <« rooted subtree of atu
let H, < rooted subtree ofl atv
COfnpUtelVGul X |VHU|

weight matrixIT(Gy, H,)

compatible in terms of their shock order, and has
the valueso otherwise® Next, we form a bipartite edge
weighted graplg/ (V1, Va2, Eg) with edge weights from

the matrixIT(G, H).® Using the scaling algorithm of M < max cardinality, minimum weight
Goemans et al. (1993), we then find the maximum car- bipartite matching irG (Ve, . Vi,)
dinality, minimum weight matching ig. This results with weights from I[1(Gy, H,) (see Gabow

in a list of node correspondences betwégmand H, etal. (1993))
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(U, v") < minimum weight pair inM
®(G, H) <« ®(G, H) U {(U, v))}
call match(/,v")
Gy < Gy — {X|x € Vg, and(x, w) € (G, H)}
H, < H, — {yly € Vi, and(w, y) € ®(G, H)}
}

while (G, # @ andH, # 9)

Interms of algorithmic complexity, observe that dur-
ing the depth-first construction of the matching chains,
each vertex inG or H will be matched at most once
in the forward procedure. Once a vertex is mapped, il
will never participate in another mapping again. The
total time complexity of constructing the matching
chains is therefore bounded B/(n?,/nToglogn), for
n = max(nl, n2) (Gabow et al., 1993). Moreover, the
construction of theg (v) vectors will takeO(n./nL)
time, implying that the overall complexity of the algo-

rithm is max O(n?,/nTogTogn), O(n?,/nL).

Proposition 3. Procedure isomorphisiG, H) pro-
vides an approximate optimal solution to Probléby,
in polynomial time better than @3).

The approximation has to do with the use of a scaling
parameter to find the maximum cardinality, minimum
weight matching (Gabow et al., 1993); this parameter
determines atradeoff between accuracy and the number
of iterations till convergence. The matching matkix
in Eg. (2) can be constructed using the mapping set
® (G, H). The algorithm is particularly well-suited to
the task of matching two shock trees since it can find
the best correspondence in the presence of occlusion,
and/or noise in the tree.

3.6. An lllustrative Example

To illustrate the matching algorithm, we consider the
two shock trees shown in Fig. 3 (top), each of which
describes a different view of a brush. The underlying
shocks, along with the final computed correspondences
between nodes, are depicted in Fig. 3 (bottom). The o
sequence of steps in finding this best correspondence
(minimum-weight maximum cardinality matching) be-
tween the two shock trees is shown in Fig. 4. We briefly
describe each step in the sequence:

e Steps 1-4
The algorithm finds the minimum weight matching
between the two shock trees, seeking to find the two
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Figure 3 Top: the shock trees derived for two different views of
a brush. Bottom: the correspondences between nodes in the shock
trees computed by the matching algorithm.

subtrees which are maximally similar in terms of
their topological structure and the geometry of their
root nodes (shocks). In this example, the two sub-
trees rooted at 1-007 and 1-005 (denoted by bold cir-
clesin Fig. 4) are selected as most similar. In step 2,
this pair is added to the set of final correspondences
(denoted by short-dashed circles), and the algorithm
is recursively applied to the subtrees of 1-007 and 1-
005. In this manner, the correspondences (3-001,3-
002) and (1-003,1-001) are added to the set of final
correspondences.

Steps 5-6

After descending to the bottom of the subtrees rooted
at(1-007,1-005), controlis returnedto (1-007,1-005)
and these two subtrees are removed from the original
shock graphs. From the resulting shock subtrees, we
repeat the process of finding the best corresponding
subtrees. In step 5, the subtree pair (1-006,1-004) is
selected and added to the final correspondences in
step 6.

