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Abstract 

We present a new technique for tracking 3 0  objects in 
2 0  image sequences. We assume that objects are con- 
structed from a class of volumetric part primitives. The 
models are initially recovered using a qualitative shape re- 
covery process. We subsequently track the objects using 
local forces computed from image potentials. Therefore 
we avoid the expensive computation of image features. By 
integrating measurements from stereo images, 30 posi- 
tions {as well as other model parameters) of the objects 
can be continuously updated using an extended Kalman 
jiltel: Our model-based approach can handle occlusions 
in scenes with multiple moving objects by predicting their 
occurrences. To handle severe or unexpected occlusion we 
use a feedback mechanism between the quantitative and 
qualitative shape estimation systems. We demonstrate our 
technique in experiments involving image sequences from 
complex motions of objects. 

1 Introduction 

Various approaches in 3D model-based object tracking 
which attempt to recover the translation and rotation of an 
object have been studied [5,  10, 71. These techniques re- 
quire exact geometric specification of the objects. Recently, 
deformable models have been adopted for simultaneous es- 
timation of the shape and motion of 3D objects from visual 
data [8, 13, 121. The 2D problem has received similar 
attention [9, 11. 

In this paper, we develop a new approach to tracking 
shapes and motions of objects in 3D from 2D image se- 
quences. Our method makes use of both the framework for 
qualitative shape segmentation [4] and the physics-based 
framework for quantitative shape and motion estimation 
[12]. Assuming that objects are constructed from a finite 
set of volumetric part primitives, we initialize the models 
in the first frame of the sequence based on a shape recovery 
process that uses recovered qualitative shapes to constrain 
the fitting of deformable models to the data [ 111. The qual- 
itative shape recovery process can be avoided in successive 
frames, in favor of the faster physics-based model updat- 
ing process requiring only a gradient computation in each 

frame. Assuming relatively small object motion between 
frames, local forces derived from stereo images are suffi- 
cient to update the positions, orientations, and shapes of the 
models in 3D. In fact, an advantage of our technique is that 
we do not need to perform costly feature correspondences 
during 3D tracking. 

Kalman filtering techniques have been applied in the 
vision literature for the estimation of dynamic features [3] 
and rigid motion parameters [S,  21 of objects from image 
sequences. We use a Kalman filter for the estimation of 
the object's shape and motion, which consequently allows 
the prediction of possible edge occlusion and disocclusion. 
The occurrence of such situations may be due to changes of 
an object's aspect or due to motions of other independently 
moving objects. With our model-based approach, we can 
handle these situations by predicting their occurrence. Thus 
we can confidently determine which part of an object will be 
occluded and suppress their contributions to the net forces 
applied to the model. Furthermore, in case of severe or 
unexpected object occlusion we use a feedback mechanism 
between the quantitative and qualitative shape estimation 
techniques. 

2 Dynamic deformable models 

This section reviews the formulation of the deformable 
models we adopted for object modeling and the physics- 
based framework of visual estimation. 

2.1 Geometry of deformable models 

The positions of points on the model relative to a 
world coordinate frame of reference are x(u, t )  = 
( ~ ( u ,  t ) ,  y(u, t ) ,  z(u, t ) )T ,  where U are the model's mate- 
rial coordinates. We express the position of a point as 
x = c + Rp, where c(t)  is the origin of a model reference 
frame q5 located at the center of the model, R( t )  is the rota- 
tion matrix that gives the orientation of 4 relative to @, and 
p(u,  t )  gives the positions of points on the model relative 
to 4. We further write p = s + d, as the sum of a refer- 
ence shape s ( ~ ,  t )  and a displacement d(u, t ) .  We express 
the reference shape as s = T(e(u; ao, al ,  . . .); bo, b ~ ,  . . .), 
where T defines a global deformation (depending on the 
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parameters b i ( t ) ) ,  which transforms a geometric primitive 
e defined parametrically in U and parameterized by the 
variables ai ( t ) .  We concatenate the global deformation 
parameters into the vector q5 = (ao, a l ,  . . . , 60, 61, . . .)T. 

To illustrate our approach in this paper, we will use as 
a reference shape a deformable superquadric ellipsoid that 
can also undergo parameterized tapering deformations, as 
defined in [12]. 

