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Abstract 
W e  introduce a novel view-based object representa- 

tion, called the saliency map graph (SMG), which cap- 
tures the salient regions of an  object view at multiple 
scales using a wavelet transform. This compact rep- 
resentation is  highly invariant to  translation, rotation 
(image and depth), and scaling, and offers the locality 
of representation required for occluded object recogni- 
tion. To compare two saliency map graphs, we intro- 
duce two graph similarity algorithms. The first com- 
putes the topological similarity between two SMG’s, 
providing a coarse-level matching of two graphs. The 
second computes the geometrical similarity between 
two SMG’s, providing a fine-level matching of two 
graphs, W e  test and compare these two algorithms on  
a large database of model object views. 

1 Introduction 
The view-based approach to 3-D object recognition 

represents an object as a collection of 2-D views, some- 
tinies called aspects or characteristic views. The ad- 
vantage of such an approach is that it avoids having to 
construct a 3-D model of an object as well as having 
to make 3-D inferences from 2-D features. Most ap- 
proaches to view-based modeling represent each view 
as a collection of extracted features, such as extracted 
line segments, curves, corners, line groups, regions, or 
surfaces, e.g., [13]. In contrast to the feature-based 
approaches, whose success requires reliable segmen- 
tation, a number of image-based view-based recogni- 
tion systems have emerged [S, 5, 101. Although these 
image-based approaches have been shown to work on 
natural objects, they are sensitive to (one or more of) 
illumination changes, scaling, image rotation, depth 
rotation, or occlusion. 

Coarse-to-fine image descriptions have much sup- 
port in the computer vision community, e.g., [l, 61. 
Most of these have been developed for attention pur- 
poses and, as a result, lose the detailed shape infor- 

mation required for object recognition. In a top-down 
recognition system, Rao et al. use correlation to com- 
pare a multiscale saliency map of the target object 
with a multiscale saliency map of the image in order 
to fixate on the object [9]. Crowley presented an ap- 
proach which is related to the approach presented in 
this paper, in which circular features are detected in 
a Laplacian pyramid [2]. The resulting features are 
linked to form a tree, with the similarity of two trees 
defined as the similarity of paths through the tree. 

In this paper, we present a multiscale view-based 
representation of 3-D objects that, on one hand, avoids 
the need for complex feature extraction, such as lines, 
curves, or regions, while on the other hand, provides 
the locality of representation necessary to support 
occluded object recognition as well as invariance to 
minor changes in both illumination and shape. In 
computing a representation for a 2-D image (whether 
model image or image to be recognized), a multiscale 
wavelet transform is applied to the image, resulting in 
a hierarchical sa l iacy  map of the image. This saliency 
map is represented as a hierarchical graph structure, 
called the saliency map graph, that encodes both the 
topological and geometrical information found in the 
saliency map. 

The similarity between a test image and a model 
image is defined as the similarity between their re- 
spective saliency map graphs. We address the prob- 
lem of matching two saliency map graphs, leading to 
two matching algorithms. The first algorithm finds 
the beat mapping between two saliency map graphs in 
terms of their topological structure, while the second 
algorithm factors in the geometry of the two graphs. 
In each case, we preeent an evaluation function that 
determines the overall quality of the match, i.e., the 
similarity of the two graphs. We demonstrate and 
evaluate our image representation and our two match- 
ing algorithms using the Columbia University COIL 
image database. A more comprehensive version of this 
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paper may be found in [l 13. 

2 A Scale-Space Saliency Representa- 
tion of an Image 

The scale-space image representation that we have 
selected is based on a multiscale wavelet trans- 
form [12]. The advantage of the wavelet decomposi- 
tion lies in its effective time (space)-frequency (scale) 
localization. In the output of the transform, the 
salient shape of small objects is best captured by small 
wavelets, while the converse is true for large objects. 
Searching from finer to coarser scales, we select the 
characteristic scale which captures the most efficient 
encoding of an object’s salient shape; above the chosen 
scale, extraneous information is encoded, while below 
the chosen scale, the object is overly blurred. The re- 
gion defining the object a t  the chosen scale is called 
the scale-space cell (SSC). Our procedure for detect- 
ing the SSC’s in an image consists of the following 
four summarized steps [7], while Figure 1 illustrates 
the invariance of the SSC’s; a more comprehensive ex- 
planation can be found in [ll]. 

