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Abstract. We have been developing a theory for the generic representation of 2-D shape, where structural de-
scriptions are derived from the shocks (singularities) of a curve evolution process, acting on bounding contours.
We now apply the theory to the problem of shape matching. The shocks are organized into a directed, acyclic
shock graph, and complexity is managed by attending to the most significant (central) shape components first. The
space of all such graphs is highly structured and can be characterized by the rules of ashock graph grammar. The
grammar permits a reduction of a shock graph to a unique rooted shock tree. We introduce a novel tree matching
algorithm which finds the best set of corresponding nodes between two shock trees in polynomial time. Using a
diverse database of shapes, we demonstrate our system’s performance under articulation, occlusion, and moderate
changes in viewpoint.
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1. Introduction

Upon entering a room, one first notices the presence of
a particular object, such as a dog, before realizing it is
either a Siberian Husky or that it is “Loki”, a particu-
lar Siberian. This example, modified from important
studies by Rosch et al. (1976), suggests that there is
an organization to our object memory, and that this or-
ganization facilitates recognition. Initially, particular
instances are not recognized; rather, objects are first
categorized at a “basic level of abstraction” (Rosch
et al., 1976). The object is recognized as belonging

to the category—dog—before more detailed, or subor-
dinate levels, are refined. This motivating example is at
the heart of this paper: we seek a technique for object
recognition based on such entry-level, generic descrip-
tions. We interpret “entry-level” to mean generic in a
technical sense, and then proceed to develop a formal
system for matching based on it.

1.1. Classical Aspects of Shape Recognition

Rosch’s experimental observation that basic-level de-
scriptions precede particulars was made about the same
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time that Fu (1977) and others were introducing syn-
tactic pattern recognition. Fu’s goal was to define a
grammar for patterns, and then to specify automata that
could recognize this grammar. However, this program
lost favor because there was no clear indication of those
pattern features on which the grammar should be based.
Bounding and interior image curves were typical, but
the graph matching rapidly became intractable. Miss-
ing and bogus edges were a problem, and the complex-
ity of curve possibilities exceeded the grammars. With
the exception of array grammars (Rosenfeld, 1979),
little progress was made. Research continues on graph
isomorphism algorithms for vision applications, but ex-
amples are still typically based on graphs derived from
feature points and image curves (Gold and Rangarajan,
1996). Probability measures have also been placed on
images and image curves in an attempt to provide a pri-
ori information suitable to guide matching (Grenander,
1996).

Image curves are also at the heart of boundary-based
descriptions, such as those of Hoffman and Richards
(1985), as well as alignment techniques (Basri and
Ullman, 1988). However, the Hoffman and Richards
“codon” vocabulary is only an intermediate step toward
more abstract part descriptions, and remains to be com-
pleted. It is an attempt to restrict the graph represen-
tation to the boundary, which eliminates contours that
span several objects. In alignment schemes, the empha-
sis is not on boundary encoding, but on accounting for
the differences between an observed and a stored shape.
A clever algorithm by Ullman and Basri (1991) inter-
polates from a linear combination of 2-D views, and im-
pressive results on a Volkswagen image were reported.
However, to achieve these results, the edge maps were
manually edited so that only those appearing in all
views were included (Ullman, 1995). In effect, this im-
plies that edges are significant if and only if they appear
in all views of an object which, of course, is impossible
to achieve in general. Furthermore, no acceptable so-
lution for automatically finding edge correspondences
has been offered. In general, such approaches suggest
that the geometric variations of boundaries are too se-
lective; in effect, the global trends get lost in the local
details. Our goal is to find these global trends.

Considering the boundaries of objects implies a
viewpoint dependency to shape recognition (Bulthoff
and Edelman, 1992), but does not specify which fea-
tures to use for each view. Aspect graphs were intro-
duced by Koenderink and van Doorn (1979) to enumer-
ate topologically-distinct views (Kriegman and Ponce,

1990) via singular or catastrophic events. For example,
when a cup is rotated, there is a particular viewpoint
from which the handle just becomes visible; thereafter,
only geometric variations take place until, at another
singular viewpoint, the handle disappears. However,
aspect graphs and other methods based on algebraic
and differential invariants (Forsyth et al., 1991) were
successfully defined only for specific classes of alge-
braic surfaces that fit only few (man-made) objects.
The techniques are typically difficult to extend to nat-
ural objects.

Computer vision approaches to view-based mod-
eling fall broadly into two classes. First, there are
feature-based methods which represent each view as
a collection of line segments, curves, corners, regions,
etc. (Ikeuchi and Kanade, 1988; Burns and Kitchen,
1987; Dickinson et al., 1992; Pope and Lowe, 1993).
The success of such methods depends largely on the
extent to which the features are present and can be re-
liably extracted; once again they are not easily applied
to natural objects. Second, a number of appearance-
based methods have emerged which essentially treat
the raw image as a single feature in a high-dimensional
space (Turk and Pentland, 1991; Murase and Nayar,
1995). Whereas such techniques might succeed at rec-
ognizing particulars of a specific class, e.g., instances
of faces, they cannot predict entry-level categories be-
cause there is no abstraction from image data to a
model. Returning to the problem of database organiza-
tion, such techniques would succeed at finding specific
instances of Loki’s body in a database of photographs
of animals, but would fail at clustering together, for ex-
ample, photographs of horses or photographs of hands.

In important contrast to the boundary based tech-
niques discussed earlier was Blum’s (1973) medial
axis transform—or skeleton—which preceded Rosch
by about a decade. Blum’s skeleton is area-based, and
provides a description of shapes via the loci of cen-
ters of covering balls. Variations on this theme include
smoothed local symmetries(Brady and Asada, 1984)
and the process inferring symmetric axis(Leyton,
1988). The skeleton has the advantage of providing
a different (from Fu et al.) type of graph on which
to base matching, but again sensitivity causes prob-
lems. Proper skeletons can be found interactively, but
not automatically, and as with the Fu and the Ullman
approaches, the features have to be edited to provide a
basis for matching. One option that is worth stressing
is the use of hierarchical skeletons (Pizer et al., 1987;
Ogniewicz and K¨ubler, 1995), because it attempts to
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capture a notion of “scale” for objects. This is impor-
tant because, should such scales be available, coarse-
to-fine matching strategies could be employed. Recent
work towards this goal includes Burbeck and Pizer’s
core model (Burbeck and Pizer, 1995), and Liu et al.’s
symmetric axis tree (Liu et al., 1998).

In work on 2-D shape matching, Sclaroff and
Pentland have used a modal representation correspond-
ing to a shape’s generalized axes of symmetry (Sclaroff
and Pentland, 1995). This compact representation has
been used for indexing (Sclaroff, 1997), and offers
a frequency-like (coarse to fine) decomposition of a
shape. However, its global nature makes it sensitive
to large occlusion. Zhu and Yuille have decomposed
2-D shapes into connected mid-grained skeletal parts,
and have designed a matching system where simi-
larity between parts is computed as a joint probabil-
ity (Zhu and Yuille, 1996). Whereas preliminary re-
sults are encouraging, several parameters have to be
set, and there appears to be no hierarchy among the
parts used for matching. Furthermore, the model “. . .

was created to deal with animate objects and would
have to be completely modified to deal with man-
made objects like houses and industrial parts (Zhu and
Yuille, 1996, p. 209)”. Fran¸cois and Medioni have pro-
posed a connection hierarchy of parts for planar shape
recognition (Fran¸cois and Medioni, 1996), obtained
from an axial decomposition introduced by Rom and
Medioni (1993). Pauwels et al. have proposed the use
of semi-differential invariants for planar shape recog-
nition under affine distortions, with some robustness to
occlusion (Moons et al., 1995; Pauwels et al., 1995).
Basri et al. have proposed various models for measur-
ing the cost of deforming one contour into another,
while taking into account its part structure (Basri et al.,
1995). Gdalyahu and Weinshall have also proposed
metric functions for measuring the similarity between
two closed planar curves (Gdalyahu and Weinshall,
1996). Mokhtarian has proposed a method for recog-
nizing occluded objects (Mokhtarian, 1997), based on
a curvature scale space introduced by Mokhtarian and
Mackworth (1992). However, these latter methods do
not explicitly account for a shape’s interior, which is
key for determining more global properties such as
symmetry.

