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Abstract. Recent work in qualitative shape recovery and object recognition has focused on solving 
the "what is it" problem, while avoiding the "where is it" problem. In contrast, typical CAD-based 
recognition systems have focused on the "where is it" problem, while assuming they know what 
the object is. Although each approach addresses an important aspect of the 3-D object recognition 
problem, each falls short in addressing the complete problem of recognizing and localizing 3-D objects 
from a large database. In this paper, we first synthesize a new approach to shape recovery for 3-D 
object recognition that decouples recognition from localization by combining basic elements from 
these two approaches. Specifically, we use qualitative shape recovery and recognition techniques to 
provide strong fitting constraints on physics-based deformable model recovery techniques. Secondly, 
we extend our previously developed technique of fitting deformable models to occluding image 
contours to the case of image data captured under general orthographic, perspective, and stereo 
projections. On one hand, integrating qualitative knowledge of the object being fitted to the data, 
along with knowledge of occlusion supports a much more robust and accurate quantitative fitting. 
On the other hand, recovering object pose and quantitative surface shape not only provides a richer 
description for indexing, but supports interaction with the world when object manipulation is required. 
This paper presents the approach in detail and applies it to real imagery. 

1 Introduction 

Since the introduction of a class of qualitatively- 
defined volumetric primitives, called geons (Bie- 
derman 1985), interest has been growing in 
building 3-D object recognition systems based 
on qualitative shape (Bergevin and Levine 1989; 
Biederman et al. 1992; Dickinson et al. 1992a; 
Dickinson et at. 1992b; Jacot-Descombes and 
Pun 1992; Fairwood 1991; Raja and Jain 1992). 
One of the primary motivations in these sys- 
tems is that, as stated by Biederman (1985), the 
task of recognizing (or identifying) an object 
should be separated from the task of locating 
it. Furthermore, the exact shape of the object 
need not be recovered to facilitate recognition; 
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a coarse-level description of shape is sufficient 
to distinguish between different classes of ob- 
jects. The above systems, therefore, address 
only the task of recognizing the object. This 
is in contrast to classical 3-D object recognition 
systems, in which exact viewpoint is required 
to verify typically weak object hypotheses, while 
the object models capture the exact geometry of 
the object (Clemens 1991; Huttenlocher 1988; 
Lowe 1985; Thompson and Mundy 1987). De- 
termining the pose of the object is a critical 
component of these approaches. 

Each of the above recognition schools ad- 
dresses an important requirement of recognition 
systems: coarse object identification and object 
localization. However, there has been little ef- 
fort to combine them into a single paradigm. 
In cases where detailed object localization and 
shape recovery is required, the qualitative shape 
recovery methods fall short, while in cases where 
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there are large object databases whose mod- 
els are invariant to minor changes in shape, 
the quantitative recognition/localization meth- 
ods fall short. In this paper, we unify these 
two schools into a single approach which first 
recovers qualitative shape from an image, and 
then uses that shape to constrain a quantitative 
recovery of the object's shape and pose. 

Physics-based modeling (Pentland and Sclaroff 
1991; Terzopoulos et al. 1988; Terzopoulos and 
Metaxas 1991; D. Metaxas and D. Terzopoulos 
1991; Metaxas 1992; Metaxas and Terzopou- 
los 1993) provides a very powerful mechanism 
for quantitatively modeling an object's shape 
for recognition. In a typical geometry-based 
model-driven recovery process, image features 
are matched to a set of rigid, a priori object 
models which dictate the exact geometry of an 
object and offer few degrees of freedom. In 
contrast, deformable models offer a less con- 
strained, data-driven recovery process, in which 
forces derived from the image deform the model 
until it fits the data. In previous work, we de- 
veloped a physics-based framework for recover- 
ing shape and nonrigid motion from both 2-D 
and 3-D data using a new class of deformable 
part models (Terzopoulos and Metaxas 1991, 
Metaxas and Terzopoulos 1991; Metaxas 1992). 
These models incorporate global deformation 
parameters which represent the salient shape 
features of natural parts, and local deformation 
parameters which capture shape details. Thus, 
unlike previous physics-based techniques (Ter- 
zopoulos, Witkin, and Kass 1988), the shape 
of an object can both be abstracted or repre- 
sented in detail. The framework also develops 
physics-based constraints to recover complex ar- 
ticulated models from deformable parts, and 
provides force-based techniques for fitting such 
models to sparse, noise-corrupted 2-D and 3-D 
visual data. These techniques lead to estima- 
tors that exploit the dynamic formulation of 
deformable models to track moving 3-D objects 
from time-varying observations. 

As powerful as these and other active, de- 
formable model recovery techniques are, they 
have some serious limitations. Their success 
relies on both the accuracy of initial image seg- 
mentation and initial placement of the model 

given the segmented data. For example, such 
techniques often assume that the bounding con- 
tour of a region belongs to the object, a problem 
when the object is occluded. In addition, such 
techniques often require a manual segmentation 
of an object into parts. For these techniques 
to be successful in an autonomous recognition 
system, it is imperative that more attention be 
given to the initial segmentation of an image into 
parts. Furthermore, since deformable model re- 
covery techniques are sensitive to initial model 
position and orientation, the segmentation pro- 
cedure should provide at least a coarse estimate 
of position and orientation. Finally, to con- 
strain the process of recovering a deformable 
model from an image, the segmentation process 
should extract the qualitative shape of the part, 
e.g., how many surfaces does it have?; what 
shape are the surfaces?; etc. 

In recent work, we presented an approach to 
the representation, recovery, and recognition of 
qualitative 3-D objects from a single 2-D im- 
age (Dickinson et al. 1990; Dickinson et al. 
1992a, 1992b). In that approach, an object is 
modeled using a set of object-centered 3-D vol- 
umetric modeling primitives; the primitives, in 
turn, are mapped to a set of viewer-centered 
aspects. Unlike typical aspect-based recognition 
systems that use aspects to model entire ob- 
jects, the approach uses aspects to model the 
finite set of parts from which the objects are 
constructed; the resulting aspect set is fixed and 
independent of the size of the object database. 
To accommodate the matching of partial aspects 
due to primitive occlusion, a hierarchical aspect 
representation was introduced, called the as- 
pect hierarchy, based on the projected surfaces 
of the primitives; a set of conditional probabili- 
ties captures the ambiguity of mappings between 
the levels of the hierarchy. Once an aspect is 
recovered from an image, a qualitative volumet- 
ric shape primitive is inferred from the aspect. 
However, a limitation of the recovered primi- 
tive is that it simply encodes a shape class; no 
quantitative shape information such as size and 
curvature, or accurate position and orientation 
is specified. The inclusion of such information 
would not only enhance the descriptive power 
of the recovered primitives, thereby increasing 
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their indexing power for recognition, it is essen- 
tial for object manipulation. 

