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Abstract 
This paper describes the integration of 2 0  stimulus-driven 

robot localization and positioning with a token-based correspon- 
dence method in a practical robot navigation system. The ap- 
proach is interesting because it allows f o r  modular acquisition 
and update of world knowledge f o r  navigation, and robustness 
of navigation to  low-level errors. No special marking of the 
world is necessary, so the robot may operate in  quite general 
environments. Tests in a real industrial environment confirm 
the potential of the method. 

1 Introduction 
Many approaches have been taken t o  solving the problem of 

robot positioning in a known environment. By positioning we 
mean the act of computing the coordinates of the robot in the 
environment. T h e  approaches may be divided into two broad 
classes: those tha t  modify the environment in order to  provide 
position cues that  are easy t o  sense, and those that  do not. The  
former class, including wire and tape guidance, corner-cube and 
bar-code-based approaches, is surveyed by Tsumura [22]. 

There is a great variety of techniques that  do not modify the 
environment. These are typically applied by using sensors con- 
tinuously or intermittently t o  correct dead-reckoning position 
estimates. One such method operates by following pre-planned, 
fixed paths parallel t o  walls, and corrects dead-reckoning errors 
with sonar range measurements from the walls [7]. Use of sonar 
in more general situations is complicated by specular reflection 
of the sonar signal from many surfaces, although a variety of 
techniques have met with some success provided that  the en- 
vironmental structure is relatively simple and that  distances 
to  the structure are relatively small 1, 4, 8, 12, 14, 181. Use 

somewhat limited by the cost of the sensors and eye-safety con- 
cerns for laser devices. 

There are many computer vision-based methods for robot 
positioning. Some are based on estimation of the three- 
dimensional position and orientation of fixed environmental 
structures with respect to  the robot, using multiple frames from 
different positions [ll], or from a single image [3, 10, 191. Other 
techniques, such as 9, 211 take a homing approach where a test 
image (or signature is compared to  a model image. The  dis- 
crepancy between t i, e views is used to  guide the robot t o  the 
position where the model view was acquired. The  main draw- 
back of these approaches is that  the robot must be near to  the 
position where the model view was acquired for the homing to  
be effective. Furthermore, the robot is constrained to  move to  
a deterministic set of positions as it navigates its environment. 

We are exploring navigation strategies based on the use of 
2D images of the environment. However, unlike the above 
image-based methods described which home the robot through 
a sequence of known positions, our approach uses correspon- 
dence between test and model images to determine the robot’s 
position from where the test image was acquired. Earlier work 
by two of the authors 121 has demonstrated the possibility of 

of other active ranging technologies s ll ows promise, but is still 

using sets of 2D model views for localization and positioning 
based on the appearance of a set of model points, in relation to  
the appearance of the set from known model positions. The  
approach is attractive for a number of reasons. First, the 
approach admits the possibility of automatic construction of 
the representation of the environment, since the representation 
may consist only of a set of 2D image tokens and correspond- 
ing robot positions. Second, the approach adapts easily to  local 
changes in the environment, since only memory concerning the 
changed regions needs t o  be modified. Detection of environ- 
mental change is possible based on failure of the scheme a t  a 
particular model view. Finally, the method may be applied 
with redundant information, allowing robustness t o  failures in 
the low-level sensing. 

There are two difficulties t o  be addressed in order to  apply 
the earlier work in a real navigation system. The  first is the 
determination of point correspondences among feature points 
in stored model frames and feature points in frames from un- 
known positions. Techniques developed by another of the au- 
thors are applicable t o  this problem. The  second problem is 
to  integrate this method with additional techniques for global 
navigation, so that  an extended environment, covering many 
locations, may be represented. The  second problem is solved 
by maintaining a graph-like representation of the neighbour re- 
lationships among locales defined by model views, and will be 
treated elsewhere. In this paper, we demonstrate the feasibility 
of combining the model view and correspondence work t o  solve 
real robot navigation problems, using experimental equipment 
and environment provided by the ARK project [15]. 

2 Overview of the  approach 
Figure 1 illustrates our approach t o  navigation. The robot’s 

environment is decomposed into regions within which a set of 
model views of a particular piece of the environment may be 
used to  determine the position of the robot. Figure 2 illustrates 
the components necessary to the approach. Low-level vision 
extracts tokens from the image, that  are put into correspon- 
dence with model tokens. The  correspondences are checked 
for feasibility using Basri and Rivlin’s solution to  the localiza- 
tion problem [a]. The correctly corresponded tokens then allow 
solution for the position of the robot relative to  the known po- 
sitions from which the model views were acquired. High-level 
navigation determines steering commands t o  move from one 
model-view region to  the next. 