Among the many applications of curve evolution to
problems in computer vision and image processing,
e.g., see (Alvarez et al., 1992; Sapiro and Tannenbaum,
1993; Malladi et al., 1995), only a handful have ad-
dressed the problem of shape representation. Tari et al.

have proposed a linear diffusion equation which can
be used to build skeletal descriptions directly from
greyscale images (Tari et al., 1997), and is computa-
tionally more efficient than those based on standard
level set methods (Osher and Sethian, 1988). Their
work leads to an approximation of the reaction diffu-
sion space introduced by Kimia et al. (1995), but has yet
to address the problem of shape recognition. Tek et al.
have used an orientation propagating distance function
to extract symmetries from fragmented contours, label-
ing the resulting singularities according to whether or
not the colliding waves carry “true” orientation infor-
mation (Tek et al., 1997). This framework has recently
been applied to the problem of shape matching; see
Section 5.

In summary, a substantial body of work on 2-D shape
has contributed a positive set of desiderata, although
no technique exists that satisfies all of them. Thus, we
seek a representation that is viewpoint dependent to
start; that is generic in the sense that a notion of equiva-
lence classes of (qualitatively similar) shapes emerges;
that is applicable to natural as well as man-made ob-
jects; that is reliably and stably computable; that is
capable of supporting efficient (e.g., polynomial-time)
recognition in the presence of occlusion and noise, and
that places special importance on certain boundary seg-
ments. We build our representation on the singularities
of a curve evolution process, described next. We shall
later abstract this representation into a graph that is par-
ticularly suited to efficient and generic shape matching.

1.2. Shapes and Shocks

Particular shapes can vary in detail from one another;
variations between shapes derive from an organiza-
tion of these particular shapes into equivalence classes.
Thus certain discrete events are required to separate
equivalence classes of continuous ones, and in math-
ematics such discrete events derive from singularity
theory (Arnold, 1991). Kimia et al. (1995) applied
singularity theory to shape by exploring the conse-
quences of slight boundary deformations. Specifically,
for simple closed curves in the plane the following evo-
lution equation was studied:

Ct = (1+ ακ)N
(1)

C(s, 0) = C0(s).

HereC(s, t) is the vector of curve coordinates,N (s, t)
is the inward normal,s is the path parameter, andt is



16 Siddiqi et al.

the evolutionary time of the deformation. The constant
α≥ 0 controls the regularizing effects of curvatureκ.
Whenα is large, the equation becomes a geometric
heat equation; whenα = 0, the equation is equiva-
lent to Blum’s grassfire transformation (Brockett and
Maragos, 1992; Kimia et al., 1995). In this paper, we
shall only be interested in the latter case, under which
the evolution equation is hyperbolic andshocks(Lax,
1971), or entropy-satisfying singularities can form.
Here we shall ignore the dynamics of the shock for-
mation process, and will consider only the static pic-
ture obtained in the limit: the locus of shock positions
gives Blum’s medial axis (Brockett and Maragos, 1992;
Kimia et al., 1995). However, even in this static limit,
the shocks provide additional information beyond that
available from their loci: consider a “coloring” of the
shocks according to the local variation of the radius
function along the medial axis (see Fig. 1). The col-
ored description provides a much richer foundation
for recognition than that obtained from an unlabeled
(Blum) skeleton.

To illustrate the coloring, imagine traversing a path
along the medial axis. At a 1-shock the radius function
varies monotonically, as is the case for a protrusion.
At a 2-shock the radius function achieves a strict lo-
cal minimum such that the medial axis is disconnected
when the shock is removed, e.g., at a neck. At a 3-shock
the radius function is constant along an interval, e.g.,
for a bend with parallel sides.1 Finally, at a 4-shock
the radius function achieves a strict local maximum, as
is the case when the evolving curve annihilates into a
single point or a seed.

Figure 1. A coloring of shocks into four types. A 1-shock derives
from a protrusion, and traces out a curve segment of 1-shocks. A
2-shock arises at aneck, and is immediately followed by two 1-shocks
flowing away from it in opposite directions. 3-shocks correspond to
an annihilation into a curve segment due to abend, and a 4-shock
an annihilation into a point or aseed. The loci of these shocks gives
Blum’s medial axis, while the coloring provides an organization of
the skeleton upon which our matching algorithm is based.

With the above picture in mind, the coloring can be
formalized as follows. LetX be the open interior of a
simple closed curve, andMe(X) its medial axis (the set
of points reached simultaneously by two or more fire
fronts). LetB(x, ε)be an open disk of radiusε centered
at x ∈ X, and letR(x) denote the radius of the largest
such disk contained inX. Let N(x, ε) = Me(X) ∩
B(x, ε)\{x} define a “punctured”ε-neighborhood ofx,
one that does not containx itself. A medial axis point
x ∈ Me(X) is

1. type 4 if ∃ε > 0 s.t. R(x) > R(y) ∀y ∈ N(x, ε);
2. type 3 if ∃ε > 0 s.t. R(x) = R(y) ∀y ∈ N(x, ε)

andN(x, ε) 6= ∅;
3. type 2 if ∃ε > 0 s.t. R(x) < R(y) ∀y ∈ N(x, ε)

andN(x, ε) 6= ∅ andN(x, ε) is not connected; and
4. type 1otherwise.

It should be clear that there is a relationship between
the above coloring and the velocity functiondR/dx
along the medial axis (Serra, 1982). In Fig. 7 we
provide numerical examples of colored medial axis de-
scriptions. As we shall now show, thecoloringcoupled
with a measure ofsignificancederived from the time
of shock formation, is the key to abstracting a repre-
sentation that supports generic shape matching.

2. The Shock Graph

We shall now abstract the system of shocks derived
from the curve evolution process into a graph, which
we call theshock graph, or SG. This construction is
inspired by Blum’s classic work on axis-morphologies,
in which he explored the use of directed graphs based
on the medial axis for defining equivalence classes of
objects (Blum, 1973). The shock types will label each
vertex in the graph and the shock formation times will
direct edges to provide an ordering for matching, and
a basis for subgraph approximation.

By the Jordan Curve Theorem, any simple closed
curve divides the planeR2 into exactly two compo-
nents, one bounded and the other unbounded. We are
interested in the bounded interiors of Jordan curves.

Definition 1. A 2-D shapeO is the bounded interior
of a simple closed (Jordan) curve.

From the coloring of shocks into four types in the
previous section, it can be seen that 2-shocks and 4-
shocks are isolated points, whereas 1-shocks and 3-
shocks are neighbored by other shocks of the same
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type. To build the shock graph we shall group together
shocks of the same type that form a connected com-
ponent, denoting the groups with labels1̃, 2, 3̃ and 4,
and breaking apart thẽ1’s at branch-points.2 Let each
shock group be indexed by a distinct integeri , and let
ti denote its time (or times) of formation, correspond-
ing to the radius function evaluated at the shocks in the
group. Hence,ti will be an interval for ã1; for 2’s, 3̃’s
and 4’s it will be a single number. Finally, let # denote
a start symbol and8 a terminal symbol. TheSG is
a connected graph, rooted at a vertex labeled #, such
that all other (non-terminal) vertices are shock groups,
and directed edges to non-terminal vertices indicate the
genesis of new shock groups.

Definition 2. The Shock Graph of a 2-D shape,
SG(O), is a labeled graphG = (V, E, γ ), with:

• verticesV = {1, . . . ,n};
• edges(i, j ) ∈ E ⊆ V × V directed from vertexi to

vertex j if and only if i 6= j , ti ≥ t j , andi ∪ j is
connected in the plane;
• labelsγ : V → l , with l ∈ {1̃, 2, 3̃, 4, #,8}; and
• topologysuch that,∀ j ∈ V with γ ( j ) 6= #, ∃i ∈ V

with (i, j ) ∈ E.