In this paper, we integrate qualitative and 
quantitative shape recovery from 2-D images. 
In particular, we use knowledge of both a prim- 
itive's qualitative shape and its orientation (en- 
coded by its aspect) to provide strong constraints 
in fitting a deformable model to the contour 
data. Since the qualitative primitive recovery 
technique supports primitive occlusion through 
a hierarchical aspect representation, it can se- 
lectively pass to the model fitting stage only 
those contours belonging to the object. In ad- 
dition, the correspondence between image faces 
and model surfaces encoded in the recovered 
qualitative primitive can be exploited to provide 
strong constraints on the initial placement of 
the deformable model. Furthermore, this corre- 
spondence allows us to extend our previously de- 
veloped technique for deformable model fitting, 
which is limited to orthographic projection of 
occluding boundaries (Terzopoulos and Metaxas 
1991), to the case of more general objects with 
internal surface discontinuities under general or- 
thographic, perspective, and stereo projections. 

The paper is organized as follows. First we 
describe both the qualitative and quantitative 
object modeling paradigms. Next, we describe 
both the qualitative and quantitative shape re- 
covery processes. Finally, we evaluate the per- 
formance of the approach on a series of real 
images of objects under orthographic, perspec- 
tive, and stereo projection. 

2 Related Work 

Recently, several researchers have proposed var- 
ious segmentation techniques to partition image 
or range data, in order to automate the process 
of fitting volumetric primitives to the data. Most 
of those approaches are applied to range data 
only (e.g., Solina and Bajcsy 1990; Gupta 1991), 
while Pentland (1990) describes a two-stage al- 
gorithm to fit superquadrics to image data. In 
the first stage, he segments the image using a fil- 
tering operation to produce a large set of poten- 
tial object "parts", followed by a quadratic op- 
timization procedure that searches among these 

part hypotheses to produce a maximum like- 
lihood estimate of the image's part structure. 
In the second stage, he fits superquadrics to 
the segmented data using a least squares algo- 
rithm. Pentland's approach is only applicable 
to the case of occluding boundary data under 
simple orthographic projection, as is true of 
earlier work of Terzopoulos et al. (1988), Ter- 
zopoulos and Metaxas (1991), and Pentland and 
Sclaroff (1991), which address only the problem 
of model fitting. 

The fundamental difference between our ap- 
proach and the above approaches is that we 
use a qualitative segmentation of the image to 
provide sufficient constraints to our deformable 
model fitting procedure. In addition, we gen- 
eralize our deformable model fitting technique 
to accommodate orthographic, perspective, and 
stereo projections. 

3 Object Modeling 

3.1 Qualitative Shape Modeling 

In this section, we briefly review the qualitative 
shape modeling technique described in (Dickin- 
son et al. 1990, 1992a, 1992b). 

3.1.1 Object-Centered Models. Given a data- 
base of object models representing the domain 
of a recognition task, we seek a set of three- 
dimensional volumetric primitives that, when as- 
sembled together, can be used to construct the 
object models. Many 3-D object recognition sys- 
tems have successfully employed 3-D volumetric 
primitives to construct objects. Commonly used 
classes of volumetric primitives include polyhe- 
dra (e.g., Lowe 1985), generalized cylinders (e.g., 
Brooks 1983), and superquadrics (e.g., Pentland 
1986). Whichever set of volumetric modeling 
primitives is chosen, they will be mapped to a 
set of viewer-centered aspects. 

To demonstrate our approach to object recog- 
nition, we have selected an object representa- 
tion similar to that used by Biederman (1985), 
in which the Cartesian product of contractive 
shape properties gives rise to a set of volumetric 
primitives called geons. For our investigation, 
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Fig. 1.(a) The ten modeling primitives, (b) the aspect hier- 
archy. 

we have chosen three properties including cross- 
section shape, axis shape, and cross-section size 
variation (Dickinson et al. 1990). The values of 
these properties give rise to a set of ten primi- 
tives (a subset of Biederman's geons), modeled 
using Pentland's SuperSketch 3-D modeling tool 
(Pentland 1986), and illustrated in Figure l(a). 
To construct objects, the primitives are attached 
to one another with the restriction that any 
junction of two primitives involves exactly one 
distinct surface from each primitive. 

3.1.2 Viewer-Centered Models. To recover the 
volumetric primitives from an image, we need 
some way of modeling their appearance in the 
image. Traditional aspect graph representations 
of 3-D objects model an entire object with a set 
of aspects, each defining a topologically distinct 
view of an object in terms of its visible sur- 
faces (Koenderink and van Doorn 1979). Our 
approach differs in that we use aspects to rep- 
resent a (typically small) set of volumetric prim- 
itives from which each object in our database is 
constructed, rather than representing an entire 
object directly. Consequently, our goal is to use 
aspects to recover the 3-D primitives that make 
up the object in order to carry out a recognition- 
by-parts procedure, rather than attempting to 
use aspects to recognize entire objects. The ad- 
vantage of this approach is that since the number 
of qualitatively different primitives is generally 
small, the number of possible aspects is limited 
and, more important, independent of the number 
of objects in the database. The disadvantage is 
that if a primitive is occluded from a given 3-D 
viewpoint, its projected aspect in the image wilt 
also be occluded. Thus we must accommodate 
the matching of occluded aspects, which we ac- 
complish by use of a hierarchical representation 
we call the aspect hierarchy. 

The aspect hierarchy consists of three levels, 
consisting of the set of aspects that model the 
chosen primitives, the set of component faces 
of the aspects, and the set of boundary groups 
representing all subsets of contours bounding 
the faces. Figure l(b) illustrates a portion of 
the aspect hierarchy. The ambiguous mappings 
between the levels of the aspect hierarchy are 
captured in a set of conditional probabilities 
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(Dickinson et al. 1990, 1992b), mapping bound- 
ary groups to faces, faces to aspects, and aspects 
to primitives. These conditional probabilities 
result from a statistical analysis of a set of im- 
ages approximating the set of all views of all 
the primitives. 

3.2 Quantitative Shape Modeling 

In this section we first briefly review the general 
formulation of deformable models; further de- 
tail can be found in (Terzopoulos and Metaxas 
1991, Metaxas and Terzopoulos 1991). We then 
extend the formulation to the case of ortho- 
graphic, perspective, and stereo projections. 

