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Abstract 
W e  quantify the observation by Kender  and Freudenstein [6] 

that degenerate views occupy a significant fraction of the view- 
ing sphere surrounding an object. This demonstrates that sys- 
tems  for  recognition must explicitly account f o r  the possibility 
of view degeneracy. W e  show that view degeneracy cannot be 
detected f rom a single camera viewpoint.  As a result, systems 
designed to recognize objects f rom a single arbitrary viewpoint 
must be able t o  function in  spite of possible undetected degen- 
eracies, or else operate with imaging parameters that cause ac- 
ceptably low probabilities of degeneracy. To address this need, 
we give a prescription f o r  active control of focal length that al- 
lows a principled t rade08  between the camera field of view and 
probability of view degeneracy. 

1 Introduction 
Image segmentation is the task of transforming a signal-level 

image description into a symbolic description, consisting of sets 
of segments or features of some sort. Examples of features in 
common use are homogeneous regions, and also discontinuities 
described by line segments or curves. Such features may be 
difficult both to  identify and to  interpret due to  the accidental 
alignment of spatially distinct scene parts belonging to a single 
object or multiple objects, as seen from the camera viewpoint. 
This alignment is often referred to as view degeneracy. This 
superposition of features can lead to  erroneous part counts or 
bad parameterizations of a model. For example, if two object 
edges are abutted and collinear, one longer edge is seen in their 
place. 

Given arbitrarily high resolution, such alignments would not 
be a problem, because they would occur only for a vanishingly 
small fraction of the possible viewpoints [I]. Unfortunately, 
cameras and feature-extracting operators have finite resolution. 
We shall see in this paper that this enlarges the set of view- 
points that are problematic. 

We begin by defining view degeneracy precisely, and show- 
ing how our definition covers many interesting classes of degen- 
eracy. We develop a model of degeneracy, under perspective 
projection. It is parameterized by the distance to the object 
to be recognized, the separation of features on the object, the 
minimum separation of the corresponding image features in or- 
der for them to be detectible as distinct features, and camera 
focal length. The model gives the probability of being in a 
degenerate view as a function of the model parameters. The 
evaluation of the model at realistic parameterizations indicates 
that degenerate views can have significant probabilities. 

We will show that there is a significant additional problem 
for recognition systems operating from a single, arbitrary view- 
point. Namely, view degeneracy is not detectible from a single 
viewpoint. As a result, single-viewpoint systems must be able 
to perform unambiguous object identification in spite of possi- 
ble degeneracies. The alternative is to minimize the probability 
of degeneracy. We will show that the probability of degeneracy 
is very sensitive to camera focal length. This will lead finally 
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to a prescription for focal length control that allows a trade- 
off to  be achieved between the width of the field of view and 
probability of view degeneracy. 
1.1 Definitions of degeneracy 

Kender and Freudenstein [6] presented an analysis of de- 
generate views that pointed out problems with existing defini- 
tions of the concept. The definitions that they propose in place 
of earlier problematic ones incorporate the notion that what 
constitutes a degenerate view is dependent on what heuris- 
tics the system uses to  invert the projection from three di- 
mensions to two. One of the definitions incorporating this 
system-dependence is the negation of the definition of a gen- 
eral viewpoint: A general viewpoint is such that  there is some 
positive epsilon for which a camera movement of epsilon in any 
direction can be taken without effect on the resulting seman- 
tic analysis of the image. This definition was noted by Kender 
and Freudenstein to be incomplete, in the sense that there exist 
general viewpoints on certain objects that are unlikely to  allow 
a system to instantiate a proper model for the object, relative 
to  other views of the same object (e.g. the view of the base of 
a pyramid). They argue for somehow quantifying degeneracy 
according to  the amount of additional work expected to  be re- 
quired to  unambiguously instantiate a model corresponding to 
the object being viewed. 