The SG is built by “reversing” the grassfire evolu-
tion, analogous to growing a shape by adding lumps of
material onto its seeds. The children of the unique ver-
tex labeled #, at which the graph is rooted, are the last
shock groups to form. Vertices with label8 are leaves
of theSG, whose parents are the first shock groups to
form. This reverse-time dependency is important be-
cause the last shocks to form correspond to the most
significant (central) shape features.

Proposition 1. Any 2-D shapeO has a unique cor-
responding shock graphSG (O).

Proof: The uniqueness of the skeletonS(X) follows
from its definition as the union of maximum open discs.
Hence the medial axisMe(X), which is strictly con-
tained in the skeletonS(X) (Serra, 1982, pp. 382–383),
is also unique. (In fact the two sets are very close since
Me(X) = S̄(X) (Matheron, 1988).) The coloring of
medial axis points into four types in Section 1 is unique,
which implies that a unique set of vertices exists for the
correspondingSG. Finally, by Definition 2, the direc-
tion of an edge between two abutting vertices is am-
biguous only whenti = t j for all shocks ini and j .
Due to the continuity of the radius function along the

skeleton (Serra, 1982, pp. 381–382), the only possibil-
ity is that the two vertices share the point where they
touch, in which case we have the contradiction that all
shocks ini and j would lie in thesame3̃, and hence
in a single vertex. The uniqueness of the shock graph
follows. 2

2.1. The Shock Graph Grammar

The notion of entry-level categories for shape that we
seek is intimately connected to the topological structure
of the shock graph. This structure is highly constrained
because the events that govern the birth, combination,
and death of shock groups can be abstracted into a
small number of rewrite rules, shown in Fig. 2. In anal-
ogy to Leyton’s Process Grammar (Leyton, 1988), the
rules have been grouped according to the semantic pro-
cesses that they characterize, although the alphabet of
shock types that they operate on is quite different from
boundary-based codons. A related system of rules was
developed by Siddiqi and Kimia (1995), for the pur-
pose of enumerating the possible types of shocks in a
sequence. In contrast, the set of rules in Fig. 2 apply
to the construction of a graph, based on an alphabet of
shock groups.

Definition 3. The Shock Graph Grammar,SGG, is a
quadrupleG = (V, 6, R, S), with

1. V = {1̃, 2, 3̃, 4, #,8}, the alphabet;
2. 6 = {8}, the set of terminals;
3. S= #, the start symbol; and
4. R= {R1, . . . , R10}, the set of rules given in Fig. 2.

The rewriting system emphasizes the generative pro-
cess of growing a shape by placing seeds, adding pro-
trusions, forming unions, and so on. It operates by be-
ginning at the start symbol and repeatedly replacing the
left-hand side of a rule by the corresponding right-hand
side until no further replacements can be made (Lewis
and Papadimitriou, 1981). It is theSGG that captures
the beauty of shock graphs, because the rules embody
constraints from the domain of curve evolution. In par-
ticular,

Proposition 2. The rewrite rules of theSGGare suf-
ficient to derive the shock graphSG (O) of any 2-D
shapeO.

Proof: A constructive proof appears in Appendix 3.
The strategy is to derive the rules by enumerating all
legal parents and children for each vertex type. 2
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Figure 2. The Shock Graph Grammar,SGG. Dashed lines partition distinct ends of a3̃. The rules are grouped according to the different
semantic processes (on the left) that they characterize. Note that the grammar is not context-free, e.g., rule 3 indicates that a1̃ can only be added
onto an end of ã3 that has no parent1̃.

We can now make several observations. First, since
the same shock cannot be born at two distinct times
there exists no path from a vertex back to itself. Hence,
theSG is a directed acyclic graph.This has important
consequences for object matching because the prob-
lem of searching directed acyclic graphs is computa-
tionally much simpler than that of searching arbitrary
graphs (Kobler, 1993). Second, since there exist rules
in theSGGwhose left-hand sides do not consist of sin-
gle nonterminals,theSGG is not context-free.Third,
the rewrite rules indicate that a 2-shock and a 4-shock
can only be added by rules 5 and 1 respectively, and

that semantically equivalent rules exist for a3̃ (rules 6
and 1). Hence,a 2-shock is semantically equivalent to
a 3̃ in a particular context, and a 4-shock to a3̃ in a
different context.

TheSG’s for a variety of shapes are shown in Fig. 8.
All the graphs were generated automatically from the
output of the shock detection process (Siddiqi and
Kimia, 1995) displayed in Fig. 7. Following the third
observation, in our numerical experiments only label
types1̃ and3̃ will be explicitly assigned. Ã3 with a
parent1̃ at each end acts as a 2-shock (a neck), and a3̃
with a # as aparent as a 4-shock (a seed).3
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In the next Section we show that a shock graph can
be reduced to a unique rooted shock tree, which in turn
implies a hierarchical ordering of shape information
(shock vertices). We then develop a formal approach
to significance-based matching, where the key idea is
to defeat complexity (when the database of shapes is
diverse and large) by attending to the most significant
(central) components first, via a depth-first search of
the underlying shock trees.

3. Shock Graph Matching

3.1. Problem Formulation

Given two shock graphs, one representing an object in
the scene (V2) and one representing a database object
(V1), we seek a method for computing their similarity.
Unfortunately, due to occlusion and clutter, the shock
graph representing the scene object may, in fact, be
embedded in a larger shock graph representing the en-
tire scene. Thus we have alargest subgraph isomor-
phismproblem, stated as follows: Given two graphs
G= (V1, E1) andH = (V2, E2), find the maximum in-
tegerk, such that there exists two subsets of cardi-
nality k, E′1 ⊆ E1 and E′2 ⊆ E2, and the induced
subgraphs (not necessarily connected)G′ = (V1, E′1)
andH ′ = (V2, E′2) are isomorphic (Garey and Johnson,
1979). Further, since our shock graphs are labeled
graphs, consistency between node labels must be en-
forced in the isomorphism.

The largest subgraph isomorphism problem, can be
formulated as a{0, 1} integer optimization problem.
The optimal solution is a{0, 1} bijective mapping ma-
trix M , which defines the correspondence between the
vertices of the two graphsG and H , and which min-
imizes an appropriately defined distance measure be-
tween corresponding edge and/or node labels in the two
graphs.

Problem 1. We seek the matrixM , the global opti-
mizer of the following (Kobler, 1993; Mjolsness et al.,
1989):

min −1

2

∑
u∈V1

∑
v∈V2

M(u, v)||u, v||

s.t.
∑
u′∈V2

M(u, u′) ≤ 1, ∀u ∈ V1∑
v∈V1

M(v, v′) ≤ 1, ∀v′ ∈ V2

M(x, y) ∈ {0, 1}, ∀x ∈ V1, ∀y ∈ V2

(2)

where|| · || is a measure of the similarity between the
labels of corresponding nodes in the two shock graphs
(see Section 3.4).

The above minimization problem is known to be NP-
hard for general graphs (Garey and Johnson, 1979),
however, polynomial time algorithms exist for the spe-
cial case of finite rooted trees with no vertex labels.
Matula and Edmonds (1968) describe one such tech-
nique, involving the solution of 2n1n2 network flow
problems, wheren1 and n2 represent the number of
vertices in the two graphs. The complexity was fur-
ther reduced by Reyner (1977) toO(n1.5

1 n2) (assuming
n1 ≥ n2), through a reduction to the bipartite matching
algorithm of Hopcraft and Karp (1973). If we could
transform our directed acyclic shock graphs to finite
rooted trees, we could pursue a polynomial time solu-
tion to our problem.

In the following subsections we show that for any
shock graph, there exists a unique rooted tree. Next,
we present a method for comparing the coarse topo-
logical structure of two shock trees which draws on
results from the domains of eigenspaces of graphs and
semidefinite programming. Namely, the eigenvalue de-
composition of an adjacency matrix corresponding to
a shock tree leads to a property that is invariant to
any consistent permutation or reordering of its sub-
trees (submatrices).4 After defining a suitable mea-
sure of shock distance between corresponding nodes
in two shock trees, we present a novel modification
to Reyner’s algorithm (Reyner, 1977) which combines
coarse topological matching with shock distance to
solve our largest isomorphic subgraph problem in poly-
nomial time.

