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Abstract

We present an approach to 3-D primitive reconstruc-
tion that is independent of the selection of volumet-
ric primitives used to model objects. The approach
first takes an arbitrary set of 3-D volumetric prim-
itives and generates a hierarchical aspect represen-
tation based on the projected surfaces of the primi-
tives; conditional probabilities capture the ambiguity
of mappings between levels of the hierarchy. The in-
tegration of object-centered and viewer-centered rep-
resentations provides the indexing power of 3-D vol-
umetric primitives, while supporting a 2-D match-
ing paradigm for primitive reconstruction [DIC90a).
Moreover, the prohibitive number of aspects needed
to model large databases of objects is avoided.

The reconstruction algorithm exploits all levels of
the aspect hierarchy and fully accommodates primi-
tive occlusion. We present a novel formulation of the
problem based on grouping the image regions accord-
ing to aspect. No domain dependent heuristics are
used; we exploit only the probabilities inherent in the
aspect hierarchy. For a given selection of primitives,
the success of the heuristic depends on the likelihood
of the various aspects; best results are achieved when
certain aspects are more likely, and fewer primitives
project to a given aspect. For a common set of 3-D
volumetric modeling primitives, the algorithm yields
favorable results.
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1 Introduction

Many approaches to 3-D object recognition, e.g.,
[LOW85, HUT87, THO87, LAMS8), limit the bottom-
up feature extraction process to simple 2-D primitives
such as line segments, corners, zeros of curvature, and
2-D perceptual structures. These features are appeal-
ing due to their viewpoint invariance. However, be-
cause of the simplicity of these 2-D features, a typ-
ical 3-D model contains a large number of features.
Consequently, the process of searching a database to
recognize a model becomes inefficient. Furthermore,
the simplicity of the features makes recognition unre-
liable, and detailed verification of the model’s pose is
required. Such verification is not only expensive, but
restricts the recognition system to models whose exact
geometry is known beforehand.

Our approach is to use more complex features and
primitives, so that indexing for recognition is efficient,
and only qualitative (topological) verification is re-
quired. This approach shifts the burden from top-
down verification to the bottom-up extraction and
grouping of features into complex primitives. This pro-
cess would normally entail a high search cost due to
the complexity of the features and primitives. We have
been able to avoid this problem while making use of
more complex features, by first assessing and then tak-
ing advantage of the statistical properties of whatever
set of modeling primitives the user has chosen.

In our system, the user first inputs a set of volumet-
ric modeling primitives (polyhedra, generalized cylin-
ders, superquadrics, etc.). The system then defines a
set of image features based on these primitives. Such




features include the qualitative shape of the primitives’
faces, connectivity between subsets of the edges that
bound the faces, and groups of faces. The statistical
relations between these various features are then as-
sessed from all viewpoints, thus generating a table of
conditional probabilities for each feature and primitive
as a function of all other features or primitives. For
instance, one entry in this table might be the condi-
tional probability that we are viewing a cylinder given
that we have found a rectangle in the image.

Given an image of a scene, this table of conditional
probabilities is then used to guide a combinatorial
search that eventually yields a full and consistent in-
terpretation of the viewed scene. The key idea, then, is
that the statistical properties of the set of user-defined
primitives are used to avoid a combinatorial explosion
in the search process. Thus knowledge about how each
primitive and feature looks from all angles makes for a
“smart” search, and allows the use of much more com-
plex features than can otherwise be employed. The use
of such complex features and primitives establishes the
foundation for a more robust recognition system, one
that can accommodate unexpected objects [ROS86).