We are interested in a definition that is independent of the 
particular recognition system in use, and are willing to trade 
away the completeness of the definition to achieve this. Figure 1 
illustrates a definition of degeneracy that covers a large subset 
of the cases appearing in the literature. The definition has to 
do with collinearity of the front nodal point of the lens and a 
pair of points on (or defined by) the object. We shall consider 
a view to be degenerate if at least one of the following two 
conditions holds: 

1 .  a zero-dimensional (point-like) object 
feature is collinear with another 
zero-dimensional object feature and 
the front nodal point of the lens 

is collinear with some point on either: 
2. a zero-dimensional object feature 

a. an infinite line, or 
b. a finite line segment 

defined by two zero-dimensional object 
features, and the front nodal point 

Each of the specific imaging degeneracies enumerated by 
Kender and Freudenstein for polyhedral objects belongs to one 
of these types. Below we discuss each of their example degen- 
eracies in turn: 

Vertices imaged in the plane of scene edges This is 
encompassed by case 2b above, and is depicted in figure 2. The 
lower right scene edge on the upper object is the line segment of 
case 2b. The vertex on the lower object is the zero-dimensional 
object feature. 
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\ front nodal point 

Figure 4: An example of view degeneracy in which copla- 
nar scene lines are imaged in their own plane 

ohjecd point feature 

-\ front nodal point 

Figure 1: Our definition of view degeneracy. The two cases 
are the collinearity of the front nodal point of the lens with 
two object point features (top) or with one object point 
feature and a point on one line (bottom) or line segment. 

Figure 2: An example of view degeneracy in which a vertex 
is imaged in the plane of a scene edge 

Parallel scene lines imaged in their own plane We 
depict this situation in figure 3. This is case 2a, with an infinite 
line. The portion of the viewing sphere in which the degeneracy 
occurs is that for which the front nodal point of the lens is in 
the plane defined by an end point of the edge on the front object 
and the other scene line (extended to have infinite length). 
Coincident scene lines imaged in their own plane 
This generalizes to coplanar lines imaged in  their own plane. 
We depict this situation in figure 4.  This is equivalent to  case 
2b, using an infinite line. An endpoint of the edge on the right- 
hand object may be used as the zero-dimensional feature. The 
edge on the left-hand object may be extended to  define the 
infinite line. 
Perfect symmetry Kender and Freudenstein include per- 
fect symmetry in the enumeration of types of degeneracy be- 
cause they say that it leads to a tendency to interpret the sym- 
metric structure as flat. An example is shown in figure 5. In  

Figure 3: An example of view degeneracy in which parallel 
scene lines are imaged in their own plane 

tetrahedron 

Figure 5: An example of view degeneracy in which perfect 
symmetry gives preference to a flat, 2D interpretation of 
the lines. 

the case of a radial symmetry, this is equivalent to  case 1, with 
the two zero-dimensional points chosen to  be any two distinct 
points on the axis of symmetry. In the case of symmetry about 
a plane, this is equivalent to  case 2a, with both features cho- 
sen arbitrarily to  lie in the plane of symmetry. Note that in 
the case of symmetry, the features defining the degeneracy are 
more likely to  be abstract points on the object (e.g., the cen- 
troid of an object face), rather than points extractible directly 
by low-level vision. The use of abstract object points rather 
than obvious feature points has no impact on the estimation of 
probabilities of degeneracy that follows. What matters is that 
there is some means to  enumerate the types of degeneracy that 
are important to the approach. This enumeration is discussed 
later in the paper. 

1.2 Dependence on effective resolution 
If a computer vision system had infinite ability to  resolve 

object features that were close to  one another, then all of the 
degeneracies discussed above would have infinitesimal proba- 
bility of occurrence. Figure 6 shows typical loci of points on 
the viewing sphere a t  which instances of each type of degener- 
acy occur, assuming infinite resolution. Each case 1 degeneracy 
occurs at a pair of points on the sphere surface. Each case 2a 
degeneracy occurs a t  a circle of points on the sphere surface. 
Each case 2b degeneracy occurs on a sector of a circle of points 
on the sphere surface. Since these loci of points are of lower 
dimensionality than the viewing sphere itself, the probability 
that the viewpoint is on such loci is vanishingly small. 

