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1 Imtroduction

A multitude of object recognition paradigms have been proposed, each differingin
their primitive (feature) extraction, matching, model representation, verification, or
overall control strategies. Despite the tremendous variety of approaches, however,
there is a very powerful meiric that can be used to compare them. By examining
the indexing primitives (image structures that are matched to object models) used
in the various approaches, we can draw some powerful conclusions about building
object recognition systems. In addition, we will see that the selection of indexing
primitives not only affects system performance, but constrains the design of other
recognition system modules.

A comparison of object recognition systems according to their indexing primitives
is given in Figure 1. In the left column are various indexing primitives ranging
in complexity! from iow (e.g, 2-D points) to high (e g, 3-D volumes), as depicted
by the width of the leftmost bar (bar 1). Some of the indexing primitives are
two-dimensional, while others are three-dimensional, often reflecting the type of
input as intensity or range image data. Accompanying each indexing primitive is
a reference to an example system that employs that primitive. Note that this list
of indexing primitives is not complete; it is meant only to exemplify the range in
complexity of possible indexing primitives.

Working from left to right in Figure 1, we see that as the complexity of index-
ing primitives increases, the number of primitives making up the object models
decreases (bar 2), since an object can be described by a few complex parts or by
many simple parts. This, in turn, implies that the search complexity, ie, the
number of hypothesized matches between image and model primitives, decreases
with increasing primitive complexity (bar 3). The high search complexity involving
simple indexing primitives is compounded by large object databases. As a result,
most systems using simple indexing primitives, e g, Lowe [18], Huttenlocher and
Ullman [15], Thompson and Mundy [24], and Lamdan et al. [17], are applied to
small databases typically containing only a few objects.

'By complexity, we mean a primitive’s descriptive power, typically proportional to
the number of bits used to represent the primitive
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Figure 1. A comparison of object recognition systems according to their indexing
primitives (reprinted from {7], ©1992 Academic Press)

Since simple indexing primitives imply a more ambiguous interpretation of the
image data (e g., a few corners in the image may correspond to many corner triples
on many objects), systems that employ simple primitives must rely heavily on
a top-down verification step to disambiguate the data (bar 4). In this manner,
the burden of recognition is shifted from the recovery of complex, discriminatory
indexing primitives to the model-based verification of simple indexing primitives.
Since many different objects may be composed of the same simple features, these
systems are faced with the difficult task of deciding which object to use in the
verification step. However, there is a more fundamental problem with simple
indexing features

Reliance on verification to group or interpret simple indexing primitives has two
profound effects on the design of recognition systems. First, verifying the position
or orientation of simple indexing primitives such as points or lines requires an
accurate defermination of the object’s pose with respect to the image If the pose
is incorrect, the search of a local vicinity of the image for some model feature may
fail. Needless to say, accurately solving for the object’s pose can be computationally
complex, particularly when a perspective projection camera model is used, e.g,
Lowe [19].

Relying on verification also affects object modeling. Specifically, the resulting
object models must specify the exact geometry of the object, and are not invariant
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to minor changes in the shape of the object (bar 5). Consider, for example, a
polyhedral model of a chair. If we stretch the legs, broaden the seat, or raise the
back, we would reqguire a new model if our verification procedure were checking
the position of points and lines in the image. Excellent work has been done to
extend this approach to certain types of parameterized models, e g, Grimson [10],
Huttenlocher [13], and Lowe [18]. However, by nature of the indexing primitives,
these models do not explicitly represent the gross structure of the object, and
therefore cannot easily accommodate certain types of shape changes.

So far, bars 1 through 5 in Figure 1 clearly indicate the advantages of using
complex indexing features over simple ones. What is the trade-off? Why are most
3-I) from 2-D recognition systems using simple indexing primitives?® First of all, in
certain domains, e g., typical CAD-basged recognition, in which the ohject database
is very small, object models are constructed from simple primitives, object shape
is fixed, and exact pose determination is required, simple indexing primitives have
proven to be guite successful. However, more importantly, the reliable recovery of
more complex features, particularly from a single 2-I image, is a very difficult prob-
lem (har 6), particularly in the presence of noise and occlusion. Clearly, the major
obstacle in the path of any effort to build a recognition system based on complex
indexing primitives will be the reliable recovery of those primitives. This chapter
addresses this challenge. From a single 2-D image, we present an approach to the
recovery and recognition of 3-D objects using 3-I) volumetric indexing primitives.

2. Object Modeling

2.1. Choosing the 3-D Primitives

Given a database of object models representing the domain of a recognition task,
we seek a set of three-dimensional volumetric primitives that, when assembled
together, can be used to construct the object models. In addition, the chosen prim-
itives should be qualitatively defined so that the object models are invariant to
minor changes in shape of the primitives To demonstrate our appreach, we have
selected an object representation similar to that used in Biederman’s Recopnition
by Components (RBC) theory [2] RBC suggests that from nonaccidental relations
in the image, a set of contrastive dichotomous (e.g., straight vs. curved axis) and
trichotomous (e g , constant vs. tapering vs. expanding/contracting cross-sectional
sweep) 3-D primitive properties can be determined The Cartesian product of the
values of these properties gives rise to a set of volumetric primitives called geons.