2 Building the Search Tables
2.1 Choosing the 3-D Primitives

The goal of the object-centered modeling component
is to define a set of three-dimensional volumetric prim-
itives that, when assembled together, comprise a large
set of concrete objects in the world. The primitives,
in turn, will be mapped into a set of viewer-centered
aspects. It is important to note that our approach to
primitive reconstruction is independent of the selection
of modeling primitives; any selection of 3-D volumetric
primitives will suffice. To demonstrate our approach,
we have selected an object representation based on
Biederman’s Recognition by Components (RBC) the-
ory [BIES5]; our ten primitives are shown in Figure 1.
To construct objects, the primitives are simply at-
tached to one another with the restriction that any
Jjunction of two primitives involves exactly one attach-
ment surface from each primitive; details can be found
in [DIC90a].

2.2 Defining the 2-D Aspects

For each of the ten primitives, we define a set of 2-D
characteristic views, or aspects. Each aspect repre-
sents a set of topologically equivalent views of the
primitive. Unlike traditional aspect-based recognition
systems, e.g., [CHA82, IKE88, FANS88], which model
each entire object using a distinct set of aspects, we
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Figure 1: The ten object modeling primitives

use aspects to model the the finite set of primitive
classes from which objects are constructed. The size
of the resulting set of aspects is fixed and, more im-
portant, independent of the size of the object database.
To minimize the number of aspects representing model
primitives, we constrain the set of aspects to be invari-
ant to minor changes in primitive shape. This, in turn,
constrains our primitives to possess a qualitative na-
ture, capturing only the gross shape characteristics of
the object.

Because of occlusion and errors in region/line find-
ing, the entire aspect of a primitive will often not be
available. To overcome this problem, we define a hier-
archical aspect representation. This aspect hierarchy
consists of three levels:

e face structures: the set of all aspects of the 3-D
primitives, where each aspect consists of a collec-
tion of 2-D faces representing the 3-D surfaces of
a primitive visible from one viewpoint

o faces: the set of all 2-D faces comprising the face
structures

o face features: the set of all subsets of 2-D con-
tours bounding the faces

Figure 2 illustrates a portion of the aspect hierarchy.

2.3 Relating the 2-D Aspects to the
3-D Primitives

A given face feature may be common to a number of
faces. Similarly, a given face may be a component of
a number of face structures, while a given face struc-
ture may be the projection of a number of primitives.
To capture these ambiguities, a table maps face fea-
tures to faces, while another table maps faces to face
structures. To tie together the viewer-centered and
object-centered representations, we define a third ta-
ble mapping the top level of the aspect hierarchy, the
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Figure 2: The aspect hierarchy

face structure level, to the primitives. The entries in
the three tables represent the probabilities of the map-
pings.

To generate the probabilities in the tables mapping
face features to faces, faces to face structures, and
face structures to primitives, we first model our 3-D
volumetric primitives using the SuperSketch modeling
tool. SuperSketch models each primitive with a su-
perquadric surface subject to deformation. The next
step in generating the probability tables involves ro-
tating each primitive about its internal z, y, and z
axes in 10° intervals. The resulting quantization of
the viewing sphere gives rise to 648 different views per
primitive. However, we can exploit symmetries of the
primitives to significantly reduce the number of views
(688 views for all ten primitives). For each view, we
orthographically project the primitive onto the image
plane. The final step (currently accomplished manu-
ally) involves noting each feature (face feature, face,
and face-structure) and its parent; the resulting fre-
quency distribution gives rise to the three probability
tables.

3 Primitive Reconstruction

3.1 Extracting Faces

An analysis of the aspect hierarchy probabilities re-
veals that the face-structure-to-primitive mapping is
the least ambiguous mapping to the primitives. In ad-
dition, we conclude that the best mapping to the face

structures is from the faces rather than from the face
features. This suggests that faces are an appropriate
starting point in the primitive reconstruction process.
Therefore, given an input image, our first task is to seg-
ment the regions; the result is a face graph in which
nodes represent faces, or regions, and arcs represent
face adjacency. In turn, each face is represented by a
face contour graph in which nodes represent straight,
convex, or concave bounding contours, and arcs rep-
resent relations between the contours, including inter-
section, parallelism, and symmetry.