Infinitesimal probabilities of view degeneracy would poten- 
tially allow strong inferences to be made about scene struc- 
ture 111. Consider a certain coincidence, C ,  of simple object 
features A and B.  If C occurs in the image much more fre- 
quently than expected due to  view degeneracy, then many of 
the occurrences must be due to a regularity in the domain of 
interest (i.e. the frequent physical coincidence of A and B) .  
This regularity is useful for recognition if C reduces the uncer- 
tainty in object identity. The utility of C for recognition may 
be expressed more formally as the average number of bits of 
information gained by observing C. An expression for this is: 
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Figure 6: Loci of degeneracy with infinite resolution. This 
illustrates degeneracies of both case 1 type (involving two 
OD object features) and case 2 type (involving a OD object 
feature and an infinite line defined by object features). 

or 

This is also called the asymmetric divergence, or mean infor- 
mation gain per observation of C [7]. 

Kender and Freudenstein 161 point out that the finite res- 
olution of real systems has the potential to make the proba- 
bility of the degenerate views significant, or even a certainty. 
This is due to the thickening of all of the loci of points on 
the viewing sphere corresponding to degeneracies, to  include 
viewpoints from which the key features are "almost collinear" 
with the front nodal point of the lens. Figure 7 illustrates this 
thickening. This would have a negative impact on systems that 
assume no degeneracy. If the coincidence C discussed above 
occurs more frequently due to degeneracy than expected, then 
expression 2 above will be smaller than expected, since the ap- 
parent coincidence of component features A and B will now 
occur more often for objects in which A and B are physically 
separated than with infinite resolution. 

We will use the phrase effective resolution to capture all 
system dependencies in our model. As a result, the definition 
is a general one, t o  be specialized to each system as needed: 
Definit ion: The eflectiue resolution in the image is the min- 
imum separation of a pair of points, corresponding to distinct 
object features, needed in order to detect both features. 

Effective resolution is a function of both actua1 camera resolu- 
tion and the method used for feature detection. For example, 
one may estimate the effective resolution to be the width of 
the convolution kernel used to extract object edges, or some 
function of the kernel width and edge length chosen to model 
actual system performance. 
1.3 Overview 

The reason for using the above definitions of degeneracy and 
effective resolution is that they have allowed u s  to construct 
a sgstem-independent, quantitative model of view degeneracy. 
We can predict the probability of being in a degenerate view 
as a function of the geometric parameters of the key object 

Band of point-line 
degeneracy 

point-point 
degeneracy 

Figure 7: The loci of degeneracy of the previous figure, 
with finite resolution. The  regions of the viewing sphere 
affected by degeneracy are large. The circle of the previous 
figure is actually a thick band on the sphere. The points 
from the case 1 degeneracy are actually disks. 

features and the effective resolution. This is useful, because it 
allows one to decide the importance of degenerate views in var- 
ious imaging situations. In particular, we note that degenerate 
views have significant probability in many realistic situations. 

In the next section, we present our model and its analysis. 
Section 3 presents an example parameterization of the model 
corresponding to a real application. The result shows a signif- 
icant probability of view degeneracy. The implications of this 
for recognition systems is discussed in Section 4,  along with 
various means of coping with degeneracy. The sensitivity of 
the probability of view degeneracy to  focal length leads to a 
prescription for focal length control, discussed in Section 5 .  Fi- 
nally, we conclude with a recapitulation oi the results. 

Degeneracy based on a pair of points Figure 8 shows 
the perspective projection of a pair of feature points, A and B.  
For simplicity, our analysis assumes that A is centred in the 
image. We are interested in the separation s of the images of 
the two points as a function of the other parameters shown in 
the figure. The  parameters are: 

2 Model 

f distance from image plane 
to  rear nodal point 

R distance of A from the 
lens front nodal point 

r separation of the two 
object points 

(e, 4) orientation of B 
with respect to 
the optical axis 

separation of the points 
o apparent angular 

We have that 
3 

tan a = - f ( 3 )  

and that 

( 4 )  
Jrz sin2 + + r2 cos2 Q sin2 B 

R + r c o s ~ c o s O  tan a = 

Let sc be the effective resolution, as defined earlier. Equating 
the two right-hand sides, we will solve for 4 given 3 = sc and 0. 
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Figure 8: Perspective projection of a pair of points. We 
will determine the fraction of all orientations of line AB in 
relation to  the camera for which the image separation s of 
A and B is small enough to interfere with their resolution 
into distinct features. 