3.2.1 Geometry. Geometrically, the models 
developed in this paper are closed surfaces in 
space whose intrinsic (material) coordinates are 
u = (u,v), defined on a domain S?. The po- 
sitions of points on the model relative to an 
inertial frame of reference • in space are given 
by a vector-valued, time varying function of u: 

x(u,t) = (xl(u,t),x2(u,t),x3(u,t)) T, (1) 

where -r is the transpose operator. We set up a 
noninertial, model-centered reference frame ¢, 
as shown in Fig. 2, and express these positions as: 

x = c + Rp,  (2)  

where e(t) is the origin of ¢ at the center of 
the model, with the orientation of ¢ given by 
the rotation matrix R(t). Thus, p(u, t) denotes 
the canonical positions of points on the model 
relative to the model frame. In Terzopoulos 
and Metaxas (1991), we further express p as 
the sum of a reference shape s(u,t) (global 
deformation) and a displacement function d(u, t) 
(local deformation): 

p = s + d. (3)  

However, since computing 3-D local deforma- 
tions from 2-D contour data is underconstrained, 
we will consider only global deformations, s, 
since they are sufficient to represent the shapes 
of the ten volumetric primitives shown in Fig- 
ure l(a). Thus, we have: 

p = s. (4) 

Material coordinate 
v ~ domain 

/ 1Nx[ ~ ~ w i l ~ )  a|def ti°ns .... 

X 

/ Deformable 
~ model 

Z 

Fig. 2. Geometry of deformable model. 

The ensuing formulation can be carried out 
for any reference shape given as a parameter- 
ized function of u. Based on the shapes we 
want to recover, we first consider the case of 
superquadric ellipsoids (Barr t981), which are 
given by the following formula: 

ka3S~ ~' / 
(5) 

where -7r/2 < u < 7r/2 and -~r < v < 7r, 
and where S~ ' = sgn(sinw)lsinw[ ~ and Cw ' 
= sgn(cosw)l cosw G respectively. Here, a > 0 
is a scale parameter, 0 < al, a2, az < 1 are aspect 
ratio parameters, and q,ez > 0 are "square- 
ness" parameters. 

We then combine linear tapering along prin- 
cipal axes 1 and 2, and bending along principal 
axis 3 of the superquadric e into a single parame- 
terized deformation T, and express the reference 
shape as: 

s = T(e, tl, t2, bt, b2, b3) 

/ ,( + 11 1 + bl cos ( ) ) 
= I ( t - ~ + l ) e 2  ~ \ (ta 3 W 

e3 

, ( 6 )  
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where - 1  < t~, t2 _< 1 are the tapering parame- 
ters in principal axes I and 2, respectively; where 
b~ defines the magnitude of the bending and can 
be positive or negative; - 1  _< b2 _< 1 defines the 
location on axis 3 where bending is applied; and 
0 < ba _< 1 defines the region of influence of 
bending. Our method for incorporating global 
deformations is not restricted to only tapering 
and bending deformations. Any other defor- 
mation that can be expressed as a continuous 
parameterized function can be incorporated as 
our global deformation in a similar way. 

We collect the parameters in s into the pa- 
rameter vector: 

qs = (a, al ,a2,  a3, q , e 2 , h , t 2 ,  bl,b2, b3) r.  (7) 

The above global deformation parameters are 
adequate for quantitatively describing the ten 
modeling primitives shown in Figure l(a). 

3.2.2 Kinematics.  The velocity of points on 
the model is given by: 

/~ = c + R p  + R[a 

= / ~  + B 0  + R~, ( 8 )  

where 0 = (. . . ,0~,. . .)v is the vector of ro- 
tational coordinates of the model, and B = 
[... 0(Rp)/001 ...]. Furthermore, 

= q, = Jq~, (9) 

where J is the Jacobian of the deformable su- 
perquadric model with respect to the global de- 
grees of freedom. 

Defining r = ~'~+~Trb3, the Jacobian matrix J 
aa 3 

is a 3 × 11 matrix whose non-zero entries are: 

bl b2b3 
I l l  = ( t lS~ ~' + 1)alC, '~Cv ~' + "-2Tz-~r sin(r) 

a a3 

12t = ( t2S .  "~ + 1 )a2CO S~ "2 

J31 = a3Su e' 
Jt2 = ( t l S O  + 1 ) a C ~ C .  ~2 

J2a = (t2S~ ~1 + 1)aC=~S.  ~ 

bl b2b3 
= ~ T r  sin(r) J14 aa32 

J34 = a S O  

J15 m 

J25 m 

J35 = 

J16 = 

J26 = 

Jt7 = 

J28 = 

J19 = 

J1 lo = - 7r sin(r) 
aa3 

J111 = -blTr sin(r) r, 

where So ~ = sgn(sin0) 
sgn(cos 0) I cos 014. 

We can therefore write: 

tl In (I sin a a l C O  C~ ~2 

"Jr ( t l~u  el q- 1 ) a a  I In (1 COS u l ) C u q V v  e2 

- blb3~r In (I sin u[)S~ "1 sin(r) 

t2 In ([ sin ul)Su'laa2C~ ~1S~ ~2 

+ (t2S~ "~ + 1)aa2 In (1 cosu[)C~'ISo "2 

aa3 ln([sin u l ) S J  ~ 

( t tSu e' + 1)aax l n ( I c o s v l ) C J ' C J  ~ 

(t2S~ "~ + 1)aa2 In (I sin v l ) C ,  ~ S J  ~ 

aalCJ CJ 
Sue, aa2Cu~l Sv e, 

cos( ) 
b~ bz 

(10) 

I sin01' and Co ~ = 

/~ = [I B RJ]q = lxl, (11) 

where L is the Jacobian of the superquadric 
model, q = (q~ ,_T-T\T  = q0,q.,) , with q~ c and 
q0 = 0. 

3.2.3 Dynamics.  When fitting the model to 
visual data, our goal is to recover q, the vector 
of degrees of freedom of the model. The com- 
ponents qc and qo are the global rigid motion 
coordinates and q, are the global deformation 
coordinates. Our approach carries out the co- 
ordinate fitting procedure in a physically-based 
way. We make our model dynamic in q by 
introducing mass, damping, and a deformation 
strain energy. This allows us, through the ap- 
paratus of Lagrangian dynamics, to arrive at a 
set of equations of motion governing the behav- 
ior of our model under the action of externally 
applied forces. 

The Lagrange equations of motion take the 
form (Terzopoulos and Metaxas 1991): 

Mq + Dq + Kq = gq + fq, (12) 

where M, D, and K are the mass, damping, 
and stiffness matrices, respectively, where gq are 
inertial (centrifugal and Coriolis) forces arising 
from the dynamic coupling between the local and 
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global degrees of freedom, and where fq(U, t) are 
the generalized external forces associated with 
the degrees of freedom of the model. The 
generalized external forces will be discussed in 
detail in Section 4.2.2. 