Biederman’s geons constitute only one possible selection of gualitatively defined
volumetrie primitives; the general approach of applying the Cartesian product to
a set of confrastive primitive properties can be used fo penerate many different
volumetric primitive representations. For our investigation, we have chosen three
properties including cross-section shape, axis shape, and cross-section sweep. The

*Many of the more complex indexing primitives, e.g, 3-D surface patches, de-
formable models, and superquadrics are typically recovered from range data
images.
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Figure 2. (a) The ten modeling primitives (reprinted from [8], ©1992 IEEE), (b)
The aspect hierarchy (reprinted from [8], ©1992 IEEE)

values of these properties give rise to a set of ten gualitative volumetric primitives.?
To construct objects, the primitives are simply attached to one another with the
restriction that any junction of two primitives involves exactly one attachment
surface from each primitive,i.e. anattachment cannot lie on a surface discontinuity.

In our system, these ten primitives were modeled using Pentland’s SuperSketch
3-D modeling tool [21], as illustrated in Figure 2(a).* We believe that this taxonomy
of volumetric primitives is sufficient fo model a large number of objects; however,
nothing in our approach is specialized for superquadrics or geons. If necessary, our
approach can easily accommodate other sets of volumetric primitives bearing little
resemblance to geons or superquadrics.

2.2. Defining the 2-D Aspects

Traditional aspect graph representations of 3-D objects model an entire object
with a set of aspects, each defining a topologically distinet view of an object in
terms of its visible surfaces (Koenderink and van Doorn [16]). Our approach differs

3The Cartesian product of the values of these properties results in a set of 20 prim-
itives; however, to simplify the investigation in terms of generating the conditional
probability tables described in the next section, we have chosen a subset of 10
primitives which we believe to be a good basis for modeling a wide range of objects.
‘SuperSketch models each primitive with a superguadric surface that is subjected
to bending, tapering, and pinching deformations.



203

in that we use aspects to represent a (typically small} set of volumetric primitives
from which each object in our database is constructed, rather than representing
an entire object directly. Consequently, our goal is to use aspects to recover the
3-D primitives that make up the object in order to carry out a recognition-by-parts
procedure, rather than attempting to use aspects to recognize entire objects

To minimize the number of aspects needed to represent the primitives, we con-
strain the aspects to be invariant to minor changes in primitive shape. By encoding
only region topology and qualitative region shape, a particular aspect of a primitive
becomes invariant to changes in primitive size, curvature, taper, ete. As a resulf,
a small set of qualitatively different aspects describes a small set of qualitatively
different volumetric primitives; each primitive, in turn, describes an enormous
range of 3-I) shape The advantage of this approach is that since the number of
qualitatively different primitives used to build objects is generally small, the num-
ber of possible aspects is limited and, more important, independent of the number
of objects in the database In contrast, the number of aspects required to model
complete objects grows with the size of the database, and is further compounded
when objects are articulated.

The disadvantage is that if a primitive is cccluded from a given 3-D viewpoint, its
projected aspect in the image will also be occluded. Clearly, we must accommodate
the matching of occluded aspects, which we accomplish by introducing a hierar-
chical aspect representation we call the aspect hierarchy. The aspect hierarchy
consists of three levels, based on the faces appearing in the aspect set; Figure 2(b)
illustrates a portion of the aspect hierarchy.

» Aspects constitute the top level of the aspect hierarchy and represent all pos-
sible views of the primitives in terms of visible faces Identification of the
aspects can allow identification of the visible primitives. However, due to oc-
clugion, some of the faces in an aspect may be partially or completely missing.
When this occurs, we may need to analyze the arrangement of the remaining
faces, and 50 we introduce the second level of the aspect hierarchy

e Faces constitute the second level of the aspect hierarchy and represent all pos-
sible component faces making up the aspects. Reasoning about the type and
arrangement of visible faces can allow identification of an aspect even when
it is partially occluded However, again due to occlusion, some of the contours
that make up a face may be partially or completely missing. When this occurs,
we may need to analyze the arrangement of the remaining contours bounding
the face, and so we introduce the lowest level of the aspect hierarchy.

e Boundary Groups constitute the third and lowest level of the aspect hierarchy
and represent all subsets of the faces’ bounding contours. The boundary
groups provide a mechanism for identifying the face type even when the face
is partially oecluded.

2.3. Relating the 2.D Aspects to the 3-D Primitives
A given boundary group may be common to a number of faces. Similarly, a given
face may be a component of a number of aspects, while a given aspect may be
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the projection of a number of primitives To capture these ambiguities, we have
created a matrix representation that describes conditional probabilities associated
with the mappings from boundary groups to faces, faces to aspects, and aspects
io primitives. To generate these conditional probabilities, we first mode} gur 3-D
volumetric primitives using the SuperSketch modeling tool [21], as shown in Fig-
ure 2(a). The next step in generating the probability tables involves rotating each
primitive about its internal x, y, and z axes in 10° intervals. The resulting quanti-
zation of the viewing sphere gives rise to 648 views per primitive * For each view,
we project the primitive onto the image plane, and note the appearance of each
feature (boundary group, face, and aspect) and its parent. The resulting frequency
distribution gives rise to the three conditional probability matrices (which can be
found in [6]).