3.2. Shock Graphs to Shock Trees

In this section we present a reduction that takes a
DAG representing a shock graph to a unique vertex la-
beled rooted tree whose size is polynomially bounded
by the size of the original shock graph. To begin, let
G= (V, E) be a DAG representing a shock graph on
n vertices. A loopL is a subgraph ofG formed by the
intersection of two directed paths. More formally,L
originates at a vertexb, follows two pathsP1 and P2,
and ends at the vertext . We denoteb as thebaseof L,
t thetip of L, andP1 andP2 thewingsof L. Referring
to the protrusion and birth rewrite rules (rules 1, 2, 3
and 4), in Fig. 2, the base ofL can be a vertex whose
type is drawn from the set{#, 4, 3̃, 1̃}. The wings,P1
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and P2, are directed paths consisting of a sequence of
vertices whose types are drawn from the set{4, 3̃, 1̃}
(rules 1, 2, 3, 4, and 6). Finally, the tip ofL can be a
vertex of type either 2 or̃3 (rules 5 and 6).

Assume that the tipt of L is a vertex of type 2. Then
by rule 9,L will be terminated at a vertex labeled8.
Next, if t is a vertex of typẽ3, thenP1 andP2 represent
two directed sequences of shocks that enter at opposite
ends oft . In this case,t can not satisfy rule 3, and must
be the root of a single node subgraph having label8

(rule 8). We therefore conclude that the tips of all loops
are adjacent to nodes having type8 in G, and that each
such tip participates in exactly one loop.

In our reduction, for each such tip nodet we will
maintain duplicate copiest1 andt2, and redefineL to
be the union ofb and two new disjoint pathsP′1=
P1 ∪ {t1} ∪ {8} andP′2 = P2 ∪ {t2} ∪ {8}. It is easy to
see, by induction on the number of tips inG, that such
a reduction is unique and produces a directed, or equiv-
alently, a rooted tree. Further, sinceG has onlyO(n)
tips, each of which is duplicated at most once, there is
an O(n) increase in size of the graph. To perform the
reduction, we need only check the in-degree of any3̃’s
and 2’s, and duplicate them if necessary. The complete
reduction is therefore a linear time process in terms of
the number of vertices inG.

In order to enforce geometric consistency, a related
modification is carried out during the matching phase,
to be described later. The matcher will maintain two
copies of every3̃ with at least onẽ1 child on each
side (rule 3), each with its respective children, e.g., the
top level3̃’s for the hand, plier, brush and screwdriver
shock graphs in Fig. 8. As correspondences are found,
a match of one such̃3 will force a match of its copy.

3.3. An Eigenvalue Characterization of a Shock Tree

The shock tree can be represented as a{0, 1} adjacency
matrix, with 1’s indicating adjacent nodes in the tree.
Any shock subtree therefore defines a submatrix of the
adjacency matrix. If, for a given shock subtree, we
compute the eigenvalues of its corresponding subma-
trix, then the sum of the eigenvalues is invariant to
any similarity transformation applied to the submatrix.
This means that the eigenvalue sum is invariant to any
consistent re-ordering of the subtrees! In terms of our
largest subgraph isomorphism problem, finding the two
shock subtrees whose eigenvalue sums are closest rep-
resents an approximation to finding the largest isomor-
phic subtrees.5

In order to efficiently compute the submatrix eigen-
value sums, we turn to the domain of semidefinite
programming. A symmetricn× n matrix A with real
entries is said to be positive semidefinite, denoted as
A º 0, if for all vectorsx ∈ Rn, xt Ax ≥ 0, or equiva-
lently, all its eigenvalues are non-negative. We say that
U ºV if the matrix U − V is positive semidefinite.
For any two matricesU and V having the same di-
mensions, we defineU · V as their inner product, i.e.,
U · V = ∑

i

∑
j Ui, j Vi, j . For any square matrixU ,

we define trace(U ) =∑i Ui,i . Let I denote the iden-
tity matrix having suitable dimensions. The following
result, due to Overton and Womersley (1993), charac-
terizes the sum of the firstk largest eigenvalues of a
symmetric matrix in the form of a semidefinite convex
programming problem:

Theorem 1. For the sum of the first k eigenvalues
of a symmetric matrix A, the following semidefinite
programming characterization holds:

λ1(A)+ · · · + λk(A) = max A ·U
s.t. trace(U ) = k

0¹ U ¹ I ,

or, in a dual setting:

λ1(A)+ · · · + λk(A) = min kz+ trace(V)
s.t. z I + V º A

V º 0.

Before applying the above theorem, we must first
convert our shock trees to adjacency matrices. Given a
bounded degree, rooted treeG = (V, E)with |V | = n
and|E| = m, we define the adjacency matrixA of G
to be an×n symmetric,{0, 1}matrix with its(i, j )-th
entryAi, j equal to 1 if(i, j ) ∈ E, and 0 otherwise. For
each vertexv ∈ G, let δ(v) be the degree ofv, and let
δ(G) be the maximum degree over all vertices inG.
For every vertexu ∈ G, we defineχ(u) to be a vector
in Rδ(G)−1, obtained through the following procedure:

For any childv of u in G, construct the adjacency
matrix Av of the induced subtree rooted atv, and
for Av, compute the quantityλv = λ1(Av) + · · · +
λδ(v)−1(Av). Constructχ(u) as the vector formed by
{λv1, . . . , λvδ(u)} for whichλv1 ≥ · · · ≥ λvδ(u) .

The above procedure yields a vector assigned to
each vertex in the shock tree, whose elements are the
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individual eigenvalue sums corresponding to the node’s
(subtree’s) adjacency submatrix. Furthermore, for any
rooted subtree, such a decomposition and vector color-
ing of the vertices is uniquely defined. As stated earlier,
the power of the above formulation lies in the fact that
if a symmetric matrixA undergoes any orthonormal
transformation of the formPt AP, the sum of its eigen-
values remains invariant. This, in turn, implies that this
vector labeling of all rooted trees isomorphic toG not
only has the same vector labeling but spans the same
subspace inRδ(G)−1. Moreover, this extends to any
rooted tree which has a subtree isomorphic to a subtree
of G. In terms of our shock graphs, invariance to a per-
mutation matrixP implies invariance to a re-ordering
of the subtrees of the rooted tree described byA.

It now remains to be shown that such a vector label-
ing can be computed efficiently, i.e., that theλv function
can be calculated in polynomial time. The elegance of
Theorem (1) lies in the fact that the equivalent semidef-
inite programming problem can be solved, for any de-
sired accuracyε, in time polynomial inO(n

√
nL) and

log (1/ε), whereL is an upper bound on the size of the
optimal solution, using a variant of the Interior Point
method proposed by Alizadeh (1995). In Section 3.5,
we embed this procedure in our own algorithm for find-
ing the largest isomorphic subtrees corresponding to
two shock graphs. In addition, we factor in a measure
of similarity between shock geometries, which we now
discuss.

3.4. The Distance Between Two Vertices

The eigenvalue characterization introduced in the pre-
vious section applies to the problem of determining
the topological similarity between two shock trees. Re-
turning to the opening scenario, this, roughly speaking,
defines an equivalence class of objects having the same
structure but whose parts may have different qualita-
tive or quantitative shape. For example, a broad range
of 4-legged animals will have topologically similar
shock trees. On the other hand, when one is inter-
ested in discriminating between a bear and a dog, or
between a short-legged Dachshund and “Loki”, a par-
ticular Siberian Husky, geometric properties will play
a significant role.