Step 1-Wavelet Transform: Compute the 
wavelet pyramid of an image with t dyadic scales using 
oriented quadrature bandpass filters tuned to 16 dif- 
ferent orientations, i.e. @ = O’, 22.5’, 45’, ..., 337.5’. 
See [12] for a detailed derivation and description of 
computing the wavelet pyramid using steerable basis 
filters. 

Step 2-Local Energies: Compute the oriented 
local energies using the equation: 

where G@(s,z,y) and H@(s,z,y) are the outputs of 
a quadrature pair of analyzing wavelet filters at the 
scale-space coordinate (s, 2, y), oriented a t  the angle 
0. For each image point, 16 different oriented local 
energies are computed. 

Compute l saliency 
maps. The saliency of each particular SSC is com- 
puted using the convolution: 

saliency SSC(S, 2, y) = 

Step 3-Saliency Maps: 

[E(@, s, 2, Y) * a(@, 2, Y)] 

(2) 
0 

where a(@,%, y) is the filter kernel obtained by com- 
puting the sum of the squared impulse responses 
of the two analyzing wavelet filters G@(s,z,Y) and 

Step 4-Peaks in Saliency Maps: Moving from 
finer to coarser scales at every location, we select the 
first saliency map for which a peak (local maximum) 
a t  that location exceeds a given threshold. By using a 

2, Y). 

series of oriented 1-D filters to detect the characteristic 
scale, we can detect objects that are not perfectly cir- 
cular in shape. For example, if a non-circular shape’s 
variation in diameter does not reach neighboring scales 
above or below the current scale, then a circularly- 
symmetric filter, such as that used by Crowley [2], will 
give a weak response for the shape. In our approach, 
however, the 1-D filters are slightly adjusted in width 
(bounded by neighboring scales). The result is a clus- 
ter of oriented peaks from which we compute the 2-D 
shape’s location as the centroid of these peaks. The 
salience of the 2-D shape is computed as the sum of 
the oriented saliencies of the oriented peaks near this 
centroid. Finally, we apply a non-maximum suppres- 
sion process to eliminate closely overlapping salient 
SSC’s a t  each scale. 

The computed saliency map can be represented as 
a hierarchical graph with nodes representing saliency 
regions and specifying region location (in the image), 
region size, region saliency, and scale level. More for- 
mally, we define the Saliency Map Graph (SMG) to 
be a directed acyclic graph G = (V ,E) ,  with each 
saliency region ri having a vertex vi in V .  (v , ,v j )  is 
a directed edge in E if and only if the scale level of 
region ~i is less than the scale level of region r j ,  and 
the center of the region rj lies in the interior of the 
region ri. All the edges of G will therefore be directed 
from vertices a t  a coarser scale to vertices at a finer 
scale, as shown in Figure 1 (lower-right). Finally, to 
construct the database of object views, a set of views 
is obtained for each object from a fixed number of 
viewpoints (e.g., a regularly sampled tessellation of a 
viewing sphere centered a t  the object). For each view, 
the Saliency Map Graph is computed and stored in 
the database. 

3 Matching Two Saliency Map Graphs 
Given the SMG computed for an input image to be 

recognized and an SMG computed for a given model 
object image (view), we propose two methods for com- 
puting their similarity. In the first method, we com- 
pare only the topological or structural similarity of 
the graphs, a weaker distance measure designed to 
support limited object deformation invariance. In the 
second method, we take advantage of the geometrical 
information encoded in an SMG and strengthen the 
similarity measure to ensure geometric consistency, a 
stronger distance measure designed to support sub- 
class or instance matching. I t  is imperative that each 
method support a measure of subgraph similarity in 
order to support occluded object matching. 