The classification of an image face consists of com-
paring its face contour graph to those face contour
graphs representing the faces in the aspect hierarchy.
If, for a face contour graph representing an image face,
there is a matching face in the aspect hierarchy, we
generate a face hypothesis for that image face, with
probability 1.0. If, however, due to occlusion, there is
no match, we must descend to the face feature level
of the aspect hierarchy. In this case, we compare sub-
graphs of the face contour graph to face feature contour
graphs in the aspect hierarchy. For each subgraph that
matches an aspect hierarchy face feature, we use the
face-feature-to-face table to hypothesize a face with
corresponding probability.

3.2 Extracting Face Structures

Given a face graph with each face having one or more
face hypotheses ranked in decreasing order of proba-
bility, we can formulate the problem of extracting face
structures as follows: Given a face graph and a set
of face hypotheses at each face, find a covering of the
face graph using face structures in the aspect hierar-
chy, such that no face is left uncovered and each face is
covered by only one face structure. Or, more formally:
Given an input face graph, FG, partition the vertices
(faces) of FG into disjoint sets, S1,S2, 53, .+, Sk, such
that each set, S;, is isomorphic to some face structure
graph, F'S;, from a fixed set of face structure graphs,
FSy,FS3, FSa,..., FSn.

3.2.1 Problem Complexity

The Partition into Isomorphic Subgraphs problem
[GART9) is stated as follows: Given two graphs, G =
(V,E) and H = (V',EI), can the vertices of G be
partitioned into ¢ disjoint sets, Wi, Va, Vs, ..., Vg, such
that, for 1 < i < g, the subgraph of G induced by
V: is isomorphic to H? Kirpatrick and Hell [KIRTS)
prove that this problem remains NP-complete for any
fixed H, |H| > 3. Whether or not this latter prob-
lem is NP-complete for planar G and H remains an
open problem. However, Berman et al. [BER90] have




recently shown that the problem is NP-complete for
any connected outerplanar H, |H| > 4, and that the
problem is solvable in linear time for any triangulated
H, |H| > 4. Since our face structure face graphs are
neither outerplanar nor triangulated, the complexity
of our problem remains open. If the Partition into
Isomorphic Subgraphs problem is NP-complete, a sim-
ple reduction reveals that our problem is also NP-
complete. Since there is no known polynomial time
solution to our problem, we must explore heuristic
techniques.

Each face in the face graph representing an image
has a number of associated face hypotheses. For each
face hypothesis, we can use the face-to-face-structure
table to generate the possible face structure hypotheses
that might encompass that face; the set of face struc-
ture hypotheses for a given face in the face graph can
be ranked in decreasing order of probability. We can
now reformulate our problem as a search through the
space of face structure labelings of the faces in our face
graph. Equivalently, we wish to choose one face struc-
ture hypothesis from the list at each face, such that
the verified face structures completely cover the face
graph. In all likelihood, there will be many solutions
due to perceptual ambiguities in the image. Since we
cannot guarantee that a given solution represents a
correct interpretation, we must be able to enumerate
in decreasing order of likelihood all solutions until the
objects in the image are recognized.

3.2.2 Algorithm for Enumerating Face Struc-
ture Coverings

For our search through the possible face structure la-
belings of the face graph, we employ' Algorithm A
[NIL80] with a heuristic based on the probabilities of
the face structure hypotheses. The different labelings
are ordered in the open list according to a value de-
termined by the heuristic function. At each iteration,
a labeling, or state, is removed from the open list and
checked to see if it represents a solution. The successor
states are then generated, evaluated, and added to the
open list. The heuristic function has been designed
to meet three objectives. First, we wish to favor se-
lections containing high probability face structure hy-
potheses. Second, we wish to favor selections of face
.structure hypotheses from which face structures can be
verified; this effectively constrains the search to por-
tions of the face graph that have not been covered.
Finally, we favor those face structure hypotheses cov-
ering more faces; we seek the minimal face structure
covering of the face graph.