This geometry is encoded by information contained
in each vertex of the shock tree. Recall from Section 2
that 1̃’s and3̃’s represent curve segments of shocks.
We choose not to explicitly assign label types 2 and 4,
because each may be viewed as a limit case when the

number of shocks in ã3, in the appropriate context,
approaches 1 (see Section 2). Each shock in a segment
is further labeled by its position, its time of formation
(radius of the skeleton), and its direction of flow (or ori-
entation in the case of3̃’s), all obtained from the shock
detection algorithm (Siddiqi and Kimia, 1995). In or-
der to measure the similarity between two verticesu
andv, we interpolate a low dimensional curve through
their respective shock trajectories, and assign a cost
C(u, v) to an affine transformation that aligns one in-
terpolated curve with the other. Intuitively, a low cost
is assigned if the underlying structures are scaled or
rotated versions of one another.6

Assume thatS and S′ are two (sampled) shock
sequences of the formS= (s1, . . . , sp) and S′ = (s′1,
. . . , s′q), where each shock pointsi represents a 4-tuple
(x, y, t, α) corresponding to its Euclidean coordinates
(x, y), formation timet , and directionα. Note that
when the samples are obtained from a1̃, the sequence
is ordered by time of formation. On the other hand,
for a 3̃ there is a partial order to the samples, but no
preferred direction, since all shocks in the sequence
formed at the same time. In the latter case, both di-
rections will have to be tried. In order to find the 4D-
simplex corresponding to the basis for the affine trans-
formation (in a 4-D space) between the two sets, we
choose five equidistant points on the chains formed by
partial orders(s1 ≺ · · · ≺ sp) and(s′1 ≺ · · · ≺ s′q).
Clearly, to preserve the partial order of the points in
each sequence,s1 should be transferred tos′1, andsp

to s′q.
Let (A, B) be the transformation pair for this par-

tial order and, without loss of generality, assume that
p ≤ q. We apply the transformation(A, B) to sequence
S to form the sequencêS = (ŝ1, . . . , ŝp). Let 9(Ŝ)
and9(S′) denote the interpolated 4-D curves passing
through the points of the setsŜandS′, respectively. A
Hausdorff distance measure between the curves9(Ŝ)
and9(S′) is defined by finding the closest point on
curve9(S′) for each point in the sequenceŜ, and the
closest point on curve9(Ŝ) for each point in the se-
quenceS′:

1(9(Ŝ),9(S′)) =
∑
ζ∈Ŝ

inf
η∈9(S′)

||ζ − η||2

+
∑
ζ∈S′

inf
η∈9(Ŝ)

||ζ − η||2.

We observe that in a fixed dimension Euclidean
space, the distance between a point and a low-degree
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smooth polynomial curve can be efficiently approxi-
mated. For example, if9(Ŝ) and9(S′) are piecewise
linear approximations for̂S and S′, 1(9(Ŝ),9(S′))
can be computed in timeO(pq).

3.5. Algorithm for Matching Two Shock Trees

Our recursive algorithm for matching the rooted sub-
treesG and H corresponding to two shock graphs is
inspired by the algorithm proposed by Reyner (1977).
The algorithm recursively finds matches between ver-
tices, starting at the root of the shock tree, and proceeds
down through the subtrees in a depth-first fashion. The
notion of a match between vertices incorporates two
key terms: the first is a measure of the topological
similarity of the subtrees rooted at the vertices (see
Section 3.3), while the second is a measure of the sim-
ilarity between the shock geometry encoded at each
node (see Section 3.4). Unlike a traditional depth-
first search which backtracks to the next statically-
determined branch, our algorithm effectively recom-
putes the branches at each node, always choosing the
next branch to descend in a best-first manner. One very
powerful feature of the algorithm is its ability to match
two trees in the presence of noise (random insertions
and deletions of nodes in the subtrees).

Before stating our algorithm, some definitions are
in order. LetG= (V1, E1) and H = (V2, E2) be the
two shock graphs to be matched, with|V1| =n1 and
|V2| =n2. Defined to be the maximum degree of any
vertex in G and H , i.e., d= max(δ(G), δ(H)). For
each vertexv, we defineχ(v)∈ Rd−1 as the unique
eigen-decomposition vector introduced in Section 3.3.7

Furthermore, for any pair of verticesu and v, let
C(u, v) denote the shock distance betweenu andv, as
defined in Section 3.4. Finally, let8(G, H) (initially
empty) be the set of final node correspondences be-
tweenG andH representing the solution to our match-
ing problem.

The algorithm begins by forming an1× n2 ma-
trix 5(G, H) whose (u, v)-th entry has the value
C(u, v)||χ(u) − χ(v)||2, assuming thatu and v are
compatible in terms of their shock order, and has
the value∞ otherwise.8 Next, we form a bipartite edge
weighted graphG(V1,V2, EG)with edge weights from
the matrix5(G, H).9 Using the scaling algorithm of
Goemans et al. (1993), we then find the maximum car-
dinality, minimum weight matching inG. This results
in a list of node correspondences betweenG and H ,

calledM1, that can be ranked in decreasing order of
similarity.

FromM1, we choose(u1, v1) as the pair that has
the minimum weight among all the pairs inM1, i.e.,
the first pair inM1. (u1, v1) is removed from the list
and added to the solution set8(G, H), and the remain-
der of the list isdiscarded. For the subtreesGu1 and
Hv1 of G and H , rooted at nodesu1 andv1, respec-
tively, we form the matrix5(Gu1, Hv1) using the same
procedure described above. Once the matrix is formed,
we find the matchingM2 in the bipartite graph de-
fined by weight matrix5(Gu1, Hv1), yielding another
ordered list of node correspondences. The procedure is
recursively applied to(u2, v2), the edge with minimum
weight inM2, with the remainder of the list discarded.

This recursive process eventually reaches the leaves
of the subtrees, forming a list of ordered correspon-
dence lists (or matchings){M1, . . . ,Mk}. In back-
tracking stepi , we remove any subtrees from the graphs
Gi andHi whose roots participate in a matching pair in
8(G, H) (we enforce a one-to-one correspondence of
nodes in the solution set). Then, in a depth-first man-
ner, we first recomputeMi on the subtrees rooted at
ui andvi (with solution set nodes removed). As be-
fore, we choose the minimum weight matching pair,
and recursively descend. Unlike in a traditional depth-
first search, we dynamically recompute the branches
at each node in the search tree. Processing at a partic-
ular node will terminate when either subtree loses all
of its nodes to the solution set. We can now state the
algorithm more precisely:

procedure isomorphism(G,H )
8(G, H)← ∅
d← max(δ(G), δ(H))
for u ∈ VG computeχ(u) ∈ Rd−1 (Section 3.3)
for v ∈ VH computeχ(v) ∈ Rd−1 (Section 3.3)
call match(root(G),root(H ))
return (cost(8(G, H))

end

procedurematch(u,v)
do
{
let Gu ← rooted subtree ofG atu
let Hv ← rooted subtree ofH atv
compute|VGu | × |VHv |
weight matrix5(Gu, Hv)

M← max cardinality, minimum weight
bipartite matching inG(VGu ,VHv )

with weights from 5(Gu, Hv) (see Gabow
et al. (1993))
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(u′, v′)← minimum weight pair inM
8(G, H)← 8(G, H) ∪ {(u′, v′)}
call match(u′,v′)
Gu ← Gu − {x|x ∈ VGu and(x, w) ∈ 8(G, H)}
Hv ← Hv − {y|y ∈ VHv and(w, y) ∈ 8(G, H)}
}

while (Gu 6= ∅ andHv 6= ∅)

In terms of algorithmic complexity, observe that dur-
ing the depth-first construction of the matching chains,
each vertex inG or H will be matched at most once
in the forward procedure. Once a vertex is mapped, it
will never participate in another mapping again. The
total time complexity of constructing the matching
chains is therefore bounded byO(n2√n log logn), for
n = max(n1, n2) (Gabow et al., 1993). Moreover, the
construction of theχ(v) vectors will takeO(n

√
nL)

time, implying that the overall complexity of the algo-
rithm is max(O(n2√n log logn),O(n2√nL).

Proposition 3. Procedure isomorphism(G, H) pro-
vides an approximate optimal solution to Problem(1),
in polynomial time better than O(n3).

The approximation has to do with the use of a scaling
parameter to find the maximum cardinality, minimum
weight matching (Gabow et al., 1993); this parameter
determines a tradeoff between accuracy and the number
of iterations till convergence. The matching matrixM
in Eq. (2) can be constructed using the mapping set
8(G, H). The algorithm is particularly well-suited to
the task of matching two shock trees since it can find
the best correspondence in the presence of occlusion
and/or noise in the tree.