589 



(4 (e) ( f 

Figure 1: Extracting the most salient SSC’s in an image: (a) original image and its saliency map; (b) scale i 
ance; (c) translation invariance; (d) image rotation invariance; (e) invariance to rotation in depth (illumi 
left side of face exhibits little change in its saliency map); and (f)  the saliency map graph (SMG) of the or 
image in (a). 

3.1 Problem Formulation 
Two graphs G = (V, E )  and GI = (VI, E’) are said 

to be isomorphic if there exists a bijective mapping 
f : V + V’ satisfying, for all z,y E V (z,y) E E e 
( f ( z ) , f (y ) )  E E’. To compute the similarity of two 
SMG’s, we consider a generalization of the graph iso- 
morphism problem, which we will call the SMG sim- 
i lar i ty  problem: Given two SMG’s G1 = (VI, E l )  and 
Gz = (Vz, E2) and a partial mapping from f : VI + 

Vz, let E be a real-valued error function defined on 
the set of all partial mappings. We say that a partial 
mapping f is feasible if f(z) = y implies that  there are 
parents p ,  of z and p ,  of y, such that f(p,) = p, .  Our 
goal is therefore to find a feasible mapping f which 
minimizes E ( f ) .  
3.2 

The requirement of feasibility assures that the par- 
tial mapping preserves the path structure between G1 
and G2. The error function incorporates two com- 

Choosing a Suitable Error Function 

ponents: 1) the similarity of mapped nodes in terms 
of their topology, geometry, and salience; and 2) the 
degree to which model nodes are excluded from the 
mapping. Given two SMG’s, GI = (VI, E l )  and 
G2 = (V2, E2), and a partial mapping, f : VI + V2, 
we define the mapping matrix M ( f )  between G1 and 
G2, to be a IV1l x IVzl, (0, 1)-matrix with MU,w equal 
to 1 if U E VI, v E V? and U = f(w), and 0 otherwise. 
Since f is a bijective mapping, CvEv2 MU,u 5 1 for all 
U E VI, and CUEvl MU,w 5 1 for all v E V?. Given 
this formulation of the mapping f, we define its error 
to be: 

E ( f )  = E M U , V  W ( U , V )  Is(.) - s(v) l+  
U €Vl ,w €V2 

(1 - E )  4 U )  (3)  
U€Vl , f (u)=0 

where E = Il tM(f)l l /( lVll  + IV,l) represents the frac- 
tion of matched vertices ( 1  denotes the identity vec- 
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tor), f(.) = 8 for unmatched vertices, and s(.) repre- 
sents region saliency. For the SMG topological simi- 
larity, Section 3.3, U ( . ,  .) is always one, while for the 
SMG geometrical similarity, Section 3.4, it denotes 
the Euclidean distance between the regions.' A more 
comprehensive discussion on the error function can be 
found in [ll]. 
3.3 A Matching Algorithm Based on 

In this section, we describe an algorithm which finds 
an approximate solution to the SMG similarity prob- 
lem; illustrative examples can be found in [ll]. The 
focus of the algorithm is to find a minimum weight 
matching between vertices of G I  and G2 which lie in 
the same level. Our algorithm starts with the vertices 
a t  level 1. Let A1 and B1 be the set of vertices a t  
level 1 in G I  and G2, respectively. We construct a 
complete weighted bipartite graph G(A1, B1, E )  with 
a weight function defined for edge ( U ,  v) (U E A1 and 
v E S I )  as w(u,v)  = Is(.) - s ( u ) ~ . ~  Next, we find a 
maximum cardinality, minimum weight matching MI 
in G using [3]. All the matched vertices are mapped 
to each other; that is, we define f (z)  = y if ( x ,  y )  is a 
matching edge in M I .  