3.2.4 Orthographic Projection. In the case of 
orthographic projection, the points on the model 
x = (x, y, z) project to the image points zp and 
yp as follows: 

Xp-~-X 

yp = y. (13) 

By taking the derivative of the above equa- 
tion (13) with respect to time, we arrive at the 
following formulas: 

~ = ~  

Yp=Y- (14) 

Rewriting (14) in matrix form and using (11), 
we arrive at the following matrix equations: 

1 (15) 

= [~ 01 ~]LCI. (16) 

If we rewrite (16) in compact form, we get 

[~vl=~)v LOCI, (17) 

where 

1 L. (18) 

3.2.5 Perspective Projection. In the case of 
perspective projection, points on the model x = 
(x,y,z) project into image points, zp and yp, 
based on the formula: 

xv = x f  
Z 

yp= Y f, 
Z 

(19) 

where f is the focal length. 

By taking the derivative of the above equa- 
tion (19) with respect to time, we arrive at the 
following formulas: 

z - 7 ~f~ 

Yp = Y-fz - z ~ f ~ "  (20) 

Rewriting (20) in matrix form and using (11), 
we arrive at the following matrix equations 

0 ] 
y,, = _y/ 2f] (21) 

= f / z  -y/zafJ LCI. (22) 

If we rewrite (22) in compact form, we get 

[~v]=/)p Lpci, (23) 

where 

Lp= [f~z 0 -x/z2f] 
f / z  -y/z2fJ L. (24) 

The above two Jacobian matrices, Lo and Lp, 
will be used in the calculation of the generalized 
external forces fq from two-dimensional external 
forces f that the data exert on the model. 

3.2.6 Stereo Projection. 
projection, we assume 
each under perspective 
two images, L and R. 
project on each of the 

In the case of stereo 
two parallel cameras, 
projection, resulting in 

The model points x 
images based on (19) 

and the corresponding Jacobian matrices LpL 
and LpR are calculated using (24). 

To recover the exact location of the model 
flame e, we apply the following procedure: 

• We first independently fit the model to the 
left and right image data. This results in two 
model instances, mL and mR, one per image, 
having the same scale. 

• Choosing one of the images, say R, we project 
the locations eL and en, of the left and right 
model frames of the two model instances mi 
and mR, into R. Let the locations of the 
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projected model centers be czx and CRZ, re- 
spectively. 

• We then map the difference in the x co- 
ordinates of eLI and cm into a force that 
modifies CL and CR in the direction of eL and 
cn, respectively, according to the following 
formula: 

ck (25) 
~k = slcLz~ - cRI~l Ilckll 

where k = L  or k = R ,  s =  1 ifcLZ~<CRr~, 
and s = - 1  otherwise. 

• Once CLZ = eea, we first sum the forces that 
the left and right image data exert on the 
model. From their sum, we then compute 
the generalized force fqo that corresponds to 
the scaling parameter a (5), and using (12), 
we modify a. 

4 Shape Recovery 

4.1 Qualitative Shape Recovery 

Primitive recovery consists of the following three 
steps, resulting in a graph representation of the 
image in which nodes represent recovered 3- 
D primitives, and arcs represent hypothesized 
connections between the primitives; details of 
the complete recovery process, including algo- 
rithms to handle various segmentation errors, 
can be found in Dickinson et al. (1992b). In 
the following subsections, we briefly review the 
approach to recovering qualitative shape. 

of its bounding contours. First, the bounding 
contour of each region is partitioned at cur- 
vature extrema using Saint-Marc, Chen, and 
Medioni's adaptive smoothing curve partition- 
ing technique (Saint-Marc et al. 1991). Next, 
each bounding contour is classified as straight, 
convex, or concave, by comparing the contour 
to a fitted line. Finally, each pair of bounding 
contours is checked for cotermination, paral- 
lelism, or symmetry. The result is a region 
boundary graph representation for a region in 
which nodes represent bounding contours, and 
arcs represent pairwise nonaccidental relations 
between the contours. 

Face labeling consists of matching a region 
boundary graph to the graphs representing the 
model faces in the aspect hierarchy. Region 
boundary graphs that exactly match a face in 
the aspect hierarchy will be given a single la- 
bel with probability 1.0. For region boundary 
graphs that do not match due to occlusion, seg- 
mentation errors, or errors in computing their 
graphs, we descend to an analysis at the bound- 
ary group level and match subgraphs of the 
region boundary graph to the graphs represent- 
ing the boundary groups in the aspect hierarchy. 
Each subgraph that matches a boundary group 
generates a set of possible face interpretations 
(labels), each with a corresponding probability. 
The result is a face topology graph in which each 
node contains a set of face labels (sorted by 
decreasing order of probability) associated with 
a given region. 

4.1.1 Face Recovery. The first step to recover- 
ing a set of faces is a region segmentation of the 
input image. We begin by applying Saint-Marc, 
Chen, and Medioni's edge-preserving adaptive 
smoothing filter to the image (Saint-Marc et 
al. 1991), followed by a morphological gradient 
operator (Lee et al. 1987). A hysteresis thresh- 
olding operation is then applied to produce a 
binary image from which a set of connected 
components is extracted. Edge regions are then 
burned away, resulting in a region topology graph 
in which nodes represent regions and arcs spec- 
ify region adjacencies. 

From a region topology graph, each region is 
characterized according to the qualitative shapes 

4.1.2 Aspect Recovery. In an unexpected object 
recognition domain in which there is no a priori 
knowledge of scene content, we can formulate 
the problem of extracting aspects as follows: 
Given a face topology graph with a set of face 
hypotheses (labels) at each node (region), find 
an aspect covering of the face topology graph 
using aspects in the aspect hierarchy, such that 
no region is left uncovered and each region is 
covered by only one aspect. Or, more formally: 
Given an input face topology graph, FTG, par- 
tition the nodes (regions) of FTG into disjoint 
sets, 5'1,$2,$3,...,Sk, such that the graph in- 
duced by each set, Si, is isomorphic to the graph 
representing some aspect, Aj, from a fixed set 
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of aspects, A1, A2, A3,.. . ,  Am. 

There is no known polynomial time algorithm 
to solve this problem (see Dickinson et al. 1992 
for a discussion on the problem's computational 
complexity); however, the conditional probabil- 
ity matrices embedded in the aspect hierarchy 
provide a powerful constraint that can make the 
problem tractable. For each face hypothesis 
(for a given region), we can use the face to 
aspect mapping to generate the possible aspect 
hypotheses that might encompass that face. At 
each face, we collect all the aspect hypotheses 
(corresponding to all face hypotheses) and rank 
them in decreasing order of probability. 

