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Abstract

Given a collection of sets of 2-D views of 3-D objects and
a similarity measure between them, we present a method for
summarizing the sets using a small subset called a bounded
canonical set (BCS), whose members best represent the
members of the original set. This means that members of
the BCS are as dissimilar from each other as possible, while
at the same time being as similar as possible to the non-
BCS members. This paper will extend our earlier work on
computing canonical sets [2] in several ways: by omitting
the need for a multi-objective optimization, by allowing the
imposition of cardinality constraints, and by introducing a
total similarity function. We evaluate the applicability of
BCS to view selection in a view-based object recognition
environment.

1. Introduction

In this paper we will present a computational framework
for a variation of the pattern summarization problem known
as the canonical set problem. Intuitively, for a given set of
patterns under a known similarity function, its canonical set
is the small subset of its members that best characterizes
the elements of this set. Formally, if P = {p1, ..., pn} is
the set of patterns and S : P × P → R

≥0 denotes the
similarity function, we are interested in a small subset P ′ ⊆
P that maximizes the similarity between P ′ andP\P ′. This
problem is known to be computationally intractable [3].

Our approach to canonical sets was motivated by the
novel view expressed by Cyr and Kimia [1] that “the shape
similarity metric between object outlines endows the view-
ing sphere with a metric which can be used to cluster views
into aspects, and to represent each aspect with a prototypical
view.” Additionally, our work on canonical sets of a general
class of patterns is in large part motivated by novel ideas
that were introduced in the context of aspect graph repre-
sentations [8] and their relevance in identifying regions of

“equivalent views” on the viewing sphere.

Recently [2], we proposed an approximation algorithm
for solving a variation of canonical set for single-pattern
classes using a multi-objective optimization. In this paper,
we extend our framework with the notion of a bounded
canonical set (BCS), which imposes upper and lower
bounds on the cardinality of the canonical set. Such bounds
are important for applications that required a representative
set of prescribed size. The possibility of imposing such
bounds will preclude the need for a multi-objective opti-
mization, which is an expensive and complex step in the
original formulation of canonical set. The elements of BCS
have the additional property of being maximally dissimi-
lar from each other. This property is useful when dealing
with patterns belonging to multiple objects and one desires
canonical elements that best represent one object while be-
ing maximally dissimilar from representative elements of
other objects. Finally, in the current formulation, we will
not make any restrictive assumptions about the similarity
function, i.e., we will assume that all elements are explic-
itly comparable.

As motivation, consider a set of patterns consisting of 19
views of a single object (chair) in Figure 1 taken along the
equatorial great circle. Moreover, assume we are also given
a similarity measure to compare 2-D views (see Section 3).
Our goal is to identify a small canonical set (containing be-
tween 2 and 3 views) that best characterizes this set. The
solution to this BCS problem computed by our algorithm is
outlined in blue in Figure 1.

The BCS problem can be formally stated as follows:
Given a set of views of an object P = {p1, ..., pn}, a simi-
larity function S : P × P → R

≥0, and two integer bounds
kmin and kmax, the bounded canonical set for P is a sub-
set P ′ ⊆ P that best characterizes the elements of P with
respect to the similarity function S while having cardinality
k, where kmin ≤ k ≤ kmax.
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Figure 1. Views of chair with its BCS outlined.

2. BCS Construction

In this section, we describe our method for constructing
bounded canonical sets in polynomial time. Starting with a
set of views P = {p1, ..., pn} of an object, and a similarity
function S : P × P → R

≥0, we construct a complete edge
weighted graph G = G(P), where the patterns {p1, ..., pn}
are represented by vertices, and the edges between the ver-
tices have weights corresponding to the measure of similar-
ity between the vertices. We use V ∗ to denote the vertices
in V , the vertex set of G, corresponding to the BCS.

Examining the canonical set shown in Figure 2, we cat-
egorize the edge set of G into three groups: intra edges,
where both endpoints are within the canonical set V ∗, cut
edges, where one of the endpoints is in the canonical set
and the other is not, and extra edges, which are the rest.
Our goal is to minimize the sum of the weights of the intra
edges, while at the same time maximizing the sum of the
weights of the cut edges. In doing so, we attempt to place
the vertices that are most representative of the others in the
BCS, while keeping the BCS members as dissimilar as pos-
sible.