The remainder of the algorithm proceeds in phases 
as follows. In phase i, the algorithm considers the 
vertices of level i. Let Ai and B, be the set of ver- 
tices of level i in G1 and G2, respectively. Construct 
a weighted bipartite graph G(A,,  Bi, E )  as follows: 
(v, U )  is an edge of G if either of the following is true: 
(1) Both U and v do not have any parent in G1 and 
G2, respectively, or (2) They have at  least one matched 
parent of depth less than i; that is, there is a parent 
p,, of U and p ,  of v such that ( p u , p v )  E Mj for some 
j < i. We define the weight of the edge (u , v )  to be 
Is(.) - .(.)I. The algorithm finds a maximum cardi- 
nality, minimum weight matching in G and proceeds 
to'the next phase. 

The above algorithm terminates after e phases, 
where e is the minimum number of scales in the 
saliency maps (or SMG's) of two. graphs. The par- 
tial mapping M of SMG's can be simply computed 
as the union of all Mi's for i = 1 , .  . . ,e.  Finally, us- 
ing the error measure defined above, we compute the 
error of the partial mapping M .  Each phase of the 
algorithm requires simple operations with the time 
to complete each phase being dominated by the time 

Topological Similarity 

'For perfect similarity E ( f )  = 0, while &(f) will be 

* G ( A ,  B, E) is a weighted bipartite graph with weight matrix 
W = [wjj] of size (AI x IB( if, for all edges of the form (it j) E E, 
i E A ,  j E B, and ( i , j )  has an associated weight = wi,,. 

.(U) if there is no match. 

to compute a minimum weight matching in a bipar- 
tite graph. The time complexity for finding such a 
matching in a weighted bipartite graph with n ver- 
tices is O ( n 2 J m )  time, using the scaling algo- 
rithm of Gabow, Goemans and Williamson [4]. The 
entire procedure, as currently formulated, requires 
O ( e n 2 J m )  steps. 
3.4 A Matching Algorithm Based on Ge- 

ometric Similarity 
The SMGBM similarity measure captured the 

structural similarity between two SMG's in terms of 
branching factor and node saliency similarity; no geo- 
metric information encoded in the SMG was exploited. 
In this section, we describe a second similarity mea- 
sure, called SMG Similarity using an Affine Transfor- 
mation (SMGAT), that includes the geometric prop- 
erties (e.g., relative position and orientation) of the 
saliency regions; illustrative examples can be found in 

Given G1 = (V1,El) and G2 = (V2,E2), we first 
assume, without loss of generality, that lV1l 5 IV2l. 
First, the algorithm will hypothesize a correspon- 
dence between three regions of G I ,  say ( Q , T ~ , T ~ ) ,  

and three regions (r;,rk,rtJ of G2. The mapping 
{ (TI  + r i ) ,  (r2 --+ r;), (r3 -+ r i ) }  will be considered 
as a basis for alignment if the following conditions are 
satisfied: 

P11. 

ri and r: have the same level in the SMG's, for 
all i E { 1, . . . , e } .  
(ri, r j )  E El if and only if (ri, r;) E E2, for all 
i, j E (1 , .  . . , e } ,  which implies that selected re- 
gions should have the same adjacency structure 
in their respective SMG's. 