Steps 7-12

After removing the subgraphs originating at (1-
006,1-004), a new pair (3-002,3-001) is selected in
step 7, and added to the final correspondences in step
8. After removing this new pair, the processis applied
to the remaining shock forests in step 9, resulting in
the selection of the pair (1-004,1-002). This pair is
added to the final correspondences in step 10. In step
11, the pair (1-005,1-003) is selected and added to
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Step 12

Figure 4  Step-by-step execution of the matching algorithm applied to the shock trees in Fig. 3. The roots of subtrees selected as most similar
are denoted by bold circles. These are subsequently added to the set of final correspondences (short-dashed circles). Unmatched nodes are
denoted by long-dashed circles.

the final correspondences in step 12. The algorithm to that between two corresponding nodes at high depth
terminates by leaving the nodes 1-001 and 1-002 as (near the leaves), then the low-depth correspondence is
unmatched vertices (denoted by long-dashed circles) chosen over the high-depth correspondence, assuming
in the shock tree corresponding to leftmost objectin that their respective geometric differences are compa-

Fig. 3 (bottom). rable. This limited coarse-to-fine effect favors larger
(more global) structure correspondence over smaller
3.7. Discussion (more local) structure correspondence. This effect

could be significantly enhanced by adding a scale fac-
We now discuss a number of properties of the match- tor to the topological distance, which is inversely pro-
ing algorithm. Although the matcher may appear to portional to the height of the subtrees rooted at the
search for local, i.e., node-to-node, correspondencescorresponding nodes.
between the two shock trees, global similarity does  Minor perturbations of a shock tree’s topology, i.e.,
play an important role. When choosing the minimum- the addition or deletion of a node, resultin minor pertur-
weight edge in the bipartite matching step, we are not bations in its eigenvalue characterization. The frame-
simply choosing two nodes that are geometrically sim- work explicitly handles noise in two ways. First, in
ilar (local information), but two entire subtrees that looking for corresponding structures, matching may
are topologically similar in terms of their underlying proceed around a “noise” node (or nodes). Given two
structure. If the topological distance between two cor- subtrees to be matched, the best two corresponding
responding nodes at low depth (near the root) is similar nodes, used as the recursive starting point for the next
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level of search, may not be at corresponding levels in its children (relative orientation, position, size) could
the two subtrees. It may be that a child of the root of be incorporated as attributes on each node. However,
one subtree is matched, for example, with a grandchild the experimental results presented in this paper sup-
ofthe root of the other subtree, with a “noise” node sep- port our view that whereas such considerations may be
arating the root and the grandchild. The matching al- important for distinguishing between shapes known to
gorithm does not enforce level consistency of matched belong to the same class, they are secondary for generic
nodes, thereby allowing spurious nodes to be ignored. recognition.
Second, when the recursive matching of two rooted  Finally, the distances computed between two ob-
subtrees has been completed, both subtrees, includingects, i.e., their shock graphs, are absolute distances
any unmatched “noise” nodes, are removed from the based on the sum of their part distances. Therefore,
bipartite graph from which the next correspondence is the distance between two complex, but similar, objects
found. will exceed the distance between two simple, but simi-
The total distance between two shock trees is basedlar objects. This is not an issue when searching for the
on an independent alignment of corresponding node most similar object to the query in a database of ob-
pairs. Thus, whereas one node may be geometrically jects. However, in an application whose goal is to find
scaled up to align with it's corresponding node, another the two most similar objects among a set, the distance
node may be scaled down (or rotated differently). Al- between two objects should be normalized by a mea-
though enforcing consistent geometric transformations sure of each object's complexity, such as the average
among the parts would prevent them from being scaled number of nodes (Pelillo et al., 1998).
independently, it would also cause greater sensitivity to
their articulation, as well as to rotations in depth of the
underlying object. Hence, our approach has focused 4. Examples
primarily on the structural similarity of two objects
along with the qualitative shape similarity of their cor- We demonstrate our shape matching system with sev-
responding parts. If warranted, the consistency of part eral examples. To evaluate its performance under oc-
scaling/rotation could be computed for a set of corre- clusion, articulation of structures, and changes in view-
sponding nodes. Further, measures of geometric sim-ing and imaging conditions, we constructed our own
ilarity other than the Hausdorff norm could be used, database of tool images, and selected 18 for the exper-
such as ones based on differences in length, orienta-iments described here, as shown in Fig. 5 (top). The
tion, curvature, medial axis width (Blum, 1973), etc., binary silhouettes were extracted automatically using
and geometric relationships between a parent node andthe active contour developed in Siddiqi et al. (1998a),