3.6. An Illustrative Example

To illustrate the matching algorithm, we consider the
two shock trees shown in Fig. 3 (top), each of which
describes a different view of a brush. The underlying
shocks, along with the final computed correspondences
between nodes, are depicted in Fig. 3 (bottom). The
sequence of steps in finding this best correspondence
(minimum-weight maximum cardinality matching) be-
tween the two shock trees is shown in Fig. 4. We briefly
describe each step in the sequence:

• Steps 1–4
The algorithm finds the minimum weight matching
between the two shock trees, seeking to find the two

Figure 3. Top: the shock trees derived for two different views of
a brush. Bottom: the correspondences between nodes in the shock
trees computed by the matching algorithm.

subtrees which are maximally similar in terms of
their topological structure and the geometry of their
root nodes (shocks). In this example, the two sub-
trees rooted at 1-007 and 1-005 (denoted by bold cir-
cles in Fig. 4) are selected as most similar. In step 2,
this pair is added to the set of final correspondences
(denoted by short-dashed circles), and the algorithm
is recursively applied to the subtrees of 1-007 and 1-
005. In this manner, the correspondences (3-001,3-
002) and (1-003,1-001) are added to the set of final
correspondences.
• Steps 5–6

After descending to the bottom of the subtrees rooted
at (1-007,1-005), control is returned to (1-007,1-005)
and these two subtrees are removed from the original
shock graphs. From the resulting shock subtrees, we
repeat the process of finding the best corresponding
subtrees. In step 5, the subtree pair (1-006,1-004) is
selected and added to the final correspondences in
step 6.
• Steps 7–12

After removing the subgraphs originating at (1-
006,1-004), a new pair (3-002,3-001) is selected in
step 7, and added to the final correspondences in step
8. After removing this new pair, the process is applied
to the remaining shock forests in step 9, resulting in
the selection of the pair (1-004,1-002). This pair is
added to the final correspondences in step 10. In step
11, the pair (1-005,1-003) is selected and added to
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Figure 4. Step-by-step execution of the matching algorithm applied to the shock trees in Fig. 3. The roots of subtrees selected as most similar
are denoted by bold circles. These are subsequently added to the set of final correspondences (short-dashed circles). Unmatched nodes are
denoted by long-dashed circles.

the final correspondences in step 12. The algorithm
terminates by leaving the nodes 1-001 and 1-002 as
unmatched vertices (denoted by long-dashed circles)
in the shock tree corresponding to leftmost object in
Fig. 3 (bottom).

3.7. Discussion

We now discuss a number of properties of the match-
ing algorithm. Although the matcher may appear to
search for local, i.e., node-to-node, correspondences
between the two shock trees, global similarity does
play an important role. When choosing the minimum-
weight edge in the bipartite matching step, we are not
simply choosing two nodes that are geometrically sim-
ilar (local information), but two entire subtrees that
are topologically similar in terms of their underlying
structure. If the topological distance between two cor-
responding nodes at low depth (near the root) is similar

to that between two corresponding nodes at high depth
(near the leaves), then the low-depth correspondence is
chosen over the high-depth correspondence, assuming
that their respective geometric differences are compa-
rable. This limited coarse-to-fine effect favors larger
(more global) structure correspondence over smaller
(more local) structure correspondence. This effect
could be significantly enhanced by adding a scale fac-
tor to the topological distance, which is inversely pro-
portional to the height of the subtrees rooted at the
corresponding nodes.

Minor perturbations of a shock tree’s topology, i.e.,
the addition or deletion of a node, result in minor pertur-
bations in its eigenvalue characterization. The frame-
work explicitly handles noise in two ways. First, in
looking for corresponding structures, matching may
proceed around a “noise” node (or nodes). Given two
subtrees to be matched, the best two corresponding
nodes, used as the recursive starting point for the next
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level of search, may not be at corresponding levels in
the two subtrees. It may be that a child of the root of
one subtree is matched, for example, with a grandchild
of the root of the other subtree, with a “noise” node sep-
arating the root and the grandchild. The matching al-
gorithm does not enforce level consistency of matched
nodes, thereby allowing spurious nodes to be ignored.
Second, when the recursive matching of two rooted
subtrees has been completed, both subtrees, including
any unmatched “noise” nodes, are removed from the
bipartite graph from which the next correspondence is
found.

The total distance between two shock trees is based
on an independent alignment of corresponding node
pairs. Thus, whereas one node may be geometrically
scaled up to align with it’s corresponding node, another
node may be scaled down (or rotated differently). Al-
though enforcing consistent geometric transformations
among the parts would prevent them from being scaled
independently, it would also cause greater sensitivity to
their articulation, as well as to rotations in depth of the
underlying object. Hence, our approach has focused
primarily on the structural similarity of two objects
along with the qualitative shape similarity of their cor-
responding parts. If warranted, the consistency of part
scaling/rotation could be computed for a set of corre-
sponding nodes. Further, measures of geometric sim-
ilarity other than the Hausdorff norm could be used,
such as ones based on differences in length, orienta-
tion, curvature, medial axis width (Blum, 1973), etc.,
and geometric relationships between a parent node and

Figure 5. The 18 tool shapes used in our experiments. Top: the originals. Bottom: the silhouettes were segmented automatically using the
active contour developed by Siddiqi et al. (1997).

its children (relative orientation, position, size) could
be incorporated as attributes on each node. However,
the experimental results presented in this paper sup-
port our view that whereas such considerations may be
important for distinguishing between shapes known to
belong to the same class, they are secondary for generic
recognition.

Finally, the distances computed between two ob-
jects, i.e., their shock graphs, are absolute distances
based on the sum of their part distances. Therefore,
the distance between two complex, but similar, objects
will exceed the distance between two simple, but simi-
lar objects. This is not an issue when searching for the
most similar object to the query in a database of ob-
jects. However, in an application whose goal is to find
the two most similar objects among a set, the distance
between two objects should be normalized by a mea-
sure of each object’s complexity, such as the average
number of nodes (Pelillo et al., 1998).

4. Examples

We demonstrate our shape matching system with sev-
eral examples. To evaluate its performance under oc-
clusion, articulation of structures, and changes in view-
ing and imaging conditions, we constructed our own
database of tool images, and selected 18 for the exper-
iments described here, as shown in Fig. 5 (top). The
binary silhouettes were extracted automatically using
the active contour developed in Siddiqi et al. (1998a),



26 Siddiqi et al.

Figure 6. The 8 biological shapes. The hands are variations of a range image segmented from the NRCC database, and the da Vinci face
profiles and horses were scanned from a book of his sketches.

as shown in Fig. 5 (bottom). Observe that due to shad-
ows and highlights, there may be slight discrepancies
between the segmented outlines and the “true” ones;
our matching algorithm is designed to robustly handle
such discrepancies. We supplemented the tool shapes
with silhouettes of 8 biological shapes, Fig. 6.

The shock-based descriptions of representative sha-
pes, numerically computed using the algorithms de-
veloped by Siddiqi and Kimia (1995), are shown in
Fig. 7, with the derived shock graphs in Fig. 8. Note that

Figure 7. The shocks computed for a hand (segmented from the
NRCC database), and a plier, a brush, a hammer, a wrench and a
screwdriver, all from our own tool database. The labels correspond
to vertices in the derived shock graphs, as shown in Fig. 8.

Figure 8. The shock graphs for a hand (top left), a plier (top right),
a brush (middle left), a hammer (middle right), a wrench (bottom
left) and a screwdriver (bottom right). Compare with Fig. 7. The
vertices are labeled according to their type, with the arrows in the
direction of shape growth. The distinct ends of a3̃ are partitioned
with a dashed line.

apart from a “smallest scale” regularization induced by
the sampling grid, the procedure for shock detection is
automatic (Siddiqi and Kimia, 1995). Notice how for
each shape a hierarchy of components emerges, with
the most significant components (e.g., the palm of the
hand, and the center of the pliers) placed closest to the
root node. Similar descriptions were computed for each
of the shapes in the database.