Once regions ( T I ,  r2, ~ 3 )  and ( r i ,  r i ,  r i )  have been 
selected, we solve for the affine transformation (A ,  b ) ,  
that aligns the corresponding region triples by solving 
the following system of linear inequalities: 

(4) 
The affine transformation (A ,  b) will be applied to 

all regions in G I  to form a new graph G'. Next, 
a procedure similar to the minimum weight match- 
ing, used in the SMGBM is applied to the regions 
in graphs G' and G2. Instead of matching regions 
which have maximum similarity in terms of saliency, 
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we match regions which have minimum Euclidean dis- 
tance from each other. Given two regions U and v,  
the distance between them can be defined as the L2 
norm of the distance between their centers, denoted 
by d ( u ,  w )  = J(zu - z,)~ + (yu - ye).. In a series of 
steps, SMGAT constructs weighted bipartite graphs 
Gt = ( R z ,  R:, E,) for each level i of the two SMG’s, 
where R, and R: represent the set of vertices, of G’ 
and Ga at  the i-th level, respectively. The constraints 
for having an edge in E, is the same as SMGBM: ( U ,  w) 
is an edge in Gt if either of the followings holds: 

e Both U and v do not have any parents in GI and 
Gz, respectively. 

o They have at least one matched parent of depth 
less than i. 

The corresponding edge will have weight equal to 
w(u,  w )  = d ( u ,  w ) .  A maximum cardinality, minimum 
weight bipartite matching Ma will be found for each 
level G,, and the partial mapping f ( ~ , b )  for the affine 
transformation ( A , b )  will be formed as the union of 
all Ma’s. Finally, the error of this partial mapping 
&(f (A ,h ) )  will be computed as the sum over each E, of 
the Euclidean distance separating Ea’s nodes weighted 
by the nodes’ difference in saliency. Once the total er- 
ror is computed, the algorithm proceeds to the next 
valid pair of region triples. Among all valid affine 
transformations, SMGAT chooses that one which min- 
imizes the error of the partial mapping. 

In terms of algorithmic complexity, solving for the 
affine transformation (eq. 4) takes only constant time, 
while applying the affine transformation to GI to form 
G’ is O(max(IV11, 1311)). The execution time for each 
hypothesized pair of region triples is dominated by 
the complexity of establishing the bipartite matching 
between 6 2  and GI, which is O(ln21/nloglogn), for 
SMG’s with n vertices and l scales. In the worst case, 
i.e., when both saliency map graphs have only one 
level, there are O(n6)  pairs of triples. However, in 
practice, the vertices of an SMG are more uniformly 
distributed among the levels of the graph, greatly re- 
ducing the number of possible correspondences of base 
triples. For an expanded discussion on complexity, 
including a Voronoi-based technique for reducing the 
complexity of the bipartite matching, see [ll]. 

4 Experiments 
To illustrate our approach to shape representa- 

tion and matching, we apply it to a database of 
model object views generated by Murase and Nayar 
at Columbia University. Views of each of the 20 ob- 
jects are taken frorn a fixed elevation every 5 degrees 

I Algorithm 1 1  2(a) 1 2(c) I 2(d) I 2(e) I 
I SMGBM 19.57 I 10.06 I 14.58 1 23.25 1 
1 SMGAT 1 )  8.91 I 12.27 1 46.30 1 43.83 1 I 1  I I 1 

Table 1: Distance of Figure 2(b) to  other images in 
Figure 2 

(72 views per object) for a total of 1440 model views. 
The top row of images in Figure 2 shows three adja- 
cent model views for one of the objects (piggy bank) 
plus one model view for each of two other objects 
(bulb socket and cup). The second row shows the 
computed saliency maps for each of the five images, 
while the third row shows the corresponding saliency 
map graphs. The time to compute the saliency map 
averaged 156 seconds/irnage for the five images on a 
Sun Sparc 20, but can be reduced to  real-time on a 
system with hardware support for convolution, e.g., a 
Datacube MV200. The average time to  compute the 
distance between two SIIVIG’s is 50 ms using SMGBM, 
and 1.1 seconds using SMGAT (an average of 15 nodes 
per SMG). 
4.1 Unoccluded Scenes 

To illustrate the matching of an unoccluded image 
to  the database, we compare the middle piggy bank 
image (Figure 2(b)) to the remaining images in the 
database. Table 1 shows the distance of the test im- 
age to the other images in Figure 2; the two other 
piggy bank images (Figures 2 (a) and (c)) were the 
closest matching views in the entire database. Table 1 
also illustrates the difference between the two match- 
ing algorithms. SMGBM is a weaker matching algo- 
rithm, searching for a topological match between two 
SMG’s. SMGAT, on the other hand, is more restric- 
tive, searching for a geometrical match between the 
two SMG’s. For similar views, the two algorithms are 
comparable; however, as two views diverge in appear- 
ance, their similarity as computed by SMGAT diverges 
more rapidly than their SMGBM similarity. Addi- 
tional results can be found in [ll]. 