Correspondence among tokens from various views is 
achieved by the method discussed in detail in [20]. Each token 
T is described by its set of neighbours in T-based coordinates. 
Each neighbour is described by a probability distribution in a 
normalized, uniform feature space. The  method provides ro- 
bustness to  variation among the views in the relative appear- 
ance of each token. A brief description of the correspondence 
method is presented in section 4. 

The scheme for localization is as follows. Given an image, 
we construct two view vectors from the feature points in the 
image; one contains the z-coordinates of the points and the 
other contains the y-coordinates of the points. A section of the 
environment is modeled by a set of such views, where the points 
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Figure 1: Overview of the approach to  navigation. The en- 
vironment is decomposed into regions within which particular 
pieces of the environment may be used to  determine the robot's 
position. The  dots are model view positions, with the arrows 
indicating the directions of stored model views. 
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Figure 2: Components necessary t o  the approach. 

in these views are ordered in correspondence. The  appearance 
of a novel view of the object is predicted by applying linear 
combinations t o  the stored views. The  predicted appearance is 
then compared with the actual image, and the correspondences 
between tokens in the novel and model views are accepted if 
the two match. Section 3 below outlines the methods both for 
determining the best linear combination of the model views to  
express the novel view (localization), and the computation for 
the robot's position (positioning). 

3 Modelviews 
3.1 Localization 

The scheme for localization is the following. Given P, a 2D 
image of a scene, and M ,  a set of stored models, the objective 
is to  find a model M' E M such that  P = E:=, m,M; for 
some constants a3 E R. This scheme accurately predicts the 
appearance of rigid objects under weak-perspective projection 
(orthographic projection and scale) [ 2 3 .  The limitations of 
this projection model are discussed in [2 3 in more detail. 

More concretely, let p ,  = (z,, y,, z c ) ,  1 5 a 5 n ,  be a set of n 
object points. Under weak-perspective projection, the position 
p :  = (xi, y:) of these points in the image are given by 

(1) z: = sr112c + ST1231: + sT13zz + tz  

31: = Sr212t  + sT2231r + ST23zt + t y  

where r13 are the components of a 3 x 3 rotation matrix, and 
s is a scale factor. Rewriting this in vector equation form, we 
obtain 

(2) 
X' = S T l l X  + ST12y + ST13Z + t s l  
y' = STZIX + S T Z Z Y  + m 3 z  + t y l  

where x, y,z,x' ,yl  E R" are the vectors of zl, yi, z t ,  z: and 31: 
coordinates respectively, and 1 = (1,1,. . . , I). Consequently, 

x', Y l  E spanix, Y,  z, 1) (3)  

or, in other words, x' and y' belong to  a four-dimensional linear 
subspace of R". A four-dimensional space is spanned by any 
four linearly independent vectors of the space. Two views of the 
scene supply four such vectors [23 ,  161. Denote by X I ,  y 1  and 
x 2 ,  y 2  the location vectors of the n points in the two images; 
then there exist coefficients a1 , a 2 ,  a 3 ,  a 4  and b l  , b 2 ,  b3, b4 such 
that  

(4) 
x' = alxl + U2Yl + a 3 x 2  + a 4 1  

y' = bixi + b 2 ~ 1  + b 3 ~ 2  + b 4 1  

(Note that  the vector y 2  already depends on the other four 
vectors.) Since R is a rotation matrix, the coefficients satisfy 
the following two quadratic constraints: 

To derive these constraints, the transformation between the 
two model views should be recovered. This can be done under 
weak-perspective using a third image. Alternatively, the con- 
straints can be ignored, in which case the system would confuse 
rigid transformations with affine ones. This usually does not 
prevent successful localization since scenes are generally fairly 
different from one another. 

To summarize, we model the environment by a set of im- 
ages with correspondence between the images. For example, a 
section of the environment can be modeled by two of its corre- 
sponding views. The  corresponding quadratic constraints may 
also be stored. Localization is achieved by recovering the linear 
combination that  aligns the model t o  the observed image. The  
coefficients are determined using four model points and their 
corresponding image points by solving a linear set of equations. 
Three points are sufficient to  determine the coefficients if the 
quadratic constraints are also considered. Additional points 
may be used to  reduce the effect of noise. 