To evaluate our matcher’s ability to compare objects
based on their prototypical or coarse shape, we chose
as a prototype for each of our 9 object classes, that ob-
ject whose total distance to the other members of its
class was a minimum.10 We then computed the sim-
ilarity between each remaining object in the database
and each of the class prototypes, with the results shown
in Table 1. For each row in the table, a box has been
placed around the most similar shape. We note that for
the 15 test shapes drawn from 9 classes, all but one
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Table 1. Experiment 1: similarity between database shapes and class prototypes. In each row, a box is drawn around
the most similar shape (see the text for a discussion).

Distance to class prototype

Instance

0.02 2.17 4.48 3.55 2.96 0.21 4.58 14.33 10.01

2.39 0.10 5.97 15.90 3.98 0.14 26.12 17.28 28.94

10.89 4.72 2.08 12.24 3.12 2.15 19.73 10.11 12.64

7.15 6.42 1.19 1.35 5.10 3.38 10.58 11.11 11.11

4.08 7.72 2.98 1.49 4.26 4.14 26.60 13.54 14.21

14.77 6.72 5.69 0.36 2.30 5.90 10.58 16.25 19.10

7.86 8.90 5.94 0.74 1.59 1.10 10.81 10.39 16.08

2.66 4.23 3.23 6.47 0.62 1.48 11.73 15.38 15.15

3.18 5.31 1.25 4.64 0.60 1.30 14.18 17.22 9.08

4.55 0.76 1.32 2.86 1.49 0.11 21.38 15.35 13.04

6.77 19.46 22.11 13.27 8.21 29.50 0.15 5.12 5.03

8.73 23.14 31.45 24.41 10.16 31.08 0.18 8.45 7.05

12.46 19.0 27.40 14.58 24.26 17.10 8.85 7.49 16.93

13.86 23.07 12.81 11.24 17.48 23.23 6.02 6.92 3.06

15.73 21.28 14.10 12.46 19.56 19.21 9.53 7.12 5.06

are most similar to their class prototype, with the class
prototype coming in a close second in that case. The
recovered correspondences between nodes for the best
matches in rows 1, 4, and 9 in Table 1, are shown in
Figs. 3 and 9.

Three very powerful features of our system our worth
highlighting. First, the method is truly generic: the
matching scores impose a partial ordering in each row,
which reflects the qualitative similarity between struc-
turally similar shapes. An increase in structural com-
plexity is reflected in a higher cost for the best match,
e.g., in the bottom three rows of Table 1. Second, the
procedure is designed to handle noise or occlusion,
manifest as missing or additional vertices in the shock
graph. Third, the depth-first search through subtrees is
extremely efficient.

In the next two experiments, Tables 2 and 3, we
compare a number of objects to other members of their
class as well as to a member from a different class.
The objects have been chosen to illustrate the power
of the matcher to deal with changes in image plane

Figure 9. Top to Bottom: the computed correspondences between
nodes for the best matches in rows 4 and 9 of Table 1.
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Table 2. Experiment 2: similarity between mem-
bers of a class. Each row of the table highlights
different aspects of matching invariance (in addition
to translation): Rows 1 and 2: invariance to defor-
mation, image rotation, and illumination; Row 3:
invariance to deformation, scaling, and occlusion.

Distance to class exemplars

Instance

8.89 0.38 4.70 5.94

1.49 0.36 1.35 0.89

5.21 9.95 0.57 10.01

Table 3. Experiment 3: similarity between
members of a class. Each row of the table high-
lights different aspects of matching invariance (in
addition to translation): Row 1: invariance to scal-
ing, deformation (different taper), and occlusion;
Row 2: invariance to scaling, image rotation, and
slight rotation in depth; and Row 3: invariance to
image rotation, scaling, and occlusion.

Distance to class exemplars

Instance

0.09 0.29 0.16 5.42

1.48 1.30 3.46 0.11

6.53 0.79 5.24 0.37

rotation, scale, deformation, occlusion, translation, and
even slight rotation in depth. In both experiments, the
results reflect the matcher’s ability to compare shapes
within the same class, at a finer scale.

5. Conclusions

In related work, the problem of finding a particular ob-
ject in a complex image has been addressed. Here the
assumption that a boundary has been extracted from
the target image (a non-trivial task) may be relaxed to
some extent. Such methods typically seek to capture
the statistical variation of the object over a population
of prototype images, and to build a model which re-
flects this variability. The recognition phase consists
of matching a deformed model image to a candidate
target image, so as to minimize the cost of defor-
mation. Boundary-based versions of this approach in-
clude (Cootes et al., 1996) and medial variants are also
being developed (Pizer et al., 1999).

In contrast to the above class of methods, the frame-
work we have developed in this paper addresses the
problem of generic 2-D shape recognition. Given a
database of candidate shapes, we seek to organize it
such that a notion of equivalence classes between qual-
itatively similar shapes emerges. It must be empha-
sized that this classification is an emergent property;
the shapes are not assumed to be labeled by an un-
derlying object type. Our representation is based on
an abstraction of the singularities of a curve evolution
process into a shock graph, whose structure is charac-
terized by a shock graph grammar. We have introduced
a specific matching algorithm that manages complex-
ity by matching most significant components first. The
algorithm takes into account both the coarse topology
of two shock trees as well as the geometry associated
with the shocks in each vertex. The novelty of the al-
gorithm lies in its eigen-decomposition of a shock tree.
This representation provides a powerful means for ef-
ficiently computing the best correspondence between
two shock graphs in the presence of noise and occlu-
sion. Experiments with a variety of shapes demonstrate
that the approach is generic, and robust under articula-
tion, occlusion and moderate changes in viewpoint.

An alternative approach, also based on the singular-
ities of a curve evolution process, has recently been
proposed (Sharvit et al., 1998). The underlying graph
is hierarchical, but is more complex than ours. In par-
ticular, it can not been reduced to a tree. The grad-
uated assigment algorithm for subgraph isomorphism
on arbitrary graphs is used for matching (Gold and
Rangarajan, 1996). Whereas preliminary experimental
results appear to be comparable to ours, the approach
has the caveat that the recovered correspondences may
not preserve the hierarchical structure underlying the
graphs being matched (see Pelillo et al. (1998)).

Our work has led to two exciting directions for re-
search which we are currently pursuing. First, it should
be clear that object representation and the develop-
ment of matching algorithms are not independent of
how a large database of objects should be organized.
In on going work, we are extending our matching al-
gorithms to provide a framework for indexing 2-D ob-
jects. Using a vector of eigenvalue sums computed on
the subtrees of a shock tree, similar subtrees can be
retrieved from a database via a simple vector norm.
Second, building on ideas from aspect graphs, we shall
extend our approach in 2-D to a view-based strategy
for generic 3-D object recognition. The intuitive idea is
that a collection of sufficiently distinct projected views
of an object can be represented by concatenating the
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associated shock graphs, after which a matching algo-
rithm very similar to the one we have introduced here
can be directly applied. Although much work remains
to be done, empirical evidence indicates that the shock
graph is quite stable under small changes in viewpoint.
In contrast, except in constrained environments, the
stable extraction of representations based on 3-D com-
ponents has proved notoriously difficult.

In summary, we have shown how a generic de-
scription of object shape, based on the singularities
of a curve evolution equation derived from the object’s
boundary, can be organized into a graph representa-
tion, and how this graph can be matched into an object
database. Several elements of the object description
process at the basic level emerged, including categori-
cal descriptions based on the topology of shock graphs,
and efficent matching strategies based on the hierar-
chy implicit in the description. We believe that these
two elements will remain central to any general object
recognition system.

Appendix: Local Configurations in the
Shock Graph

A constructive approach to characterizing the structure
of the shock graph is to determine all legal parents and
children for each vertex type. An exhaustive enumer-
ation of these local configurations remains tractable,
since we have a small number of vertex types. A simi-
lar tabulation was first provided (though without proof)
by Blum (1973, p. 257) and related results were also
derived by Siddiqi and Kimia (1995).

Recall that theSG is rooted at a unique vertex la-
beled # and has one or more terminal vertices labeled
8. All other vertices are shock groups taken from
the setV \{#,8} = {1̃, 2, 3̃, 4}. It follows from the
“coloring” in Section 1 and the continuity of the ra-
dius function along the skeleton (Serra, 1982, pp. 381–
382) that no 2,̃3, or 4 can “touch” a distinct 2,̃3 or 4.
Therefore,

Observation 1. No 2, 3̃ or 4 can have a 2,̃3 or 4 as a
parent or as a child.