The choice to solve for 4 is arbitrary. We obtain two solutions, 
60 and 41 ,  a t  which s = sc: 

) ( 5 )  
-RsZ + f dr2 f 2  - s?R2 + sfr2 

r( f2 + sf) cos 0 
40 =cos-I ( 

40 and 41 exist provided that the arguments for their respective 
c0s-l functions are in the interval [-1, I]. Where they exist, 
there are intervals of 4 for which s < sc. The intervals are 
[0,40) and (41, ir]. Where they do not exist, it  is because the 
entire range of 4 values from 0 to A gives s 2 sc at the given 0 
value. Figure 9 shows the sections of the sphere swept out by 
point B in Figure 8 as 0 ranges over a small interval [OO, Oo+AO), 
and 4 ranges over the interval [0, A]. For each small interval in 
8 ,  the ratio of the area for which s < sc to the total area of the 
sphere swept by point B is g(6), where 

r2 cos ( A  - 4) dOdq5 

(9)  

Thus, we may estimate the probability that s is smaller than 
some critical value sc by doing a numerical integration of g(0) 
over all 0 values to determine the fraction of the sphere swept 
by 0 and 4 that gives s < sc. 
Degeneracy based on a point and a line Figure 10 
shows the perspective projection of a line segment of length I ,  
with endpoints B and C, and a point A .  We simplify our calcu- 
lations by centering B in the image. Without loss of generality, 

~ rd@ 

rcos@ d9 

Figure 9: The regions of the sphere swept by point B for 
6 E [BO, 00 + AB) and 4 E (0, T ] .  The shaded parts are the 
areas for which s < s,. 

we choose an image coordinate system that causes the image 
of the line to  lie along one of the coordinate axes. Let A', B' 
and C' be the images of A, B and C respectively. In addition 
to  the parameters used in the case of two points, we have the 
additional parameters: 

w angle between the 
line segment and 
the optical axis 

line segment B'C' 
(possibly infinite) 

b separation of 
A' and C' 

c separation of 
A' and B' 

t distance between 
B' and the 
nearest point to A', 
on the infinite 
line through B' and C' 

a length of the 

The parameter 1 is used to determine whether a perpendicular 
dropped to the line through B' and C' falls on the segment 
between B' and C'. 

We have 

S 
f 

R + r cos4 cos 0 
r cos 4 sin 0 

f 
R + T C O S ~ C O S ~  

R + 1 cos w 

t = r s i n 4  

a = lsinw 

b = d m  
f 

c = J%- 
We are interested in the distance of the image of the point from 
the line segment. This distance d is 

s i f t > O a n d t < a  

c i f t < O  
d = {  b i f t > a  (17)  
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point-pair degeneracy estimates for each axis of radial symme- 
try in the object. 

If we define terms as follows: 

Figure 10: Perspective projection of a line segment a n d  
a point. We will determine t h e  fraction of all possible 
orientations of A with respect to line BC for which the 
image separation of A and BC is small enough to interfere 
with the  detection of A as a separate feature. 

poo the probability of an 
individual point-pair degeneracy 

pol the probability of an 
individual line-point degeneracy 

n, the number of axes 
of radial symmetry 

nf the number of face 
equivalence classes 

where n, does not include axes of symmetry lying in planes of 
symmetry, then the overall probability of a degenerate view, 
p d ,  is estimated by 

p d  = 1 . 0  - (l.o-pOO)n‘ 

We considered two possibilities for the integration for the prob- 
ability that d is less than some critical value d, .  The approach 
that is analogous to the approach used in the first case leads to 
numerical evaluation of a three-dimensional integral. An eas- 
ier method would be to perform a Monte Carlo integration by 
randomly choosing triples ( U ,  6,d) uniformly on the surface of 
the viewing sphere and tabulating the fraction of the trials for 
which d < d,. 
Combining probabilities of individual degeneracies 
Finally, if we have estimates of the probabilities of degenerate 
views based on individual pairs of points and (point, line seg- 
ment) pairs, we need to combine the probabilities of individual 
degeneracies to  get the probability that a t  least one degener- 
acy exists. This final step is somewhat application-dependent, 
because different classes of objects have different degrees of in- 
teraction among their features. If we were to assume indepen- 
dence among all of the points and line segments in the object 
set, and if the objects were wire-frame objects, so that all fea- 
tures were visible all of the time, then the task  would be easy: 
All features would be able to  interact with each other to cause 
degeneracies. This model is appropriate with sensors or objects 
for which transparency or translucency is common (e.g. X-ray 
images). 