We can now reformulate our bottom-up aspect 
recovery problem as a search through the space 
of aspect labetings of the regions (nodes) in the 
face topology graph. In other words, we wish 
to choose one aspect hypothesis from the list 
at each node, such that the instantiated aspects 
completely cover the face topology graph. For 
our search through the possible aspect labelings 
of the face topology graph, we employ Algorithm 
A (Nilsson 1980) with a heuristic designed to 
meet three objectives. First, we favor selections 
of aspects instantiated from higher probability 
aspect hypotheses. Second, we favor selections 
whose aspects have fewer occluded faces, since 
we are more confident of their labels. Finally, 
we favor those aspects covering more faces in 
the image; we seek the minimal aspect covering 
of the face topology graph. Since there may be 
many labelings which satisfy this constraint, and 
since we cannot guarantee that a given aspect 
covering represents a correct interpretation of 
the scene, we must be able to enumerate, in de- 
creasing order of likelihood, all aspect coverings 
until the objects in the scene are recognized. 

In an expected object recognition domain in 
which we are searching for a particular object or 
part, we use the aspect hierarchy as an attention 
mechanism to focus the search for an aspect 
at appropriate regions in the image. Moving 
down the aspect hierarchy, target objects map 
to target volumes which, in turn, map to target 
aspect predictions which, in turn, map to target 
face predictions. Verification of the target as- 
pect prediction occurs at those faces in the face 
topology graph whose labels match the target 

face prediction. The scores of the matching 
faces are used to order the recovery process 
which attends first to high-quality faces. This 
attention mechanism has been used to drive 
an active recognition system which moves the 
cameras to obtain either a more likely or un- 
ambiguous view of an object's part (Dickinson 
et al. 1993). 

4.1.3 Primitive Recovery. In the expected object 
recognition approach described above, primitive 
recovery consists of mapping the recovered as- 
pect directly to the target primitive prediction. 
Primitive recovery for the unexpected object 
recognition case is more complex. From an 
aspect covering of the regions in the image, a set 
of primitive labels and their corresponding prob- 
abilities is inferred (using the aspect hierarchy) 
from each aspect. Primitive recovery is formu- 
lated as a search through the space of primitive 
labelings of the aspects in the aspect covering, 
guided by a heuristic based on the probabili- 
ties of the primitive labels. Each solution, or 
primitive covering, found by the search is a valid 
primitive interpretation of the input image. En- 
coded in each recovered primitive is the aspect 
in which it is viewed; the aspect, in turn, encodes 
the faces that were used in instantiating the as- 
pect, while each face specifies those contours in 
the image used to instantiate the face. 

4.1.4 Stereo Correspondence. In the case of 
stereo projection, we independently apply the 
qualitative shape recovery process to the left 
and right images. The correspondence prob- 
lem then consists of matching qualitative prim- 
itive descriptions in the two images. A pair 
of volumes represents a correspondence if: (i) 
the volumes have the same label, (ii) their as- 
pects have the same label, and (iii) the ratio of 
the vertical intersection of the bounding rectan- 
gles of the two volumes to the vertical size of 
each bounding rectangle exceeds some threshold 
(epipolar constraint). Intuitively, volumes from 
the left and right image are said to correspond 
if they are of the same type, they are viewed 
in roughly the same orientation, and their ver- 
tical disparity is small. Note that this provides 
only a coarse correspondence; dimensions, ori- 
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entation, and curvature of the volumes may be 
disparate. During the independent quantitative 
shape recovery of the left and right models, addi- 
tional shape information can be used to prune 
weak correspondences, providing a coarse-to- 
fine stereo correspondence scheme. 

4.2 Quantitative Shape Recovery 

4.2.1 Simplified Numerical Simulation. Equa- 
tions (12) give the general equations of motion 
for a dynamic model with deformations. A full 
implementation and simulation of the general 
equations would be appropriate for physically- 
based animation where realistic motion is im- 
portant (Terzopooulos and Witkin 1988). How- 
ever, in computer vision and geometric design 
applications involving the fitting of models to 
data, models governed by simplified equations 
of motion suffice, as the experiments in Section 
5 will demonstrate. 

We can simplify the equations while preserv- 
ing useful dynamics by setting the mass density 
/.t(u) to zero to obtain (Terzopoulos and Metaxas 
1991): 

D~I + K q  = fq. ( 26 )  

These equations yield a model which has no in- 
ertia and comes to rest as soon as all the applied 
forces vanish or equilibrate. Equation (26) is 
discretized in material coordinates u using nodal 
finite element basis functions. We carry out the 
discretization by tessellating the surface of the 
model into linear triangular elements. 

The formulation of our model yields numer- 
ically stable equations of motion that may be 
integrated forward through time using explicit 
procedures. For fast interactive response, we 
employ a first-order Euler method to integrate 
(26). The Euler procedure updates the degrees 
of freedom q of the model at time t + At ac- 
cording to the formula: 

q(t+at) = q(t)+ At (D(t))-l(f(q t) -Kq(~)), (27) 

where At is the time step size. 
Taking time steps in q is straightforward, but 

the rotation component qo is a little delicate. 
We represent qo using quaternions. Updating 
quaternions at each time step is easier than 

directly updating a rotation matrix and ensuring 
that it remains orthogonal. 

A quaternion [s,v] with unit magnitude, 
ll[8,v]tl = s 2 + vVv = 1, specifies a rotation of 
the model from its reference position through 
an angle 0 = 2cos-18 around an axis aligned 
with vector v = [vi, v2, v3] T. The rotation matrix 
corresponding to [8, v] is: 

R 
1 - 2(v~ + vs 2) 2(VlV2- sva) 2(viva + sv2) ] 
2(vlv2 + sea) 1 - 2(vl 2 + v32) 2(v2va - svl) | . 
2(viva - sv:) 2(v2va + svl) 1 - 2(vl 2 + v22)J 

(28) 

To obtain q0 from (27), we use the generalized 
torque at time t given by f~ = f fTBdu, with B 
(Shabana 1989; Terzopoulos and Metaxas 1991): 

B(u) = - R  ~(u) G, (29) 

where R represents the rotation matrix at time t, 
where ~(u) is the dual 3 x 3 matrix of the position 
vector p(u) = (pl,p2,p3) v (see (4)) defined as: 

0 -P3 P2 ] 
p3 0 - p l  (30) 

--P2 Pl 0 

and where G is a 3 x 4 matrix whose definition is 
based on the value of the quaternion q0 = [s,v] 
representing the rotation at time t: 

- - V  1 8 V 3 

G = 2 -v2 -v3 s . ( 31 )  
- - V  3 V 2 - - V  1 

4.2.2 Applied Forces. In the dynamic model 
fitting process, the data are transformed into 
an externally applied force distribution f(u,t). 
We convert the external forces to generalized 
forces fq which act on the generalized coordi- 
nates of the model (Terzopoulos and Metaxas 
1991). We apply forces to the models based 
on differences between the model's projection 
in the image and the image data. Each of 
these forces corresponds to the appropriate gen- 
eralized coordinate that has to be adapted so 
that the model fits the data. Given that our 
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vocabulary of primitives is limited, we devise 
a systematic way of computing the generalized 
forces for each primitive. The computation de- 
pends on the influence of particular parts of 
the projected image on the model degrees of 
freedom. Such parts correspond to the image 
faces (grouped to form an aspect) provided by 
the qualitative shape extraction. In the case of 
occluded primitives, resulting in both occluded 
aspects and occluded faces, only those portions 
(boundary groups) of the faces used to define 
the faces exert external forces on the models. 