In the second experiment, we compare every image 
to  every other image in the database, resulting in over 
1 million trials. There are three possible outcomes: 1) 
the image removed from the database is closest to  one 
of its neighboring views of the correct object; 2) the 
image removed from the database is closest to  a view 
belonging to the correct object but not a neighboring 
view; and 3) the image removed from the database is 
closest to  a view belonging to  a different object. The 
results are shown in Table 2. As we would expect, 
the SMGAT algorithm, due to its stronger matchi@ 
criterion, outperforms the SMGBM algorithm. If we 
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Figure 2: A sample of views from the database: top row represents original images, second row represents saliency 
maps, while third row represents saliency map graphs. 

Algorithm % Hit % Miss 

SMGBM 89.0 8.4 
right object 

% Miss 
wrong object 

2.6 

Table 2: Each image in the database is removed from 
the database and compared, using both algorithms, 
to  every remaining image in the database. The closest 
matching image can be either one of its true neigh- 
boring views, a different view belonging to  the correct 
object, or a view belonging to  a different object. 

include as a correct match any image belonging to the 
same object, both algorithms (SMGBM and SMGAT) 
perform extremely well, yielding success rates of 97.4% 
and 99.5%, respectively. 
4.2 Occluded Scenes 

To illustrate the matching of an occluded image to  
the database, we compare an  image containing the 
piggy bank occluded by the bulb socket, as shown in 
Figure 3. Table 3 shows the distance of the test image 
to  the other images in Figure 2. The closest match- 
ing view is the middle view of the piggy back which 

[ Algorithm 11 2(a) I 2(b) I 2(c) I 2(d) I 2(e) I 
1 SMGBM 11 9.56 I 3.47 I 8.39 I 12.26 I 14.72 I 
I SMGAT 11 24.77 I 9.29 I 21.19 I 30.17 I 33.61 I I 1  I I I I 

1 

Table 3: Distance of Figure 3(a) to cbther images in 
Figure 2. The correct piggy bank view (Figure 2(b)) 
is the closest matching view. 

is, in fact, the view embedded in the occluded scene. 
In a labeling task, the subgraph matching the clos- 
est model view would be removed from the graph and 
the procedure applied to the remaining subgraph. Af- 
ter removing the matching subgraph, we match the 
remaining scene subgraph to  the entire database, as 
shown in Table 4. In this case, the closest view is the 
correct view (Figure 2(d)) of the socket. 

5 An Analysis of Viewpoint Invariance 
In a view-based 3-D object recognition system, an 

object is represented by a collection of views. The 
more viewpoint-invariant an image representation is, 
the fewer the number of views needed to  represent the 
object. In the above experiments, we computed the 
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Figure 3: Occluded Object Matching: (a) original image; (b) saliency map; and (c) saliency map graph 

I Algoritlim 11 2(a) I 2(b) I 2(c) I 2(d) I 2(e) I 
I SMGBM 1 1  12.42 I 14.71 I 14.24 I 4.53 I 9.83 I 

II I I 

SMGAT 11 18.91 I 20.85 I 17.08 1 7.19 1 15.44 

Table 4: Distance of Figure 3(a) (after removing from 
its SMG the subgraph corresponding to the matched 
piggy back image) to  other images in Figure 2. 

saliency map graphs for the full set of 72 views for 
each of the 20 objects. In this section, we explore the 
viewpoint invariance of our representation by consid- 
ering a smaller sample of views for one of our objects. 