b 7 ¥
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Figure 5 The 18 tool shapes used in our experiments. Top: the originals. Bottom: the silhouettes were segmented automatically using the

active contour developed by Siddiqi et al. (1997).



26  Siddiqi et al.
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Figure 6 The 8 biological shapes. The hands are variations of a range image segmented from the NRCC database, and the da Vinci face
profiles and horses were scanned from a book of his sketches.

as shown in Fig. 5 (bottom). Observe that due to shad- .
ows and highlights, there may be slight discrepancies
between the segmented outlines and the “true” ones;
our matching algorithm is designed to robustly handle
such discrepancies. We supplemented the tool shapes e du Guso
with silhouettes of 8 biological shapes, Fig. 6. T :
The shock-based descriptions of representative sha- :
pes, numerically computed using the algorithms de-
veloped by Siddigi and Kimia (1995), are shown in

Fig. 7, with the derived shock graphs in Fig. 8. Note that
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Figure 8 The shock graphs for a hand (top left), a plier (top right),
a brush (middle left), a hammer (middle right), a wrench (bottom
left) and a screwdriver (bottom right). Compare with Fig. 7. The
vertices are labeled according to their type, with the arrows in the
direction of shape growth. The distinct ends o8 are partitioned
with a dashed line.

apart from a “smallest scale” regularization induced by
the sampling grid, the procedure for shock detection is
automatic (Siddigi and Kimia, 1995). Notice how for
each shape a hierarchy of components emerges, with
the most significant components (e.g., the palm of the
hand, and the center of the pliers) placed closest to the
root node. Similar descriptions were computed for each
of the shapes in the database.

To evaluate our matcher’s ability to compare objects
based on their prototypical or coarse shape, we chose
as a prototype for each of our 9 object classes, that ob-
ject whose total distance to the other members of its
class was a minimurtf. We then computed the sim-
ilarity between each remaining object in the database
Figure 7. The shocks computed for a hand (segmented from the ?nd each of the class protqtypes, with the results shown
NRCC database), and a plier, a brush, a hammer, a wrench and am Table 1. For each row_ln_the table, a box has been
screwdriver, all from our own tool database. The labels correspond Placed around the most similar shape. We note that for
to vertices in the derived shock graphs, as shown in Fig. 8. the 15 test shapes drawn from 9 classes, all but one
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Table 1 Experiment 1: similarity between database shapes and class prototypes. In each row, a box is drawn around
the most similar shape (see the text for a discussion).

Distance to class prototype

Instance \ \ ¥ Y LN >~ “’ h '

\ 217 4.48 3.55 2.96 0.21 4.58 14.33 10.01
2.39 5.97 15.90 3.98 0.14 26.12 17.28 28.94
e 10.89 4.72 12.24 3.12 2.15 19.73 10.11 12.64
AV 7.15 6.42 1.19 1.35 5.10 3.38 10.58 11.11 11.11
\ 4.08 7.72 2.98 4.26 4.14 26.60 13.54 14.21
£ 14.77 6.72 5.69 2.30 5.90 10.58 16.25 19.10
“ 7.86 8.90 5.94 1.59 1.10 10.81 10.39 16.08
\ 2.66 4.23 3.23 6.47 1.48 11.73 15.38 15.15
\ 3.18 5.31 1.25 4.64 1.30 14.18 17.22 9.08
’ 4.55 0.76 1.32 2.86 1.49 21.38 15.35 13.04
w 6.77 19.46 22.11 13.27 8.21 29.50 5.12 5.03
W 8.73 23.14 31.45 24.41 10.16 31.08 8.45 7.05
H 12.46 19.0 27.40 14.58 24.26 17.10 8.85 16.93
' 13.86 23.07 12.81 11.24 17.48 23.23 6.02 6.92
. 15.73 21.28 14.10 12.46 19.56 19.21 9.53 7.12