The  scheme uses viewer-centered models, i.e., representa- 
tions that  are composed of images. I t  has a number of advan- 
tages over methods that  build full three-dimensional models 
t o  represent the scene. First, by using viewer-centered models 
that  cover relatively small transformations, we avoid the need 
to handle occlusions in the scene. If from some viewpoints the 
scene appears different because of occlusions, we utilize a new 
model for these viewpoints. Second, viewer-centered models 
are easier to  build and to  maintain than object-centered ones. 
The  models contain only images and correspondences. By lim- 
iting the transformation between the model images, one can 
find the correspondence using motion methods. If large por- 
tions of the environment are changed between visits, a new 
model can be constructed by simply replacing old images with 
new ones. 

3.2 Positioning 
Positioning is the problem of recovering the exact position 

of the robot. This position can be specified in a fixed coordi- 
nate system associated with the environment (i.e., room coor- 
dinates), or it can be associated with some model, in which case 
location is expressed with respect to  the position from which 
the model views were acquired. In this section we derive the 
position of a robot from the alignment coefficients. 

We assume a model composed of two images, PI and P 2 ;  
their relative position is given. Given a novel image P',  we 
first align the model with the image (i.e., localization). By con- 
sidering the coefficients of the linear combination the robot's 
position relative to  the model images is recovered. To recover 
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the absolute position of the robot in the room the absolute 
positions of the model views should also be provided. Note 
that the computation is done in “image coordinates” (that is, 
assuming a unit focal length . Positions should be normalized 

Assume P2 is obtained from PI by a rotation R, translation 
t = ( t . , ty , t z ) ,  and scaling s. (Denote the average distance of 
the camera in PI to  the scene by ZO, s is given by Zo/(Zo+tZ).) 
The coordinates of a point in P’, ( x ’ , ~ ’ ) ,  can be written as 
linear combinations of the corresponding model points in the 
following way: 

if world coordinates are use d. 

(7) 
2’ = a l x l  + a2Yl + a322 + a4 
y’ = biz1 + bzyi + b 3 ~ 2  + b4 

Substituting for 2 2  we obtain 

2’ = U l X l  +a2y1+ 

Y’ = biz1 + b 2 ~ 1 +  ( 8 )  
~ ~ ( S T I I X I  + sr12y1 + ~ ~ 1 3 ~ 1  + t.) + a4 

~ ~ ( S T ~ I Z I  + srl2yl + s r i ~ z i  + t.) + b4 

and rearranging these equations we obtain 

x’ = [a1 +a3sr l l ]x l+  

Y’ = [b l  + b3sr1l]xl+ (9) 
a2 + a3sv-12 y1 + ( U ~ S T I ~ ) Z I  + (aat. + a4) 

b2 + b 3 s m  YI + (b3sr13)a + ( b 3 L  + a4) 

Using these equations we can derive all the parameters of the 
transformation between the model and the image. Assume the 
image is obtained by a rotation U ,  translation tn, and scaling 
sn. Using the orthonormality constraint we can first derive the 
scale factor 

Note that we can also extract the scale factor by applying the 
same constraint to  the b’s: 

s’, = b: + b i  + bzs2 + 2b3s(blrll + b2r12) (11) 
We can use the two equations to verify that the weak- 
perspective approximation is valid. The orthogonality con- 
straint (Eq. 6) can also be used for the this purpose. From 
Equations (9) and ( l o ) ,  by deriving the components of the 
translation vector, tn, we can obtain the position of the robot 
in the image relative to its position in the model views: 

A X  = ~ 3 t , +  

Note that AZ is derived from the change in scale of the object. 
The rotation matrix U between PI and P ’  is given by 

a1 + a3sr11 

a2 + a3sr12 

a3sr13 b 3 s m  

As has already been mentioned, the position of the robot is 
computed here relative to the position of the camera when the 
first model image, 4 ,  was acquired. A x  and A Z  represent the 
motion of the robot from PI to P’ ,  and the rest of the pa- 
rameters represent its 3D rotation and elevation. To obtain 
this relative position the transformation parameters between 
the model views, Pi and P 2 ,  are required. Consequently, po- 
sitioning, unlike localization, requires calibration of the model 
images. 

b l  + b 3 s m  

b2 + b 3 s m  

U11 = U21 = 

U12 = U22 = 

sn sn 

(13) 
sn sn 

U13 = - U23 = - 
sn sn 

y axis 
P 

Figure 3: The definition of a token for line LO. The parameters 
of the four neighbouring lines are expressed in a coordinate 
system with LO as the unit x axis. Thus, the token is the set 

L1, La, L3,L4} which has the value { 0.25, 0.25, 0.25, 0.25), 
0.5, 0.25, 0, 0.25), (0.25, 0.5, 0.25, O\, (0, 0.25, 0, 0.25) } 
before mapping to a uniform normalized feature space). 