Intra Edge

Extra Edge

Canonical Set

Cut Edge

Figure 2. BCS edges

The problem of maximizing the weight of the cut edges
is known to be NP hard. Goemans and Williamson [5] ex-
plored the problem MAX-CUT in graphs, and used semidef-
inite programming (SDP) relaxations to provide good ap-
proximate solutions. See Goemans [4] and Mahajan and
Ramesh [9] for a survey of recent results and applications
of SDP. Following their lead, we formulate our problem of
BCS as an integer programming problem, and then use SDP
to give us a good approximate solution. Recently, Shi and
Malik [10] proposed an optimization formulation for seg-
mentation problems in terms of special cuts, known as nor-

malized cuts. They provided an approximation solution to
the segmentation problem in terms of eigen-values of Lapla-
cian matrices associated with similarity graphs.

For each pattern pi, 1 ≤ i ≤ n, we introduce a binary
indicator variable yi. The variable yi can have a value of
+1 or −1, indicating whether the corresponding pattern be-
longs to V ∗ or V \ V ∗, respectively. Let y ∈ {−1, +1}n

be the vector [y1, . . . , yn]t. The problem of maximizing the
sum of the weights of the cut edges can then be formulated
as

Maximize
1
2

∑
i,j

Wij(1 − yiyj). (1)

Similarly, minimizing the sum of the weights of the intra
edges becomes

Minimize
1
4

∑
i,j

Wij(1 + yi)(1 + yj). (2)

Due to the intractability of these two integer programming
formulations [3], and in order to prepare for our approxima-
tion, we will reformulate the problem as a quadratic opti-
mization problem. To this end, we introduce a set indicator
variable yn+1 ∈ {−1, +1}, that is, pi ∈ V ∗, 1 ≤ i ≤ n, if
and only if yi = yn+1. It is easy to see that equations 1 and
2 can be combined into the minimization objective:

3
4

∑
i,j

Wijyiyj +
1
2

n∑
i=1

yn+1yi

n∑
j=1

Wij − 1
4

∑
ij

Wij (3)

subject to the following constraints on the size of the canon-
ical set:

1
2

n∑
i=1

(1 + yn+1yi) − kmin ≥ 0 (4)

kmax − 1
2

n∑
i=1

(1 + yn+1yi) ≥ 0 (5)

Let the vector d be a vector in R
n whose ith entry has value

di = 1
2

∑n
j=1 Wi,j . Define the scalar wall =

∑n
i,j Wi,j ,

and �0 as an all zero vector in R
n. Using the vector coloring

of integer variables [4, 2], the SDP formulation of BCS can
be stated as follows:

Minimize C • X
Subject to Di • X ≥ 0, ∀i = 1, . . . , n + 3,

diag(X ) = e,

X � 0.

whereA•B denotes the Frobenius inner product of matrices
A and B, i.e. A•B = Trace(AtB), and X � 0 means that
X is positive semidefinite. The coefficient matrix of the
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objective function is

C =




3
4W d �0 �0
dt − 1

4wall 0 0
�0t 0 1 0
�0t 0 0 1




The constraint matrix corresponding to the lower bound in
(4) has the following matrix form:

Dn+2 =




0̃ e �0 �0
et 0 0 0
�0t 0 2n − 4kmin 0
�0t 0 0 0




where 0̃ is an n × n matrix of zeroes and e is an all-ones
vector in R

n. Also, the upper bound constraint in (5) has
the following matrix form:

Dn+3 =




0̃ −e �0 �0
−et 0 0 0
�0t 0 0 0
�0t 0 0 4kmax − 2n




Finally, it is easy to see that the matrices D1 to Dn+1 are all
zeros with a single “one” that moves along the main diago-
nal.

The final step in the construction of the BCS is to con-
struct a feasible integer solution from the matrix X . This
rounding process identifies the set of values for indicator
variables y1, ..., yn and the set indicator variable yn+1. In
our experiments, we have used a rounding scheme based on
a Cholesky decomposition of the matrix X [6] and a mul-
tivariate normal hyper-plane method that can be effectively
derandomized. (See [9] and [13] for details on derandom-
ization and rounding.) We perform the rounding step nu-
merous times, each time checking to see if the result creates
a canonical set. If it does, we then check to see if the cardi-
nality k ≤ kmax. Performing the check on max cardinality
was done in the rounding step for technical reasons.

Algorithm 1 Approximation of BCS

1: Construct the graph G(P) according to Section 3.
2: Form the semidefinite program from equation 3 and

constraints 4 and 5 (See [2]).
3: Solve the semidefinite program using the algorithm

in [12], obtaining PSD matrix X .
4: Compute the Cholesky decomposition X = VtV [6].
5: Construct the indicator variables y1, ..., yn+1 and form

the BCS V ∗ according to [13].