are most similar to their class prototype, with the class
prototype coming in a close second in that case. The
recovered correspondences between nodes for the bes
matches in rows 1, 4, and 9 in Table 1, are shown in
Figs. 3and 9.

Three very powerful features of our system our worth
highlighting. First, the method is truly generic: the
matching scores impose a partial ordering in each row,
which reflects the qualitative similarity between struc-
turally similar shapes. An increase in structural com-
plexity is reflected in a higher cost for the best match,
e.g., in the bottom three rows of Table 1. Second, the
procedure is designed to handle noise or occlusion,
manifest as missing or additional vertices in the shock
graph. Third, the depth-first search through subtrees is
extremely efficient.

In the next two experiments, Tables 2 and 3, we
compare a number of objects to other members of their
class as well as to a member from a different class.
The objects have been chosen to illustrate the power figure 9 Top to Bottom: the computed correspondences between
of the matcher to deal with changes in image plane nodes for the best matches in rows 4 and 9 of Table 1.
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Table 2 Experiment 2: similarity between mem-
bers of a class. Each row of the table highlights
different aspects of matching invariance (in addition
to translation): Rows 1 and 2: invariance to defor-
mation, image rotation, and illumination; Row 3:
invariance to deformation, scaling, and occlusion.

Distance to class exemplars

Instance \ P \‘ ¥

\ 8.89 4.70 5.94
Y 149 135 089
7 521 995 10.01

Table 3 Experiment 3: similarity between
members of a class. Each row of the table high-
lights different aspects of matching invariance (in
addition to translation): Row 1: invariance to scal-
ing, deformation (different taper), and occlusion;
Row 2: invariance to scaling, image rotation, and
slight rotation in depth; and Row 3: invariance to
image rotation, scaling, and occlusion.

Distance to class exemplars

In contrast to the above class of methods, the frame-
work we have developed in this paper addresses the
problem of generic 2-D shape recognition. Given a
database of candidate shapes, we seek to organize it
such that a notion of equivalence classes between qual-
itatively similar shapes emerges. It must be empha-
sized that this classification is an emergent property;
the shapes are not assumed to be labeled by an un-
derlying object type. Our representation is based on
an abstraction of the singularities of a curve evolution
process into a shock graph, whose structure is charac-
terized by a shock graph grammar. We have introduced
a specific matching algorithm that manages complex-
ity by matching most significant components first. The
algorithm takes into account both the coarse topology
of two shock trees as well as the geometry associated
with the shocks in each vertex. The novelty of the al-
gorithm lies in its eigen-decomposition of a shock tree.
This representation provides a powerful means for ef-
ficiently computing the best correspondence between
two shock graphs in the presence of noise and occlu-
sion. Experiments with a variety of shapes demonstrate

that the approach is generic, and robust under articula-
mstance N . / tion, occlusion and moderate changes in viewpoint.
An alternative approach, also based on the singular-

Ya 029 016 542 ities of a curve evolution process, has recently been

proposed (Sharvit et al., 1998). The underlying graph
~ 148 130  3.46 - . ,

is hierarchical, but is more complex than ours. In par-
Y 653 079 524 ticular, it can not been reduced to a tree. The grad-
uated assigment algorithm for subgraph isomorphism
_ . _ . on arbitrary graphs is used for matching (Gold and
rotat|0n, scale, d_eformatlon, occlusion, tran_slatlon, and Rangarajan, 1996). Whereas preliminary experimental
even slight rotation in dept,h. In_ poth experiments, the | oqits appear to be comparable to ours, the approach
results reflect the matcher's ability to compare shapes 4 the caveat that the recovered correspondences may
within the same class, at a finer scale. not preserve the hierarchical structure underlying the
graphs being matched (see Pelillo et al. (1998)).