2.2 Model kinematics and dynamics 

The velocity of a 3D point on the model is given by 

x = Lq, ( 1 )  
where L is the Jacobian matrix that converts q-dimensional 
vectors to 3D vectors [12]. The vector q(t) represents 
the generalized coordinates of the model consisting of the 
translation, rotation, global and local deformations. We 
make the model dynamic using the Lagrangian formulation 
and we obtain 2nd order equations of motion which take 
the form (see [ 141 for derivations): 

Mq 4- Dq -+- Kq = g, + fq ,  f, = LTf du, (2) 

where f, are generalized external forces associated with the 
components of q, and €(U, t )  is the image force distribution 
applied to the model. Here M is the mass matrix, D is 
the damping matrix, K is the stiffness matrix and g, is the 
vector of the generalized Coriolis and centrifugal forces. 

J 

3 Physics-based tracking 

In this section, we present our method for tracking in 
stereo image sequences. 

3.1 Qualitative shape recovery and model initial- 
ization 

We employ the methodology developed in E1 11 to ini- 
tialize our deformable models. We start by assuming that 
objects are constructed from a finite set of volumetric part 
primitives [4]. The parts, in turn, are mapped to a set of 
viewer-centered aspects. During the qualitative shape re- 
covery process, the system first segments the image into 
parts using an aspect matching paradigm. Each recovered 
qualitative part defines: 1) the relevant non-occluded con- 
tour data belonging to the part, 2) a mapping between the 
image faces in their projected aspects and the 3D surfaces 
on the quantitative models, and 3) a qualitative orientation 
that is exploited during model fitting. Based on these con- 
straints, we assign forces from image data points to the 
corresponding points on the 3D model. The model is then 
fitted dynamically to the image data under the influence of 
the image forces. 

3.2 Local forces from image potentials 

For each successive frame in the image sequence, we 
create an image potential such that the “valleys” of this 
potential correspond to the locations in the image where 
there are sharp changes in intensity or edge features. If we 
denote the intensity image by I ( z ,  y), the image potential 
can be computed as follows [ 141: 

WX, Y) = -P (V(Go * I)(x, Y)I (3) 
where U determines the width of the Gaussian function Go, 
* denotes the convolution operation, and ,d determines the 
“steepness” of the potential surface. This potential induces 
a 2D force field given by: 

f(2, Y) = -vn(x, Y). (4) 
The model’s degrees of freedom respond to the 2D force 
field through a process which first projects the model’s 
nodes into the image. As the projected nodes are attracted 
to the valleys of the potential surface, the model’s degrees 
of freedom are updated to reflect this motion. The mapping 
of 2D image forces to generalized forces acting on the 
model requires the derivation a Jacobian matrix. 

3.3 Jacobian computation 

To allow shape and pose estimation in a world coordinate 
frame from images taken from a camera with a different 
frame of reference, the Jacobian matrix L used in (2) needs 
to be modified appropriately. 

Let x = (x, y, z ) ~  denote the location of a point j w.r.t 
the world coordinate frame. Then we can write 

x = c, + Rcxc, 

where cc and R, are the translation and rotation of the cam- 
era frame w.r.t. the world coordinate frame, respectively, 
and x, = (zc, y,, z , ) ~  is the position of the point j w.r.t to 
the camera coordinate frame. 

Under perspective projection, the point x, projects into 
an image point xp = (I,, xp)T according to 

XC Yc 
ZC Z C  

(5) 

(6) gp = --f, Y p  = -f, 
where f is the focal length of the camera. By taking the 
time derivative of (6) we get Xp = NX, where 

Based on (l), (5 )  and (7), we obtain 

XP - - N(RF‘X) I= NR,‘(Lq) = LpQ. (8) 
By replacing the Jacobian matrix L in (2) by L, = 
NRF’L, two dimensional image forces f can be appro- 
priately converted into generalized forces & measured in 
the world coordinate frame. 
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3.4 Forces from stereo images 

By computing generalized forces in the world coordinate 
frame, the 2D image forces in a pair of stereo images can 
be simultaneously transformed into generalized forces fq 
measured in a common world coordinate frame. Measure- 
ments from two different views are sufficient to determine 
the scale and depth parameters of the model. If we denote 
the position of the jth active node on the model surface by 
xj, then the generalized force on the model can be com- 
puted by replacing the integral in (2) by the summation 

where A is the set of indices of active nodes, those model 
nodes on which image forces are to be exerted. Here the 
subscripts L and R denote dependence on the left and right 
images respectively and P describes the perspective pro- 
jection equation. 

3.5 Determining active model nodes 

When our measurements are 2D images, as opposed to 
3D range data, only a subset of the nodes on the model 
surface are selected to respond to forces. >From a given 
viewpoint, we can compute this active subset of model 
nodes based on the model’s shape and orientation. In par- 
ticular, a model node is made active if at least one of the 
following conditions is true: 

1. 

2. 

it lies on the occluding contour of the model from that 
viewpoint, 

the local surface curvature at the node is sufficiently 
large and the node is visible. 