As a consequence, if a vertex has multiple parents
or children taken from the setV \{#,8}, such vertices
can only be1̃’s. The following lemma holds for the
case of multiple parents.

Lemma 1. A vertex in theSG can have at most two
1̃’s as parents. If it has exactly twõ1’s as parents, it
must be a 2-shock or ã3.

Figure A.1. An illustration of shock patterns, with arrows drawn in
the direction of increasing radius. (a) Geometry of a1̃. (b) Two1̃’s
flow outwards from a 2 or ã3. (c) An integer number of̃1’s may flow
into a 4. (d) Two or morẽ1’s may flow into a1̃. (e) An end-point of
a 3̃ may have a singlẽ1 flowing out of it, no shocks flowing into or
out of it, or an integer number of1̃’s flowing into it.

Proof: Recall that ã1 is a curve segment of 1-shocks
along which the radius function varies monotonically.
Let a 1̃ of lengthL be parametrized by arc-lengths,
with s ∈ (0, L], such that the radius functionR(s)
increases monotonically withs. For eachs ∈ (0, L],
there exists a continuous mapping fromx(s) to its asso-
ciated pair of bi-tangent points(p(s), q(s)), by which
the two boundary segments associated with the inter-
val (0, L] can be reconstructed, see Fig. A.1(a). Let
α(s) be the angle between the line segmentsp(s)x(s)
and q(s)x(s), on the narrower side. Two conditions
must hold: 1)α(s) must be≤ π for eachs ∈ (0, L],
since the radius functionR(s) increases monotonically
with s, 2) no other shock can lie in the reconstructed
(shaded) region in Fig. A.1(a), because the grassfire
can only traverse a point in the plane once (the entropy
condition by Kimia et al. (1995)).

Now, because the radius function along the1̃ in-
creases withs, and the radius function is continuous
along the skeleton,x(0) cannot itself be, or abut, a 4-
shock. Let us assume thatx(0) abuts the first point
(where the radius function is smallest) of a second
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(distinct) 1̃. The above two conditions must hold for
the second̃1 as well. Therefore, the only possibility
is thatα(0+) is identicallyπ for points infinitesimally
close tox(0) on each̃1. Hence, there exists anε > 0
such that the open disc of radiusε centered atx(0) is
strictly contained in the union of the shaded regions
reconstructed byx(0) and the twõ1’s (see Fig. A.1(a)).
This implies that the first point of no other1̃ can abut
x(0). We note that by the coloring in Section 1,x(0) is
a 2-shock, as illustrated in Fig. A.1(b) (top). A second
possibility is thatx(0) abuts the endpoint of ã3. By a
similar argument as the one above, there can be at most
one such̃3. In the event that the other end of the3̃ abuts
the first point (where the radius function is smallest) of
a distinct1̃, the3̃ is the child of these twõ1’s. The
result follows. 2

To determine the remaining local configurations it
is now sufficient to enumerate all the possible chil-
dren for each vertex type. A child corresponds to an
abutting vertex, containing no shocks that formed after
any of the shocks in the vertex under consideration
(Definition 2). Note that by Observation 1, if the ver-
tex is of type 2,̃3, or 4, only children of typẽ1 have to
be considered.

Children of a #: Since theSG is built in “reverse”
time, any children of the # symbol will be the last
shocks to form in the forward evolution. By the color-
ing in Section 1, an isolated point of annihilation is a 4;
an annihilating curve segment is a3̃. These situations
correspond to Rule 1 in Fig. 2, which states that any
number of3̃’s or 4’s can act as seeds for the shape.
These are the only possible children. A8 cannot be a
child since the interior of a Jordan curve is non-empty,
and hence a null shape is disallowed.

Children of a1̃: A child of a 1̃ can have no shock
whose time of formation is greater than that of any
shock in the1̃ (Definition 2). Hence, by the color-
ing in Section 1, a child cannot be a 4. It is possible
for two or more distinct̃1’s to be children, e.g., one
could place two or more triangular wedges around the
dashed circle in Fig. A.1(d). This corresponds to Rule
4. By Lemma 1, a 2 must be a child of two distinct1̃’s.
This corresponds to Rule 5. Referring to the proof of
Lemma 1, ã1 cannot have two or morẽ3’s as children.
However, a singlẽ3 could be a child, as in Fig. A.1(e)
(left). The other end of thẽ3 may or may not be the
child of a distinct1̃. Thus, in contrast to Rule 5, we
have two separate cases in Rule 6. Finally, when a1̃
has no abutting shock with smaller radius, it has a8 as
a child. This corresponds to Rule 10.

Children of a2: If a 2 has a1̃ as a child, its time
of formation must be greater than that of all shocks in
the 1̃ (Definition 2). However, this would violate the
coloring in Section 1 (see Fig. A.1(b)). Therefore, the
only possible child is a8, corresponding to Rule 9.

Children of a3̃: In contrast to ã1, which can only
have children at the end point where the radius function
is smallest (Definition 2), ã3 can have children at either
end point. It is possible for several1̃’s to be children,
e.g., one could place one or more triangular wedges
around the dashed circle in Fig. A.1(e) (right). How-
ever, by the same argument as in the proof of Lemma 1,
children can only be present at an end point that does
not have ã1 as a parent. Hence, we have two cases in
Rule 3: if one end point of ã3 has a parent̃1, an integer
number of1̃’s can be children at the other end point; if
neither end point has a parent1̃, an integer number of
1̃’s can be children at each end point. Finally, when the
3̃ has no abutting shock with smaller radius at either
end point, as in Fig. A.1(e), it has a8 as a child. This
corresponds to Rule 8.

Children of a4: By the coloring in Section 1, a
4 corresponds to a medial axis point where the ra-
dius function achieves a strict local maximum. It may
have an integer number of1̃’s as children, examples of
which appear in Fig. A.1(c). This corresponds to Rule
2. When it has no abutting̃1’s, as in the case of a perfect
circle, it has a8 as a child. This corresponds to Rule 7.

The above enumeration of all legal local vertex con-
figurations in theSG shows that its structure is highly
constrained. In particular, since a rewrite rule exists in
Fig. 2 for each legal parent/child of each vertex type,
the proof of Proposition 2 is complete.
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Note

1. This “parallel” condition reflects the non-genericity of 3-shocks.
Nevertheless, “bend”-like structures are abundant in the world;
consider the legs of a chair, the fingers of a hand, or the tail of
a dog. Numerical techniques have been developed to regularize
such configurations into 3-shocks (Siddiqi et al., 1998).
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2. The∼ symbol is used to denote a curve segment. A branch-
point, where the maximal inscribed disc “touches” the boundary
at more than two points, will be shared by all1̃’s that overlap at it.

3. In the limit as the number of shocks in a3̃ in one of these two
contexts approaches 1, we have a 2-shock or a 4-shock, respec-
tively.

4. A consistent permutation or reordering of a subtree is any (recur-
sive) re-ordering of the tree’s branches that maintains the same
parent-child relations.

5. This analysis considers only the topological structure of the
shock graph. Later, we will factor in the geometric informa-
tion associated with its vertices.

6. When the number of shocks in a segment is less than 5, the
interpolation step is suppressed (all points in the sequence are
stored). Further, if ã3 has a single shock, its orientation is not
determined.

7. Note that if the maximum degree of a node isd, then excluding
the edge from the node’s parent, the maximum number of chil-
dren isd − 1. Also note that ifδ(v) < d, then the lastd − δ(v)
entries ofχ are set to zero to ensure that allχ vectors have the
same dimension.

8. If eitherC(u, v) or ||χ(u)− χ(v)||2 is zero, the(u, v)-th entry
is the other term.

9. G(A, B, E) is a weighted bipartite graph with weight matrix
W = [wi j ] of size|A| × |B| if, for all edges of the form(i, j ) ∈
E, i ∈ A, j ∈ B, and(i, j ) has an associated weight= wi, j .

10. For each of the three classes having only two members, the class
prototype was chosen at random.
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