Our work has led to two exciting directions for re-
search which we are currently pursuing. First, it should
In related work, the problem of finding a particular ob- be clear that object representation and the develop-
ject in a complex image has been addressed. Here thement of matching algorithms are not independent of
assumption that a boundary has been extracted fromhow a large database of objects should be organized.
the target image (a non-trivial task) may be relaxed to In on going work, we are extending our matching al-
some extent. Such methods typically seek to capture gorithms to provide a framework for indexing 2-D ob-
the statistical variation of the object over a population jects. Using a vector of eigenvalue sums computed on
of prototype images, and to build a model which re- the subtrees of a shock tree, similar subtrees can be
flects this variability. The recognition phase consists retrieved from a database via a simple vector norm.
of matching a deformed model image to a candidate Second, building on ideas from aspect graphs, we shall
target image, so as to minimize the cost of defor- extend our approach in 2-D to a view-based strategy
mation. Boundary-based versions of this approach in- for generic 3-D object recognition. The intuitive idea is
clude (Cootes et al., 1996) and medial variants are alsothat a collection of sufficiently distinct projected views
being developed (Pizer et al., 1999). of an object can be represented by concatenating the

5. Conclusions



associated shock graphs, after which a matching algo-
rithm very similar to the one we have introduced here
can be directly applied. Although much work remains
to be done, empirical evidence indicates that the shock
graph is quite stable under small changes in viewpoint.
In contrast, except in constrained environments, the
stable extraction of representations based on 3-D com-
ponents has proved notoriously difficult.

In summary, we have shown how a generic de-
scription of object shape, based on the singularities
of a curve evolution equation derived from the object’s

boundary, can be organized into a graph representa-

tion, and how this graph can be matched into an object
database. Several elements of the object description
process at the basic level emerged, including categori-
cal descriptions based on the topology of shock graphs,
and efficent matching strategies based on the hierar-
chy implicit in the description. We believe that these
two elements will remain central to any general object
recognition system.

Appendix: Local Configurations in the
Shock Graph

A constructive approach to characterizing the structure
of the shock graph is to determine all legal parents and
children for each vertex type. An exhaustive enumer-
ation of these local configurations remains tractable,
since we have a small number of vertex types. A simi-
lar tabulation was first provided (though without proof)
by Blum (1973, p.257) and related results were also
derived by Siddigi and Kimia (1995).

Recall that theSG is rooted at a unique vertex la-
beled # and has one or more terminal vertices labeled
®. All other vertices are shock groups taken from
the setV \{# @} = {1, 2, 3,4}. It follows from the
“coloring” in Section 1 and the continuity of the ra-
dius function along the skeleton (Serra, 1982, pp. 381-
382) that no 23, or 4 can “touch” a distinct 2 or 4.
Therefore,

Observation 1. No 2,3 or4 canhaveaBor4 as a
parent or as a child.

As a consequence, if a vertex has multiple parents
or children taken from the s&t \ {#, ®}, such vertices
can only bel’s. The following lemma holds for the
case of multiple parents.

I:emma 1. A vertex in theSG can ~have at most two
1's as parents. If it has exactly twids as parentsit
must be a 2-shock ora
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Figure A.1 Anillustration of shock patterns, with arrows drawn in
the direction of increasing radius. (a) Geometry df gb) Twol's
flow outwards from a 2 or &. (c) An integer number df's may flow
into a 4. (d) Two or mord’s may flow into al. (e) An end-point of
a3 may have a singl& flowing out of it, no shocks flowing into or
out of it, or an integer number dfs flowing into it.