For each of the three projection models, we 
compute the generalized forces fq from 2-D im- 
age forces f ,  using the following formula: 

f~ / f T L k  du ~ T T = = (f~o, f~0, f~,), (32) 
, 1  

where k = o or k = p, depending on whether we 
assume orthographic or perspective projection, 
respectively. For orthographic projection, we 
assign forces from image data points to points 
on the model that lie on a particular region 
of the model defined by the qualitative shape 
recovery. For the case of perspective projection, 
we assign forces from image data points to points 
on the model that, in addition to satisfying the 
above property, are near occluding boundaries, 
thus satisfying the following formula: 

Ii-n[ < % (33) 

where n is the unit normal at any model point, 
i is the unit vector from the focal point to a 
point on the model, and ~- is a small threshold. 

quantitative models. Finally, although the ini- 
tial model can be specified at any position and 
orientation, the aspect that a primitive encodes 
defines a qualitative orientation that can be ex- 
ploited to speed up the model fitting process. 
Sensitivity of the fitting process to model initial- 
ization is also overcome by independently solving 
for the degrees of freedom of the model. By 
allowing each face in an aspect to exert forces 
on only one model degree of freedom at a time, 
we remove local minima from the fitting process 
and ensure correct convergence of the model. 

5 Experiments 

To illustrate the shape recovery approach, con- 
sider the real image of a toy table lamp, as shown 
in Figure 3; the results of the bottom-up (unex- 
pected) qualitative shape recovery algorithm are 
shown in Figure 4. At the top, the image win- 
dow contains the contours extracted from the 
image, along with the face numbers. To the left 
is a window describing the recovered primitives 
(primitive covering). The mnemonics, PN, PL, 
and PP, refer to primitive number (simply an 
enumeration of the primitives in the covering), 
primitive label (see Figure l(a)), and primitive 

4.2.3 Model Initialization. One of the major 
limitations of previous deformable model fitting 
approaches is their dependence on model ini- 
tialization and prior segmentation (Terzopoulos 
et al. 1988; Terzopoulos and Metaxas 1991, 
Pentland and Sclaroff 1991). Using the qual- 
itative shape recovery process as a front end, 
we first segment the image into parts, and for 
each part, we identify the relevant non-occluded 
contour data belonging to the part. In addition, 
the extracted qualitative primitives explicitly de- 
fine a mapping between the image faces in their 
projected aspects and the 3-D surfaces on the Fig. 3. Image of a table lamp (256 x 256). 
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0) Truncated Cone 
PN 13 PL 6 PP1.130 
AN 0 ALl2 AP1.00 A83.00 

Component Faces: 
FN1 FL1 FPI.00PS0 
FN0 FL12 FPt.00 P8 1 

1) Cylinder 
PN 1 PL 5 PP0.83 
AN 1 ALl1 AP0.31 AS1.24 

Component Faces: 
FN2 FL10 FP0.94 P8 1 

2) Block 
PN 2 PL t PP1.00 
AN 2 AL27 AP0.32 A83.16 
Component races: 
FN 3 FL 8 FP0.84 PS 0 
FN4 FL8 FPI.00 P8 1 
Flkl 5 FL 8 FP1.00 PS 4 

Image 

~:;:;: i [ Search Status: 
i Aspect Covering 1 
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I I at Iteration 1 

i l Recognized Objects: kable -I~p_ (06.83) 
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P2(3 5 0),PI(0 1 2) 

~ :~: 

Recovered Pr imi t ives Pr imi t ive Connections 

Fig. 4. Recovered  quali tat ive primitives. 

probability, respectively. The mnemonics AN, 
AL, AP, and AS refer to the aspect number 
(an enumeration), aspect label (see Dickinson 
et al. 1992b), aspect probability, and aspect 
score (how well aspect was verified), respec- 
tively. The mnemonics FN, FL, FP, and PS refer 
to face number (in image window), face label 
(see Dickinson et al. 1992b), face probability, 

and corresponding primitive attachment surface 
(see Dickinson et al. 1992b), respectively, for 
each component face of the aspect. 

To illustrate the fitting stage, consider the con- 
tours belonging to the lamp shade (truncated 
cone). Having determined during the qualita- 
tive shape recovery stage that we are trying to fit 
a deformable superquadric to a truncated cone, 
we can immediately fix some of the parame- 
ters in the model. In addition, the qualitative 
shape recovery stage provides us with a map- 
ping between faces in the image and physical 
surfaces on the model. For example, we know 
that the elliptical face (FN 1) maps to the top of 
the truncated cone, while the body face (FN 0) 
maps to the side of the truncated cone. For the 
case of the truncated cone, we will begin with 
a cylinder model (superquad) and will compute 
the forces that will deform the cylinder into the 
truncated cone appearing in the image. Assum- 
ing an orthographic projection, and that the z 
and y dimensions are equal, we compute the 
following forces: 

1. The cylinder is initially oriented with its z axis 
orthogonal to the image plane. The first step 
involves computing the centroid of the ellip- 
tical image face (known to correspond to the 
top of the cylinder). The distance between 
the centroid and the projected center of the 
cylinder top is converted to a force which 
translates the model cylinder. Figure 5(a) 
shows the image contours corresponding to 
the lamp shade and the cylinder following 
application of this force. Figure 5(b) shows a 
different view of the image plane, providing 
a better view of the model cylinder. 

2. The distance between the two image points 
corresponding to the extrema of the principal 
axis of the elliptical image face and two points 
that lie on a diameter of the top of the 
cylinder is converted to a force affecting the 
z and fl dimensions with respect to the model 
cylinder. Figures 5(c) and 5(d) show the 
image and the cylinder following application 
of this force. 

3. The distance between the projected model 
contour corresponding to the top of the cylin- 
der and the elliptical image face corresponds 
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(a) (b) 
(c) (d) 

(e) (f) 

(i) (j) 

Fig. 5. Quantitative shape recovery for lamp shade. 

to a force affecting the orientation of the 
cylinder. Figures 5(e) and 5(0 show the im- 
age and the cylinder following application of 
this force. This concludes the application of 
forces arising from the elliptical image face, 
i,e., top of the truncated cone. 