4 Correspondence 
Our algorithm for correspondence among views ex loits the 
idea of image-independent tokens as it appears in [$. We use 
the term token to refer to the view-independent da ta  type rep- 
resenting a scene feature to be corresponded. The term pr im-  
itive is used to refer to  the parameterized object extracted at  
a particular view, corresponding to the scene feature as seen 
at  the particular view. The purpose of the tokens is to  pro- 
vide robustness to missing primitive da ta  for a scene feature 
a t  a particular novel view. Several authors have described so- 
lutions to the problem of motion correspondence that reduce 
the search space for correspondences by first attempting to 
match whole groups of primitives, in a hierarchy, to each other 
[17, 24, 13, 51. This has the desirable effect of matching objects 
to one another that  are more distinguishable from each other 
than the constituent primitives. 

We also exploit this idea that groupings of individually un- 
reliable primitives are easier to match unambiguously to each 
other. We describe each primitive by its context. Specifically, 
the token for each primitive P consists of the set of param- 
eter vectors for each neighbouring primitive Q within some 
image distance of P, expressed in P-centered coordinates. The 
coordinate system used is one of the two possible Cartesian 
right-handed systems defined with P as the unit x axis. Use 
of P-centered coordinates has the advantage of giving a token 
representation that is invariant to  scale and camera rotation. 
This is useful, because it reduces the degree of token variation 
due to camera rotation about any axis, or translation along the 
optical axis. Use of orthogonal coordinate axes rather than a 
more general affine coordinate system has the advantage of de- 
pending on one fewer basis points. In our trials, the primitive 
parameter vectors are four-dimensional. The four dimensions 
are parameters giving the centre position fC!yc) and length 
and orientation information ( d x , d y )  for eac hne segment ex- 
tracted from the image data. Figure 3 illustrates the definition 
a typical token. 

Figure 4 shows a cross section through the normalized four- 
dimensional feature space describing each token. The raw pa- 
rameters are mapped into a unit hypercube by performing a 
histogram equalization on each dimension, replacing each pa- 
rameter with one one hundredth of its percentile in a large 
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Figure 4: A cross section through a line-segment feature space, 
showing the line segments recovered from each of eight views, 
expressed in P-centered coordinates. Spheres of the same shade 
represent feature vectors recovered from the same frame. The  
unit cube in feature space is also shown. 

data  set. The  d a t a  set used for this computation can be any 
large sample of line segments from the application domain, ex- 
pressed in each other’s coordinate systems. The  purpose of the 
computation is t o  spread the vectors as evenly as possible in 
the feature space, so that  distance metrics in the space are as 
uniform and isotropic as possible. This is useful for purposes of 
display of the dataset, and so that  simple distributions can be 
expected to  provide reasonable models of parameter variation 
for individual line segments. If the feature vector dimensions 
had shown significant correlation, a re-expression of the vec- 
tors using principal components may have been desirable. The 
shaded balls in figure 4 show the feature vectors of primitives 
neighbouring the primitive P to be corresponded, in P-centered 
coordinates, for sample da ta  from Wilkes’ active object recog- 
nition application [25]. Balls of the same shade show primitive 
positions for a single view. Each cluster in the figure repre- 
sents a single primitive. The  objective of the correspondence 
algorithm is to  describe each cluster with a simple probability 
distribution. Our model describes each cluster with a separate 
probability density function, with an additional distribution 
describing the outlier points. 

Letting k be the number of neighbouring primitives to  be 
used in the description of each tracked primitive, we model each 
token as a set of k + 1 probability density functions fo, fi, ... fk 
and k + 1 probabilities p o , p l ,  . . . p  k. Our algorithm sets the 
probabilities and parameterizes the distributions described by 
the fi so that  a primitive extracted for the token will fall a t  a 
position x in the feature space with probability 

k 

i = O  

Thus, we may think of the probabilities p i  as providing the 

Figure 
nates (d 
imposed 
gives stl 
ing dat?  