3.3 Extracting Primitives

Once a face structure covering of the face graph has
been found, the next step is to map the face struc-
tures in the covering to a set of primitives and deter-
mine their connectivity. From the face graph and its
associated face structure covering, we construct a face
structure graph in which nodes represent face struc-
tures in the covering and arcs represent face structure
adjacency. For each face structure in the face structure
graph, we can use the face-structure-to-primitive table
to generate a set of primitive hypotheses, ranked in de-
creasing order of probability. Our goal is to choose one
primitive hypothesis from the list at each face struc-
ture, such that the primitives represent a correct in-
terpretation of the face structure graph; we call such
a selection a primitive covering. Since there may be
multiple primitive coverings, we must enumerate them
in decreasing order of likelihood. To enumerate the se-
lections, we employ a variation on the algorithm used
to enumerate the face structure coverings.

Given a primitive covering of the face structure
graph, our next task is to determine the connectivity
relations between the primitives; the resulting prim-
itive graph, in which nodes represent primitives and
arcs represent primitive interconnectivity, is then com-
pared to the object database during the recognition
process. If two face structures are disconnected in the
face structure graph, their corresponding primitives
are disconnected in the primitive graph. However, if
two face structures are connected in the face struc-
ture graph, their corresponding primitives are con-
nected in the primitive graph according to the visibil-
ity of the connection; a visible connection constitutes
a strong connection, while an invisible connection con-
stitutes a weak connection. The subgraph consisting of
strong connections represents the index into the model
database.

4 Results

We have built a system to demonstrate our approach
to shape reconstruction; the system has been imple-
mented in LISP on a SymbolicsT™ 3600. We are cur-
rently integrating an image region segmentation algo-
rithm due to [MEE90] into our system. However, for
the following examples, the input to the system is a
manually segmented contour image; all face contour
graphs and face feature contour graphs are entered
manually. A more detailed discussion of the results
can be found in [DIC90b].

The first example presents an application to a simple
two-primitive object; the results are shown in Figure 3.
The correct face structure covering was found after




three iterations of the algorithm for enumerating face
structure coverings, while the correct primitive cover-
ing was found after one iteration of the algorithm for
enumerating primitive coverings. Two of the faces in
the image were altered due to the intersection of the
two primitives; consequently, face features were used
to hypothesize face labels for those faces. The two
primitives were found to be strongly connected since
their junction is visible; the end of the block is con-
nected to the side of the cylinder.

For the second example, we rotate the first object
so that it is viewed degenerately; the results are shown
in Figure 4. The correct face structure covering was
found after seven iterations, while the correct primi-
tive covering was found after one iteration. The reason
that the algorithm did not find the face structure cov-
ering sooner is due to the fact that the most likely
face structure hypotheses for the two faces belonging
to the block primitive could not be verified. The two
primitives were again found to be strongly connected;
however, the surfaces involved in the connection could
not be uniquely determined. Either the end of the
block is attached to the side of the cylinder, or the
end of the cylinder is attached to the side of the block.

The final example is more complex, containing a va-
riety of primitives; the results are shown in Figure 5.
The correct face structure covering was found after
six iterations, while the correct primitive covering was
found after one iteration. The tapered truncated cone
primitive is broken into two primitives since no 3-D
collinearity grouping is performed. Strong connections
were found between the end of the cylinder and the end
of the block, and between the side of the block and the
large end of the tapered block.

Given a set of 3-D primitives, the number of itera-
tions the reconstruction algorithm requires to converge
on a solution depends on the likelihoods of the views of
the primitives comprising the object; the more likely
the views, the quicker the convergence. In general, our
approach will be particularly successful for those sets
of primitives giving rise to nonuniform mapping dis-
tributions, i.e. certain features (face features, faces, or
face structures) are more likely to appear in the image
than others.
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