4. Next, we focus on the image face correspond- 
ing to the body of the truncated cone to 
complete the fitting process. The distance 
between the points along the bottom rim of 
the body face and the projected bottom rim of 
the cylinder corresponds to a force affecting 
the length of the cylinder in the z direction. 

(g) (h) 

Figures 5(g) and 5(h) show the image and the 
cylinder following application of this force. 

5. Finally, the distance between points on the 
sides of the body face and the sides of the 
cylinder corresponds to a force which tapers 
the cylinder to complete the fit. Figures 5(i) 
and 5(j) show the image and the tapered 
cylinder following application of this force. 

Figure 6 shows two views of the initial mod- 
els for the lamp stem and base, while Figure 7 
shows two views of the results of fitting all three 
parts of the table lamp. Note that with an ortho- 
graphic projection, we must choose an arbitrary 
depth for each part; in this case, the models 
were all initialized with the same depth. 

For the case of perspective projection, we 
apply our top-down (expected) shape recovery 
technique to the image in Figure 8. A top down 
search for the best three instances of a qualita- 
tive block primitive yields the three primitives 
shown in Figure 9 (ordered bottom to top by 
score). Note that due to a large shadow edge 
that resulted in the undersegrnented region 12 
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4 

Fig. 6. Initialization of lamp stem and base models. 

Fig. 7. Final recovery of table lamp (note that depth 
information is lost in orthographic projection.). 
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ii 
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Fig. 9. The best three instances of a qualitative block. 

Fig. 8. Image of blocks on a table. 

on the triangular face of the wedge, the shape 
was misclassified as a block since region 12 was 
classified as having opposites sides parallel. If 
we apply the quantitative recovery process to 
these three blocks, we obtain the models de- 
picted in Figures 10, 11, and 12. 

Next, we apply the top-down shape recov- 



Integrating Qualitative and Quantitative Shape Recovery 325 

Fig. I0. Model fitted to first block. 

Fig. 11. Model fitted to second block. 

Fig. 12. Model fitted to third block. 

ery technique to the stereo pair of an isolated 
cylinder shown in Figure 13; the system is in- 
structed to search for instances of a cylinder. 
The results of the qualitative shape recovery 
are shown in Figure 14, while the initialization 
of the independent fitting of the model to the 
left and right images is shown in Figure 15. 
Following the scaling step, the projection of the 
final model into the two images is shown in 
Figure 16. In another example, we apply the 
top-down object recognition algorithm to the 
stereo pair shown in Figure 17; the system is 
instructed to search for high-scoring instances of 
the block volume, i.e., unoccluded instances ap- 
pearing as high-probability aspects. Two corre- 
sponding pairs were found in each image and are 
highlighted in Figure 17. Volume score thresh- 
olds were set high so that volumes appearing in 
only the most probable aspect and with little or 
no occlusion were accepted. Although the top 
block on the two-block stack to the right was re- 
covered by the algorithm, it was rejected due to 
the fact that, due to region undersegmentation, 
one of its faces was merged with a face from the 
block below, resulting in a lower score. For the 
smaller block, Figure 18 captures the stage in 

Fig. 13. Left and right stereo images of a cylinder. 
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Fig. 14. Qualitative shape recovery of left and right images. 
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Fig. 15. Model initialization for quantitative shape recovery Fig. 16. Unifying the left and right models to determine 
of left and right images, scale and depth. 
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Fig. 1Z Left and right stereo images of a cluttered table with corresponding recovered blocks highlighted. 

Fig. 18. Independent fitting of models to the smaller block. 
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Fig. 19. Localization of model in depth. 

the fitting process where each block is being 
fit independently. Projection rays pass from the 
camera focal point, through the image contours, 
and on to the fitted models whose initial depth 
is chosen arbitrarily. The final step, shown 
in Figure 19, shows the two models converg- 
ing in depth. Finally, in Figure 20, we can 
see both recovered blocks along with their rel- 
ative depth. 

6 Limitations 

The approach outlined in this paper is applicable 
to objects composed of distinct volumetric parts 
devoid of surface markings or fine structural de- 
tail. This is a limitation of the region segmenta- 
tion scheme, and in order to accommodate more 
realistic objects, we are currently looking at ways 
in which salient regions can be abstracted from 
image detail. Both the qualitative and quantita- 

tive shape representation schemes are general. 
The approach suppor~ any set of qualitative vol- 
umetric shapes that can be mapped to a recov- 
erable viewer-centered aspect hierarchy. More- 
over, any quantitative shape model that can be 
defined using our physics-based framework can 
be deformed by image forces. However, it is 
important to note that choosing one model wilt 
constrain the choice of the other, i.e., a quan- 
titative shape model must be chosen such that 
it accurately models every possible instance of 
the qualitative shape model. Finally, it should 
be noted that the systematic rules that govern 
the way in which a volume's qualitative shape is 
used to constrain its quantitative shape recovery 
are specific to each class of volume. Not only 
are we exploring how such rules can be auto- 
matically extracted through reasoning about the 
part's shape, but we are also looking at which 
degrees of freedom of the model can be simul- 
taneously affected by image forces. 
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! 
7 

Fig. 20. Rendering of two fitted blocks showing relative 
depth. 

7 Conclusions 

The qualitative shape recovery component  of the 
approach is able to capture the coarse shape of 
objects composed of volumetric primitives with- 
out  solving for exact viewpoint and without a 
precise geometric verification of  image features. 
For  many tasks, simply identifying the class of  
the object is sufficient and there may be no 
need to ei ther accurately localize the object be- 
yond, for example, "over there",  or accurately 
describe the shape of its components  beyond, 
for example, "cylinder-like". If, however, we 
need to accurately locate (in order  to manipu- 
late) the object once it's been identified, or we 
need to extract a more  detailed shape descrip- 
tion in order  to distinguish between subclasses 
of an object, then we can apply the quantitative 
shape recovery component .  The important  idea 
is that the processes of recognizing an object and 
locating it are decoupled, and that recognition 
does not require accurate localization. In ad- 
dition, when localization is required, recovered 
qualitative shape provides strong constraints on 
the fitting of deformable models, so that the 
fitting procedure,  supporting orthographic, per- 
spective, and stereo projections, is insensitive 
to both occlusion and initial conditions. 
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Notes 

1. These coincide with the model frame axes z, y and x 
respectively. 

2. Since the two cameras are parallel, the projections of the 
two model frame centers differ only in the z direction. 

3. The probability of an aspect hypothesis is the product 
of the face to aspect mapping and the probabilit3 ~ of the 
face hypothesis from which it was inferred. 