5: Edges of a new frame showing unrelated C I  
lark) and correct coordinates (light), with token 
1 .  This demonstrates how a context of multiple 
’ong correspondences in spite of variable, extra or 
1. 

oordi- 
;uper- 
edges 
miss- 

relative frequency with which a primitive is generated with the 
distribution fi. 

There are two different approaches to  determining a corre- 
spondence between primitives in a new model view or unknown 
image and the tokens maintained by the algorithm. Both max- 
imize the function p(PIT), where 

P(PIT) = p i f i ( Q )  n ( primrtrves Q i n  distributions i € T  
P-centered coordinates 

( f5)  
One possibility is to find, for each token T ,  the  best primitive 
P. Another is to  find, for each primitive P, the best token T.  
Which method is chosen depends on whether one is attempting 
to  account for all of the image data ,  or all of the tokens. In our 
application, we are concerned about reliable correspondence of 
only the most prominent tokens, so the first method is more 
appropriate. 

Figure 5 shows the 8 longest edges from one view repre- 
sented in two coordinate systems. T h e  dark points are for a 
coordinate system based on a line that  does-not correspond 
to  the token shown. The  lighter points are for the correct co- 
ordinate system. T h e  top eight distributions of the token are 
shown. The correct coordinate system clearly provides the bet- 
ter match, and in fact gives the correct correspondence over all 
other possible coordinate systems. 

5 Trials of the integrated system 
Trials of the system integrating the correspondence and 

model-view-based self-location are being conducted in the 
AECL industrial bay, shown in figure 6. This is a large, open 
area in an engineering laboratory used for testing and design 
of components for the Canadian nuclear industry. The  open 
area is approximately 130 metres long and 15 metres high. It 
accommodates test rigs of various sizes, mockups of reactor 
components, a machine shop, fabrication and assembly areas. 
The  environment is ideal for tests of robotic equipment de- 
signed for industrial use, because it contains both wide open 
and very cramped spaces. The  large distances encountered in 
the bay are difficult for many active sensors, but favour the 
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Figure 6: The  AECL Industrial Bay 10 metres 

Figure 8: The  positions for each view. 
use of vision-based navigation. The  open areas are ideal for 
the model view-based approach, since good opportunities ex- 
ist in many places t o  view shallow structure from a reasonably 
large distance, approximating a weak-perspective projection of 
the structure. There are a few cramped areas in which noth- 
ing but a forest of pipes and beams is visible. These areas are 
problematic in that  the weak perspective approximation breaks 
down. 

We are still early in the testing and refinement process. Our 
low-level edge extraction has some difficulty coping with the ex- 
tremes of high and low contrast encountered in the bay. As a 
result, we have been applying the model view solution tech- 
nique to  only four t o  six of the most reliably corresponded 
points in the model and unknown views. The  reliability of the 
correspondence is given quantitatively by the scaled probabil- 
ities returned by the correspondence technique. The  solutions 
we obtain are as accurate as our independent measurements 
for camera orientation, but less accurate for camera position, 
giving the correct betweenness relationships among the views, 
but fairly large error. The  error can be improved with a finer 
spacing of model views, better low-level processing, or use of 
more image points. 

Figure 7 shows an example, giving the model and novel 
views and their relative positions. The  model views used 
in a view pair are taken from the limits of region of floor 
that  the views are to cover. The  intention is that  the model 
view-pair bracketing the robot position (as determined by the 
robot’s dead-reckoning capability) will be used t o  determine 
the robot’s position more precisely, in order t o  correct the 
dead-reckoning estimate. Figure 8 shows the positions from 
which each view was taken, and the estimated position of the 
unknown view. 

6 Discussion 
By combining work on token-based correspondence with 

model view-based localization, we have demonstrated the po- 
tential of the method for navigation in large, open environ- 
ments. There is much work yet to  do. First, additional tests 
will be conducted as soon as assembly of some remaining com- 
ponents for the test robot is complete. Second, we need t o  
enhance the low-level vision in order to  provide more stable 
positions for line endpoints in the presence of clutter and con- 
trast extremes. Finally, there are remaining issues t o  be ad- 
dressed in order t o  automate completely the acquisition of the 
representation of the environment. 
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