Instead of calculating analytically the positions of the active 
nodes on the model surface, we “loop” over all the nodes on 
the discretized model surface and check if one of the above 
two conditions is true. Condition 1 is true i f  lij . nj I < T,  

where nj is the unit normal at the jth model node, ij is the 
unit vector from the focal point to that node on the model, 
and T is a small threshold. Condition 2 is true if 

ZIk E ICj s.t. I n k  . nj I > K & 3k E Iij s.t. nk + i k  < 0, 

where Kj is a set of indices of the nodes adjacent to the 
jth nodes on the model surface. K in (10) is a threshold to 
determine if the angle between adjacent normal vectors is 
sufficiently large. 

(10) 

3.6 Tracking and prediction 

We incorporate into our dynamic deformable model for- 
mulation a Kalman filter by treating the differential equa- 
tions of motion (2) as the system model. Based on the cor- 
responding extended Kalman filter, we perform tracking by 
updating the model’s generalized coordinates q according 
to the following equation 

d = FQ + g +  PHTV-’ (z - h(Q)), (11) 

where U = ( qT , qT)T and matrices F, H,  g, P , V are as- 
sociated with the model dynamics, the error in the given 
data and the measurement noise statistics [12]. Since we 
are measuring local forces directly from the image potential 
we compute, the term z - h(Q) represents the 2D image 
forces. Using the above Kalman filter, we can predict at ev- 
ery step the expected location of the data in the next image 
frame, based on the magnitude of the estimated parameter 
derivatives q. 

3.7 Self occlusion and disocclusion 

As an object rotates in space, or as the viewpoint of 
the observer changes substantially, certain faces of the ob- 
ject will become occluded or disoccluded (a visual event). 
Hence, the corresponding line segment or edge feature in 
the image will appear or disappear over time. By using 
the Kalman filter to predict the position and orientation of 
the model in the next time frame, we can quantitatively 
predict the occurrence of a visual event. In other words, 
we can determine by using our active node determination 
approach, which subset of the model nodes will be active 
in the next image frame, and suppress their contributions to 
the net forces applied to the model. For stereo images, this 
prediction can be performed independently to the left and 
right images. In this case, two sets of active model nodes 
are maintained at any particular moment. 

3.8 Tkacking multiple objects with feedback 

Our framework for object tracking can be extended to 
deal with multiple independently moving objects and multi- 
part objects. The complication here is that object parts may 
occlude one another in different ways. By tracking objects 
using stereo images, we can predict the 3D positions of 
the nodes on each model based on the current estimates of 
their respective model parameters and their rate of change. 
Active nodes on each model will be made “inactive” if they 
are predicted to be occluded by surfaces of other models. 
This visibility checking is performed for each model node 
against every surface of the other models in the scene. In 
practice, much of this checking can be avoided based on 
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Figure 1 : Tracking two independently moving blocks in a sequence of stereo images: (a) initialized models, (b) coming of 
a new frame, (c) beginning of the occlusion, (d) taller block partially occluded, (e) taller block becomes disoccluded, (f) no 
more occlusion. Note that the active model nodes are highlighted. 

approximate estimates of each object’s size and 3D loca- 
tion. We demonstrate in the next section that our approach 
can handle partial object occlusion. 

There are also two more cases of object occlusion in 
case of multiple independently moving objects. The first 
case occurs when another moving object that was not previ- 
ously present in the scene occludes the object being tracked. 
The second is due to an error from the qualitative segmen- 
tation system which did not detect an object during the 
model initialization step. By monitoring the exerted forces 
on the model’s active nodes, if their magnitude exceeds a 
threshold or new unexpected forces are sensed, a feedback 
mechanism is invoked which triggers the application of the 
qualitative segmentation system to resolve the ambiguity. 
After proper re-initialization of our models, we continue 
the quantitative tracking using local image forces based on 
our physics-based technique. 

4 Experiments 

We demonstrate our approach in a series of tracking ex- 
periments involving real stereo image sequences. In the 
first experiment, we consider a sequence of stereo images 
of two independently moving objects. The objects move to- 
wards each other along 2 different linear paths, the relative 
angle between which is about 20 degrees. Fig. l(a) shows 
the first pair of stereo images. The initial pose and shape 
of the objects are recovered using qualitative techniques 
mentioned before and they are subsequently tracked based 
on local image forces only. Figs. l(b-g) show snapshots 
of the two objects being tracked with the wire-frame mod- 

Figure 2: Initial pair of stereo images of a multi-object 
scene. 

els overlaid on the image potential. They demonstrate that 
our technique is able to continue the tracking even when 
one of the blocks becomes partially occluded and then dis- 
occluded. Note that those active model nodes which are 
temporarily occluded are automatically identified and made 
inactive. 