For computer vision, there typically exist pairs of features 
that do not interact to form a degeneracy, simply because they 
are at opposite positions on an opaque object. We will examine 
the case of a polyhedral world, in order to  provide an example 
of the analysis necessary to determine overall Probabilities of 
occurrence of degeneracy. In a polyhedral world, features are 
clustered to  be in coplanar groups (faces), reducing the prob- 
ability of degeneracy from the value that would be estimated 
assuming independence of the features. 

In the case of single isolated convex polyhedral objects, we 
can take a face-by-face approach to estimating the probability 
of degeneracy. Specifically, we will only examine interactions 
among points and lines belonging to the same face, since fea- 
tures not sharing a face are relatively less likely to interact. An 
edge-on view of a face is equivalent to our case 2a degeneracy, 
where the point used is an arbitrary vertex, and the line used 
is an edge on the opposite side of the face, extended to have 
infinite length. 

To arrive at a global estimate of degeneracy, we could sim- 
ply sum the probabilities of degeneracy for each face. However, 
since parallel faces came strongly overlapping regions of the 
viewing sphere to  be degenerate, faces should be divided into 
equivalence classes, with one class per face orientation. For ex- 
ample, a cube consists of three sets of faces, with three distinct 
orientations. We may estimate the probability of degeneracy 
for the cube by summing the probabilities of three faces, one 
representing each equivalence class. Finally, we can take into 
account the degeneracy due to radial symmetry by summing the 

v 

n o  symmetry degeneracies 

no face degeneracres - 
x (1 .0  -po l )n ’  (18 )  

The above expression corresponds to an assumption of inde- 
pendence of the axes of radial symmetry and face groups. We 
conjecture that this is more realistic than assuming no overlap 
between the regions of degeneracy (as one would assume by 
simply summing the individual probabilities of degeneracy). In 
a world with multiple objects in each image, there is a greater 
degree of independence among the features, since the positions 
of the objects with respect to one another are less likely to  
be as ordered as the positions of individual features within an 
object. The above enumeration would provide an optimistic 
Lower bound on the probability of degeneracy. Summation over 
all feature pairs (as in the wireframe case) would provide a 
pessimistic upper bound on the probability of degeneracy. 

3 Parameterization of the model 
We have parameterized the model to match the situation 

in our own experimental setup, as described in detail in [a], 
and presented in overview in (91. We have used the actual 
camera pixel size to compute the critical feature separation 
sc. The object-related parameters are those of an object set, 
consisting of origami figures, that is used in our experiments. 
Figure 11 tabulates the results with the basic parameterization, 
and examines the sensitivity of the probability of a degeneracy 
to  each of the model parameters by perturbing each parameter 
in isolation. 

We see that (for example) for a model system with a param- 
eterization to recognize small tabletop objects from a range of 
half a metre, there are one in five odds that the view encoun- 
tered will be degenerate. The sensitivity analysis demonstrates 
that there are realistic parameterizations of the model for which 
probabilities of degeneracy are very significant. We also tried 
a parameterization with f and sc set to match human foveal 
acuity of twenty seconds of arc. The probabilities of degeneracy 
were negligably small. This may explain why the importance 
of degenerate views to computer vision has traditionally been 
underestimated. 