4. For a detailed discussion of aspect instantiation and how 
occluded aspects are instantiated, see Dickinson et al. 
(1992b). 

5. The rules for fitting a superquad to a block assume that 
the block appears as the most probable aspect, i.e., that 
aspect which provides the maximum information about 
the shape of the block. 

References 

A. Barr. Superquadrics and angle-preserving transforma- 
tions. IEEE Computer Graphics and Applications, 1:11- 
23, 1981. 

R. Bergevin and M. Levine. Generic object recognition: 
Building coarse 3D descriptions from line drawings. In 
Proceedings, IEEE Workshop on Interpretation of 3D Scenes, 
pages 68-74, Austin, TX, 1989. 

I. Biederman. Human image understanding: Recent research 
and a theory. Computer Vision, Graphics, and Image Process- 
ing, 32:2%73, 1985. 

I. Biederman, J. Hummel, P. Gerhardstein, and E. Cooper. 
From images edges to geons to viewpoint invariant object 
models: A neural net implementation. In Proceedings, SPIE 
Applications of Artificial Intelligence )2: Machine Vision and 
Robotics, pages 570-578, Orlando, FL, 1992. 

R. Brooks. Model-based 3-D interpretations of 2D images. 
IEEE Transactions on Pattern Analysis and Machine Intelli- 
gence, 5(2):140-150, 1983. 

D. Clemens. Region-based feature interpretation for recog- 



330 Dick inson  and Metaxas  

nizing 3-D models in 2-D images. Technical Report AI-TR 
1307, Artificial Intelligence Laboratory, Massachusetts Insti- 
tute of Technology, 1991. 

S. Dickinson G. Olofsson, and H. Christensen. Qualitative 
prediction in active recognition. In Proceedings, 8th Scandina- 
vian Conference on Image Analysis (SCIA), Troms/o, Norway, 
May 1993. 

S. Dickinson, A. Pentland, and A. Rosenfeld, A representa- 
tion for qualitative 3-D object recognition integrating object- 
centered and viewer-centered models. In K. Leibovie, editor, 
Vision: A Convergence of Disciplines. Springer Verlag, New 
York, I990. 

S. Dickinson, A. Pentland, and A. Rosenfeld. From volumes 
to views: An approach to 3-D object recognition. Computer 
Vision, Graphics, and Image Processing: Image Understanding, 
55(2):130-154, 1992a. 

S. Dickinson, A. Pentland, and A. Rosenfeld. 3-D shape 
recovery using distributed aspect matching. IEEE Trans- 
actions on Pattern Analysis" and Machine Intelligence, 14(2): 
174-198, 1992b. 

R. Fairwood. Recognition of generic components using logic- 
program relations of image contours. Image and Vision Com- 
puting, 9(2):113-122, 1991. 

A. Gupta. Surface and volumetric segmentation of 3-D ob- 
jects using parametric shape models. Technical Report MS- 
CIS-91-45, GRASP LAB 128, University of Pennsylvania, 
Philadelphia, PA, 1991. 

D. Huttenlocher. Three-dimensional recognition of solid ob- 
jects from a two-dimensional image. Technical Report 1045, 
Artificial Intelligence Laboratory. Massachusetts Institute of 
Technology, 1988. 

A. Jacot-Descombes and T. Pun. A probabilistic approach 
to 3-D inference of geons from a 2-D view. In Proceedings, 
SPIE Applications of Artificial Intelligence X: Machine Vision 
and Robotics, pages 579-588, Orlando, FL, 1992. 

J. Koenderink and A. van. Doorn. The internal representa- 
tion of solid shape with respect to vision. Biological Cyber- 
netics, 32:211-216, 1979. 

J. Lee, R. Haralick, and L. Shapiro. Morphologic edge 
detection. IEEE Journal of Robotics and Automation, RA- 
3(2):142-155, 1987. 

D. Lowe. Perceptual Organization and Visual Recognition. 
Kluwer Academic Publishers, Norwell, MA, 1985. 

D. Metaxas. Physics-based modeling of nonrigid objects for 
vision and graphics. Ph.D. thesis, Dept. of Computer Science, 
Univ. of Toronto, 1992. 

D. Metaxas and D. Terzopoulos. Constrained deformable 
superquadrics and nonrigid motion tracking. In Proceedings, 
IEEE Conference on Computer Vision and Pattern Recognition, 
pages 337-343, 1991. 

D. Metaxas and D. Terzopoulos. Shape and nonrigid motion 
estimation through physics-based synthesis. IEEE Transac- 
tions on Pattern Analysis and Machine Intelligence, 15(6):580- 
591, June 1993. 

N. Nilsson. Principles of Artificial Intelligence, chapter 2. Mor- 
gan Kaufmann Publishers, Inc. Los Altos, CA, 1980. 

A. Pentland. Perceptual organization and the representation 
of natural form. Artificial Intelligence, 28:293-331, 1986. 

A. Pentland. Automatic extraction of deformable part mod- 
els. International Journal of Computer Vision, 4:107-126, 1990. 

A. Pentland and S. Sclaroff. Closed-form solutions for phys- 
ically based shape modeling and recognition. IEEE Transac- 
tions on Pattern Analysis and Machine Intelligence, 13(7):715- 
729, 1991. 

N. Raja and A. Jain. Recognizing geons from superquadrics 
fitted to range data. Image and Vision Computing, 10(3):179- 
190, 1992. 

E Saint-Marc, J.-S. Chen, and G. Medioni. Adaptive smooth- 
ing: A general tool for early vision. IEEE Transactions on Pat- 
tern Analysis and Machine Intelligence, t3(6):514-526, 1991. 

A. Shabana. Dynamics of Multibody Systems. Wiley, 1989. 

E Solina and R. Bajcsy. Recovery of parametric models from 
range images: The case for superquadrics with global defor- 
mations. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 12(2):t31-146, 1990. 

D. Terzopoulos and D. Metaxas. Dynamic 3-D models with 
local and global deformations: Deformable superquadrics. 
IEEE Transactions on Pattern Analysis and Machine Intelli- 
gence, 13(7):703-714, 1991. 

D. Terzopoulos, and A. Witkin, Physically based models with 
rigid and deformable components. IEEE Computer Graphics 
and Applications, 8(6):41-51, 1988. 

D. Terzopoulos, A. Witkin, and M. Kass. Constraints on 
deformable models: Recovering 3-D shape and nonrigid 
motion. Artificial Intelligence, 36:91-123, 1988. 

D. Thompson and J. Mundy, Model-directed object recog- 
nition on the connection machine. In Proceedings, DARPA 
Image Understanding Workshop, pages 93-106, Los Angeles, 
CA, 1987. 