Proof: Recall thatdl is a curve segment of 1-shocks
along which the radius function varies monotonically.
Let al of lengthL be parametrized by arc-lengsh
with s € (0, L], such that the radius functioR(s)
increases monotonically with For eachs € (0, L],
there exists a continuous mapping frags) to its asso-
ciated pair of bi-tangent point®(s), q(s)), by which

the two boundary segments associated with the inter-
val (0, L] can be reconstructed, see Fig. A.1(a). Let
a(s) be the angle between the line segmegr®Xx(s)

and q(s)x(s), on the narrower side. Two conditions
must hold: 1)x(s) must be< x for eachs € (0, L],
since the radius functioR(s) increases monotonically
with s, 2) no other shock can lie in the reconstructed
(shaded) region in Fig. A.1(a), because the grassfire
can only traverse a point in the plane once (the entropy
condition by Kimia et al. (1995)).

Now, because the radius function along thén-
creases withs, and the radius function is continuous
along the skeletornx(0) cannot itself be, or abut, a 4-
shock. Let us assume thaf0) abuts the first point
(where the radius function is smallest) of a second
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(distinct) 1. The above two conditions must hold for
the second. as well. Therefore, the only possibility
is thata (0") is identicallyz for points infinitesimally
close tox(0) on eachl. Hence, there exists an> 0
such that the open disc of radiasentered ax(0) is
strictly contained in the union of the shaded regions
reconstructed by(0) and the twdl's (see Fig. A.1(a)).
This implies that the first point of no othércan abut
x(0). We note that by the coloring in Sectionx{p) is

a 2-shock, as illustrated in Fig. A.1(b) (top). A second
possibility is thatx(0) abuts the endpoint of & By a

Children of a2: If a 2 has al as a child, its time
of formation must be greater than that of all shocks in
the 1 (Definition 2). However, this would violate the
coloring in Section 1 (see Fig. A.1(b)). Therefore, the
only possible child is @, corresponding to Rule 9.

Children of a3: In contrast to &, which can only
have children at the end point where the radius function
is smallest (Definition 2), & can have children at either
end point. It is possible for severak to be children,
e.g., one could place one or more triangular wedges
around the dashed circle in Fig. A.1(e) (right). How-

similar argument as the one above, there can be at mostever, by the same argument as in the proof of Lemma 1,

one suck8. Inthe event that the other end of habuts
the first point (where the radius function is smallest) of
a distinct1, the3 is the child of these twd's. The
result follows. O

To determine the remaining local configurations it
is now sufficient to enumerate all the possible chil-
dren for each vertex type. A child corresponds to an
abutting vertex, containing no shocks that formed after
any of the shocks in the vertex under consideration
(Definition 2). Note that by Observation 1, if the ver-
tex is of type 23, or 4, only children of typd have to
be considered.

Children of a #: Since theSG is built in “reverse”
time, any children of the # symbol will be the last
shocks to form in the forward evolution. By the color-
ing in Section 1, an isolated point of annihilation is a 4;
an annihilating curve segment i8a These situations
correspond to Rule 1 in Fig. 2, which states that any
number of3's or 4's can act as seeds for the shape.
These are the only possible children.dAcannot be a
child since the interior of a Jordan curve is non-empty,
and hence a null shape is disallowed.