4 Implications for recognition 
Our model and realistic parameterizations of it provide 

quantitative arguments that so-called degenerate views should 
be taken into account by designers of recognition algorithms. If 
one excludes degenerate views from the object representations 
or viewpoints used by a system, then one must have a mecha- 
nism for detecting degeneracy when it occurs, and moving out 
of the degenerate view position. I t  is important to note that 
even detection oj  degeneracy requwes camera motion: Using our 
definition of view degeneracy, we have 
Theorem: It is impossible to  detect view degeneracy from 
a single camera viewpoint. 
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n f  1 3  

perturbation 
f = 0.0035 m 
f = 0.014 m 
R = 0.25 m 
R = 1.00 m 
r = 0.02 m 
r = 0.08 m 
1 = 0.00 m 
1 = 0.02 m 
1 = 0.08 m 
I = io5  m 
sc = 1 pixel 
sc = 5 pixels 
nf = 1 
nf = 5 
n, = 3 
human fovea 

I n, 1 0  

I Results a t  basic Darameterization I 

poo 
0.167181 
0.009657 
0.009835 
0.166838 
0.166838 
0.009835 
0.039181 
0.039181 
0.039181 
0.039181 
0.004281 
0.112892 
0.039181 
0.039181 
0.039181 
7 x lo-’ 

0.039181 

1 

?arameter 
PO 1 
0.217 
0.028 
0.028 
0.220 
0.198 
0.015 
0.039 
0.045 
0.075 
0.078 
0.016 
0.161 
0.074 
0.074 
0.073 
2 x io-* 

ation 
Pd 
0.52 
0.08 
0.08 
0.52 
0.48 
0.04 
0.11 
0.13 
0.21 
0.22 
0.05 
0.41 
0.07 
0.32 
0.29 
s x io-’ 

Figure 11: Results for a tabletop vision system. T h e  basic 
parameterization corresponds to our  experimental setup. 
One  fifth of the views on a single object are degenerate. 
The probability of degeneracy varies significantly as model 
parameters are  perturbed. 

Proof: Assume to the contrary, that we have a “degeneracy 
detector” D, that takes a single image as input, and determines 
whether it contains instances of view degeneracy. We may cause 
D to  fail as follows. We construct a pair of scenes such that each 
scene results in the same camera image, but one is degenerate 
and the other is not. Then, whether D reports that the image 
is degenerate or not, D will be in error on one of the two scenes. 
Figure 12 diagrams such a pair of scenes. The  idea is to acquire 
a camera image at a position of degeneracy, then print the 
image acquired. If one then acquires an image of the print 
from an appropriate face-on viewpoint, the result can be made 
indistinguishable from the image of the original scene. The 
first image, a face-on view of a cube, is degenerate: a small 
motion of the camera will change the number of faces of the 
cube that are visible. This second image, however, is from a 
non-degenerate viewpoint: small motions of the camera result 
only in minor distortion of the camera image. In fact, changes 
i n  viewpoint with respect to  the print of the scene of up to 90 
degrees result in smooth changes in the image features. 0 

For recognition to be successful from a single viewpoint, 
therefore, degenerate views must be usable even if the degen- 
eracy is not explicitly detectible. 

Single view approaches to recognition can be successful pro- 
vided that the camera view, even if degenerate, is not ambigu- 

Object 
a 

Picture from camera 1 - 

Camera ~* 1 identical images 

Degenerate viewpoint Non-degenerate viewpoint 

Figure 12: The camera in the left scene is at a position of 
degeneracy. The camera in the  right scene is not ,  (since 
n o  alignments a re  present) yet the  two camera images are  
identical. This demonstrates that degeneracy is not de- 
tectable f rom a single viewpoint. 

ous in the sense of belonging to more than one stored object 
model. If, the mapping from a recovered view to an object 
model, or part, is ambiguous, then the various interpretations 
should be rank-ordered to provide a more efficient search [3,4]. 
A more effective solution to dealing with ambiguity is to take 
an active approach. Wilkes [8] has explored the idea of moving 
the camera to a viewpoint advantageous to  recognition. This 
approach also meets with success, but at the cost of signifi- 
cant viewpoint changes. Dickinson, Christensen, Tsotsos, and 
Olofsson [5] use a probabilistic aspect graph to guide the cam- 
era from a position where the view is ambiguous to a position 
where the view is unambiguous. 

A final alternative is somehow to reduce the probability of 
view degeneracy. We see from the sensitivity analysis in Sec- 
tion 3 that the probability of degeneracy pd is sensitive to  both 
focal length and effective resolution. Thus, we may consider 
controlling the aiming of a variable-resolution (foveated) sen- 
sor, using an attentional mechanism of some sort, or we may 
control focal length. This latter approach is the subject of the 
next section. 