Our experiment consists of successively removing 
every second view (model SMG’s) of a given object (in 
this case, the piggy bank) and computing the distance, 
using both SMGBM and SMGAT, between each re- 
moved view to the remaining views. Thus, a t  the first 
iteration, we will remove every second view from the 
original set of 72 views, leaving 36 views of the model 
object. Each of the 36 views that was removed will 
then be compared to each of the 36 remaining model 
views. If the closest matching model view is adjacent 
to the removed view’s position in the original set of 72 
views, then one can argue that the intermediate view 
(that was removed) is extraneous. At the next itera- 
tion, we remove every second view from the 36 model 
views and repeat the experiment with the 18 removed 
views.3 

The results are shown in Table 5. For exam- 
ple, when leaving out 36 views, 91% of the SMGBM 
searches (using a removed view) resulted in a clos- 
est view that is adjacent to  the removed view at the 
next level up (72 views), while for SMGAT, 99% of the 

3The n views regoved at step C are maximally distant from 
the n remaining views; there is no need to match the views 
removed at step C - 1 to the views remaining at step C. 

I Views in Tree 1 1  36 I 18 I 9 I 

Table 5: Evaluating Viewpoint Invariance of the SMG 
Representation. The first row indicates the number of 
model views remaining in the model view set for the 
piggy bank object after removing every second view. 
The second and third rows indicate the percentage of 
SMGBM-based and SMGAT-based searches, respec- 
tively, between each of the removed views and the re- 
maining model views that result in a “closest” view 
that is adjacent to  the removed view. 

searches were successful. Furthermore, this percentage 
gradually declines for SMGAT and rapidly declines for 
SMGBM. As one might expect, when geometric infor- 
ination is included in the search, neighboring views 
of a test view exhibit the least geometric distortion. 
For the SMGBM algorithm, however, the topological 
structure of a test view may, in fact, be similar to other 
views of the object despite geometric differences. 
5.1 Limitations 

The approach presented in this paper has not ad- 
dressed the indexing problem. For the experiments, 
each “query” view was compared to  each and every 
model view to return the closest matching view. In 
current work, we are exploring the use of recovered 
local SMG structure (SMG subgraphs covering local 
regions in the image) to index into the database of 
model views and return objects whose model view 
trees have similar structure a t  their leaves. In addi- 
tion, we are exploring hierarchical representations of 
the model views corresponding to  a given object, lead- 
ing to  a more efficient (O(1og n)) search of an object’s 
model views than the current linear search. The eval- 
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uation of our approach is also limited in that by using 
the Columbia University image database, we were un- 
able to  change the lighting conditions, scale, etc., of 
the images. In future work, we plan to  construct our 
own image database, allowing us to more effectively 
evaluate the transformation invariance of our repre- 
sentation. 

6 Conclusions 
There is a gap in the view-based object recognition 

literature between the image-based systems and the 
feature-based systems. While the image-based sys- 
tems have been shown to work with complex objects, 
e.g., faces, they are highly sensitive to occlusion, scale, 
and deformation. The feature-based systems, on the 
other hand, rely on highly sensitive feature extraction 
processes. We have introduced an image representa- 
tion that fills this gap. Our saliency map graph offers a 
robust, transformation invariant, multiscale represen- 
tation of an image that not only captures the salient 
image structure, but provides the locality of repre- 
sentation required to  support occluded object recog- 
nition. We have presented two graph matching algo- 
rithms, SMGBM and SMGAT, that offer an effective 
mechanism for comparing the topological and geomet- 
ric structure, respectively, of a test image SMG and a 
database image SMG. Our graph matching formula- 
tion, in terms of topological and geometric similarity, 
is applicable to any multiscale image representation, 
e.g., a Laplacian pyramid, which can be mapped to  a 
vertex-weighted, directed acyclic graph. 
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