Children of al: A child of a1 can have no shock
whose time of formation is greater than that of any
shock in thel (Definition 2). Hence, by the color-
ing in Section 1, a child cannot be a 4. It is possible
for two or more distinctl’s to be children, e.g., one
could place two or more triangular wedges around the
dashed circle in Fig. A.1(d). This corresponds to Rule
4. By Lemma 1, a 2 must be a child of two distifcs.
This corresponds to Rule 5. Referring to the proof of
Lemma 1, dl cannot have two or mofs as children.
However, a singl& could be a child, as in Fig. A.1(e)
(left). The other end of th8 may or may not be the
child of a distinctl. Thus, in contrast to Rule 5, we
have two separate cases in Rule 6. Finally, whén a
has no abutting shock with smaller radius, it has as
a child. This corresponds to Rule 10.

children can only be present at an end point that does
not have dl as a parent. Hence, we have two cases in
Rule 3: if one end point of & has a parertt, an integer
number ofl’s can be children at the other end point; if
neither end point has a parehtan integer number of
1's can be children at each end point. Finally, when the
3 has no abutting shock with smaller radius at either
end point, as in Fig. A.1(e), it has&as a child. This
corresponds to Rule 8.

Children of a4: By the coloring in Section 1, a
4 corresponds to a medial axis point where the ra-
dius function achieves a strict local maximum. It may
have an integer number & as children, examples of
which appear in Fig. A.1(c). This corresponds to Rule
2. Whenithas no abuttirijs, as in the case of a perfect
circle, it has ab as a child. This corresponds to Rule 7.

The above enumeration of all legal local vertex con-
figurations in theSG shows that its structure is highly
constrained. In particular, since a rewrite rule exists in
Fig. 2 for each legal parent/child of each vertex type,
the proof of Proposition 2 is complete.
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Note

1. This “parallel” condition reflects the non-genericity of 3-shocks.
Nevertheless, “bend”-like structures are abundant in the world;
consider the legs of a chair, the fingers of a hand, or the tail of
a dog. Numerical techniques have been developed to regularize
such configurations into 3-shocks (Siddigi et al., 1998).



2. The™ symbol is used to denote a curve segment. A branch-
point, where the maximal inscribed disc “touches” the boundary
at more than two points, will be shared byH# that overlap at t.

3. In the limit as the number of shocks irBan one of these two
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Burns, J. and Kitchen, L. 1987. Recognition in 2D images of 3D ob-
jects from large model bases using prediction hierarchig2rdo.
International Joint Conference on Atrtificial Intelligencklilan,
Italy, pp. 763-766.

contexts approaches 1, we have a 2-shock or a 4-shock, respec-Cootes, T.F., Hill, A., Taylor, C.J., and Haslam, J. 1996. The use

tively.
4. A consistent permutation or reordering of a subtree is any (recur-

sive) re-ordering of the tree’s branches that maintains the same

parent-child relations.

5. This analysis considers only the topological structure of the
shock graph. Later, we will factor in the geometric informa-
tion associated with its vertices.

6. When the number of shocks in a segment is less than 5, the

of active shape models for locating structures in medical images.
In Fourth European Conference on Computer VisiGambridge,
UK.
Dickinson, S., Pentland, A., and Rosenfeld, A. 1992. 3-D shape
recovery using distributed aspect matchifi§EE Transactions
on Pattern Analysis and Machine Intelligende(2):174-198.
Edmonds, J. and Matula, D. 1968. An algorithm for subtree identifi-
cation.SIAM Rev.10:273-274 (Abstract).

interpolation step is suppressed (all points in the sequence are Forsyth, D., Mundy, J., Zisserman, A., Coelho, C., Heller, A., and

stored). Further, if 8 hasa single shock, its orientation is not
determined.

7. Note that if the maximum degree of a nodeljgshen excluding
the edge from the node’s parent, the maximum number of chil-
drenisd — 1. Also note that i (v) < d, then the lastl — § (v)
entries ofy are set to zero to ensure that allvectors have the
same dimension.

8. If eitherC(u, v) or||x(u) — x (v)||2 is zero, the(u, v)-th entry
is the other term.

9. G(A, B, E) is a weighted bipartite graph with weight matrix
W = [wjj] of size|A| x | B] if, for all edges of the fornii, j)

E,i € A j € B,and(, ]) has an associated weightw; ;.
10.
prototype was chosen at random.
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