3. Similarity Measure

In this section, we present an overview of the many-to-
many matching of abstract representations used in comput-

ing the similarity measure, previously studied in [7]. The
matching algorithm is based on the metric-tree represen-
tation of labeled graphs and their low-distortion embed-
dings into normed vector spaces via spherical coding. This
two-step transformation reduces the many-to-many match-
ing problem to that of computing a distribution based dis-
tance measure between two such embeddings. To compute
the distance between two sets of weighted vectors, we use
the Earth Mover’s Distance under transformation. For two
given 2-D views, the algorithm provides an overall measure
of similarity.

An overview of the approach is presented in Figure 3.
For a given view, an object’s silhouette is first represented
by an undirected, rooted, weighted graph, in which nodes
represent shocks [11] (or, equivalently, skeleton points) and
edges connect adjacent shock points (Transition 1). The
shock graphs will, in turn, be represented in terms of shock
trees using a minimum spanning tree of the weighted shock
graph (Transition 2). (For details on the construction of
these trees, see [7].) Finally (Transition 3), we compute
the distance between distributions using the Earth Mover’s
Distance under transformation.

Figure 3. Computing similarity between two
given views.

For the experiments, we compute the shock tree rep-
resentation of every silhouette and use the many-to-many
matching algorithm of [7] to compute the distance values
among 2-D silhouettes corresponding to each 3-D object
(pattern class). The outcome of this procedure is a distance
matrix. To form the similarity matrix, and thus the graph
G(P), we use the reciprocal of the distance.

4. Experiments

In this section, we present an overview of the experi-
ments we have performed to evaluate the method for com-
puting BCS and its applicability to view selection for view-
based 3-D object recognition. Each pattern class in our ex-
periment corresponds to a set of 2-D views acquired from
a 3-D synthetic object. Our database consists of 9 objects
with 19 views each, for a total of 171 views. The 2-D views
are acquired by sampling the surface of a view sphere cen-
tered on the object, with a representative view of each ob-
ject is shown in Figure 4. In a view-based 3-D recognition
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framework, our goal is to select a small number of views
for each object in order to minimize search complexity at
recognition time (assuming, for example, that recognition is
performed using a linear search of the resulting selection).

For each of the 9 objects, we first create a BCS, with 4 ≤
kmin ≤ 6, 6 ≤ kmax ≤ 9, and compute, for each view on
an object’s view sphere, the identity of its closest canonical
view in the object’s canonical set. The resulting BCS’s are
combined to form a summary set, while the remaining views
of each object are used as query views. Using our matching
algorithm (see Section 3), we compared each query view
to each element in the summary set. For each query view,
we ranked the elements of the summary set in decreasing
order of similarity and, in this ranking, noted the position of
the query’s nearest canonical view (in the query’s object’s
BCS).

The correct canonical view was found to be among the
top 6 elements in the ranking 90.6% of the time. The correct
canonical view for a nearby query will not be top-ranked if
there is another element of the summary set which is closer.
This may happen when different objects share similar views
which, in turn, may yield a summary set with similar ele-
ments. There is also an important trade-off between search
complexity (size of the BCS bounds) and recognition ac-
curacy (rank of the correct response). If, for example, the
bounds are set too low given the complexity of the object,
then there will be whole classes of object views that are not
represented in the object’s BCS. Thus, even though each
query view on the object’s view sphere will have a closest
view in the BCS, that closest view may not be “nearby”,
thereby increasing the probability that an arbitrary member
of another object’s BCS (in the summary set) will be closer
to the query. The larger an object’s canonical set, the greater
the model coverage, the better the recognition accuracy, and
the greater the search complexity. These results are very
preliminary, and a quantitative evaluation is in the works to
study this trade-off.

Figure 4. Sample views of the 3-D objects.

5. Summary and Future Work

We have shown how to construct a bounded canonical
set (BCS) to summarize a set. Through a series of exper-
iments with a database of 2-D views of 3-D objects, we
have demonstrated the applicability of BCS. Although we
have applied our approach using a many-to-many match-
ing algorithm, our approach could, in general, be used with

any matching methodology. Our work is in its prelimi-
nary stages, and we plan to establish concrete performance
bounds for our algorithm and derandomize it, as well as ex-
tend its application to other problem domains. With respect
to modifying the formulation, we plan to study ways to ef-
fectively exclude ambiguous views from the BCS.
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