5 Prescription for focal length control 
There is a clear tradeoff between wide angle of view and 

probability of view degeneracy. Wide angle is desirable for 
initial object detection, in the presence of uncertainty in camera 
or object position, because the object of interest is more likely 
to fall in the field of view if focal length is small. On the 
other hand, small focal length increases the probability of view 
degeneracy. A similar tradeoff has been noted in the work of 
Brunnstrom [2] who uses a wide angle of view to detect object 
junctions and then zooms in to  increase image resolution for 
junction clasification. The existence of such a tradeoff suggests 
that there can be a principled choice of focal length in many 
circumstances. 

Suppose that we have known constants PO, the maximum 
acceptable probability of view degeneracy, and sc, the critical 
separation of image features. Then the focal length should be 
set to  the smallest value that gives a probability of degeneracy 
pd no larger than PO. This may be done automatically by a 
vision system, provided that the necessary parameters of our 
model can be determined. 

We may rewrite all of the expressions involving parameters 
I ,  R and r (equations 5, 6 ,  12, 13, 14) i n  terms of the ratios 5 
and A: 

s?) cos @ I ‘ “ I  
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Thus, if we can estimate and &, we can completely param- 
eterize the model, computing p d  via the above equations plus 
equations 11, 15, 16, 17, and 18. 

If the current focal length f is known, then we may make 
a rough estimate of and 2 as follows. We may sample the 
distribution for the apparent separation s of neighbouring fea- 
tures in the image, getting an average apparent separation 6 ;  
to minimize the effects of view degeneracy in this sampling, we 
should use a large focal length. If all pairs of adjacent features 
had exactly the separation r in 3-D space, and all relative ori- 
entations of such feature pairs in 3-D space were equally likely, 
then the expected value for the image separation s of feature 
pairs would be given by 

f r  - cos 4 
E[s]  = I’ R - 

image iength rJ parr tilted by 9 

probabilrty density for t d t  9 + 
X cos 4 &J 

= -  f r  x 2. 
R 4  

Thus .i zz EIS] gives us  an estimate of 8: 
r 49 - -  - - 
R *f 

We may set f = 5 if the predominant degeneracies in the 
domain of interest are of the type of case 2b, or set & = 03 if 
the predominant degeneracies are of the type of case 2a. Which 
parameterization is chosen typically does not affect the order 
of magnitude of the resulting P d  values. Figure 13 shows how 
p d  varies with focal length for our basic parameterization of 
Section 3. In general, the focal length f giving p d  = PO 
is found by applying a zero-finding method to  the function 
g ( f )  .= p d  - P O ,  where p d  is found by evaluating our model as 
described above. Since the function is smooth and has only one 
zero, we recommend a Newton iteration fn+1 = fn - w, 
where fo is any possible focal length value for the system, and 
g’(fn) is the derivative of g with respect to  f, approximated 

and the iteration is terminated when succes- 
sive iterations change f by less than 2c. To summarize, given 
a sampling of image feature separation at a known large fo- 
cal length, we can solve for an updated focal length that gives 
a probability of view degeneracy not to  exceed a given target 
Valllc?. 

by d J t c ) -  J-f  
2r9( 

Probability of degeneracy vs. focal length 
-1ntY 

pdPlotdaIa 
100 

0 95 

090 

0 85 

0 80 

0 75 

0 70 

0 65 

060 

0 55 

O M  

0 45 

040 

0 15 

030 

0 25 

0 20 

0 15 

0 10 

0 05 

000 
local length in mm 

000 2000 4000 6000 80cn I0000 

Figure 13: Probability p d  as a function of focal length f ,  
at t h e  basic parameterization. 

The alternative is to take steps to  minimize the probability of 
de eneracy. 

%he probability of view de eneracy may bereduced by sev- 
eral means. One is to move t f e  camera to  a viewpoint advan- 
tageous for recognition [9, 51. Another is to  use an attentional 
mechanism to aim a high-resolution fovea-like sensor for feature 
detection. A final, economical possibility is the control of focal 
length discussed above. 
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