In the second experiment, we consider a sequence of 
stereo images of a scene containing multiple objects, in- 
cluding a two-part object. Fig. 2 shows the initial stereo 
images of the scene. The cameras are rotated around the 
scene at a constant rate. Fig. 3(a) shows the initialized mod- 
els recovered using the same technique as before. Fig. 3(b) 
shows image potentials at an instant which the aspects of 
some parts have changed and some parts have become par- 
tially occluded. Each object is successfully tracked under 
these circumstances. Figs. 3(c-f) show the individual part 
models overlaid on the potentials in Fig. 3(b). 
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Figure 3: Tracking multiple objects in  a sequence of stereo images (a) initialized models, (b) image potentials of an inter- 
mediate frame (both occlusions and visual events have occurred) (c-f) each object part correctly tracked with part models 
overlaid on the image potentials in  (b). Note that the active model nodes are highlighted. 

5 Conclusion 

We have presented a new technique to  object tracking 
in 3D from 2D stereo image sequences. After initializing 
our deformable models based on a part-based qualitative 
shape recovery process, w e  subsequently track the objects 
using only local image forces based on  our physics-based 
approach. Costly feature correspondences are avoided. By 
integrating measurements from stereo images, we  can con- 
tinuously update the 3D positions (as well as other model 
parameters) of the objects using an extended Kalman filter. 
We also demonstrated that our model-based approach can 
deal with visual events and occlusions in scenes with mul- 
tiple moving objects by predicting their occurrences. Only 
geometric information has been used here. We plan to  study 
the integration of other low-level tracking techniques into 
our framework. 

References 

[ l ]  A. Blake, R. Curwen, and A. Zisserman. Affine-invariant 
contour tracking with automatic control of spatiotemporal 
scale. In Proc. IEEE 4th International Conference on Com- 
puter Vision, pages 502-507,1993. 

[2] T. J. Broida, S. Chandrashekhar, and R. Chellappa. Re- 
cursive 3-D motion estimation from a monocular image se- 
quence. IEEE Transactions on Aerospace and Electronic 
Systems, 26(4):639-656, 1990. 

[3] R. Deriche and 0. Faugeras. Tracking line segments. Image 
and Vision Computing, 8(4):261-270,1990. 

[4] S. Dickinson, A. Pentland, and A. Rosenfeld. Shape recov- 
ery using distributed aspect matching. IEEE Transactionson 
Pattern Analysis andMachine Intelligence, 14(2): 174-198, 
1992. 

[5] E. D. Dickmanns and Volker Graefe. Applications of dy- 
namic monocular machine vision. Machine Vision and Ap- 
plications, 1 :241-261,1988. 

[6] J. S. Duncan, R. L. Owen, and P. Anandan. Measurement of 
nonrigid motion using contour shape descriptors. In Proc. 
IEEE Conference on Computer Vision and Pattern Recog- 
nition, pages 318-324,1991. 

[7] D. Gennery. Visual tracking of known three-dimensional ob- 
jects. International Journal of Computer Vision, 7(3):243- 
270,1992. 

[8] T. S. Huang. Modeling, analysis and visualization of non- 
rigid object motion. In Proc. IEEE 10th International Con- 
ference on Pattern Recognition, volume 1, pages 361-364, 
1990. 

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active 
contour models. International Journal of Computer Vision, 

[ 101 D. Lowe. Fitting parameterized three-dimensional models 
to images. IEEE Transactions on Pattern Analysis and Ma- 
chine Intelligence, 13(5):441-450, 1991. 

[ l  11 D. Metaxas and S. Dickinson. Integration of quantitative and 
qualitative techniques for deformable model fitting from or- 
thographic, perspective, and stereo projections. In Proc. 
IEEE 4th International Conference on Computer Vision, 
pages 641-649,1993. 

[12] D. Metaxas and D. Terzopoulos. Shape and nonrigid mo- 
tion estimation through physics-based synthesis. IEEE 

1 (4):321-33 1, 1988. 

Transactionson Pattern Akaiysis and Machine Intelligence, 
15(6):580-59 1,1993. 

[13] A. Pentland and B. Horowitz. Recovery of non-rigid motion 
and structure. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 13(7):730-742, 1991. 

[14] D. Terzopoulos and D. Metaxas. Dynamic 3D models with 
local and global deformations: Deformable superquadrics. 
IEEE Transactions on Pattern Analysis and Machine Intel- 
ligence, 13(7):703-714,1991. 

436 