This procedure implicitly assumes that all primitives are equally likely to appear
in the image, and that all spatial orientations of the primitives are equally likely.
In practice, this is a strong assumption since both the frequency of occurrence
and spatial orientation distribution of a primitive is governed by the contents of
the object database. A more effective approach would be to preprocess the object
database, counting the number of times each primitive appears in each object and
noting the primitive’s crientation. The resulting set of @ priori probabilities of
occurrence and orientation could then be easily incorporated into the analysis,
providing a set of tables that more accurately reflect the contents of the object
database.

It should be emphasized that these results offer only a rough approximation to
the true probabilities. A more thorough analysis would use a finer quantization
of both the primitives' parameters and the viewing sphere, and would measure
the conditional probabilities directly from image data. The resulting explosion of
views would require an automated tool to perform the analysis and generate the
probabilities; much of the current analysis is performed manually. Nevertheless,
the computation of the aspect hierarchy is performed off-line and is independent of
the contents of the object database.

3. Primitive Recovery

The aspect hierarchy effectively prunes the mapping from boundary groups to
primitives by introducing topological and probabilistic constraints on the boundary
group to face, face to aspect, and aspect to primitive mappings An analysis of
the conditional probabilities [8] suggests that for 3-D modeling primitives which
resemble the commonly used generalized cylinders, superquadrics, or geons, the
most appropriate image features for recognition appear to be image regions, or
faces. Moreover, the utility of a face description can he improved by grouping the

*Rotating the superquadric about its z axis in 10° intervals results in 36 views for
a given x-y orientation. If we consider 18 x-y orientations by fixing either the x or
the y orientation and varying the other at 10° intervals, we can effectively cover
the viewing sphere with 648 views.
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faces into the more complex aspects, thus obtaining a less ambiguous mapping
to the primitives and further constraining their orientation Only when a face's
shape is altered due to primitive occlusion or intersection should we descend to
analysis at the contour or boundary group level. Our approach, therefore, first
segments the input image into regions and then determines the possible face labels
for each region. Next, we assign aspect labels to the faces, effectively grouping the
faces into aspects. Finally, we map the aspects to primitives and extract primitive
connectivity.

3.1 Exiracting Faces

The first step in extracting faces consists of extracting the bounding contours
of image regions. We hegin by applying Canny'’s edge detector {5} to the image
followed by Beymer’s algorithm [1] to fill gaps in the detected edges; minimal
cycles in the resulting edge map correspond to the bounding contours of regions
(or faces) in the image. The next step is to partition the contours at significant
curvature discontinuities. We apply Saint-Marc and Medioni’s scale-space adaptive
smoothing algorithm [22] to come up with a partitioned contour at low, medium,
and high scales.

Once the faces have been extracted, we must classify each face according to
the faces in the aspect hierarchy Both an image face and an aspect hierarchy
face are represented by a graph in which nodes represent the face’s bounding
(partitioned) contours, and arcs represent relations between contours. Contours
are characterized as straight or curved depending on how well a straight line can
be fitted to them; furthermore, curves are characterized as convex or concave. Two
non-coterminating lines are considered parallel if the angle between their fitted
lines is small, while two non-coterminating curves are considered parallel if one is
convex, one is concave, and the angle between their directions is small 8 Two two
non-coterminating, non-parallel lines are considered symmetric if there is sufficient
overlap when one line is projected onto the other”

Each of the three scales in the curve partitioning step gives rise to a graph rep-
resenting an image face. Consequently, the classification of an image face consists
of comparing its three graphs to those graphs representing the faces in the aspect
hierarchy. We begin with the graph corresponding to the low scale in the curve
partitioning step, often representing an oversegmentation of the face’s bounding
contour. If there is an exact match, as shown in Figure 8, then we immediately
generate a face hypothesis for that image face, identifying the label of the face. If
for any reason (e g., occlusion, segmentation errors, noise, etc.), there is no match,
we must descend to the boundary group level of the aspect hierarchy, as shown in

*The direction of a curve is computed as the vector whose head is defined by the
midpoint of the line joining the two endpoints of the curve, and whose tail is definied
by the point on the curve whose distance to the line joining the endpoints is greatest.
"Two non-parallel vectors will have an intersection point. When one vector is
rotated about that point it can be brought into correspondence with the other. If
the resulting overlap of the two lines is a large portion of the smaller of the two
Iines, the lines are said to be symmetric.
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Figure 4. We then compare subgraphs of the graph representing the image face to
those graphs at the boundary group level of the aspect hierarchy For each sub-
graph that matches, we generate a face hypothesis with a probability determined
by the appropriate entry in the conditional probability matrix mapping boundary
groups to faces This process is repeated for each of the other two graphs (medium
and high scales). If, for any scale, a graph matches an aspect hierarchy face, the
graphs representing all other scales are discarded; otherwise, we collect together
the face hypotheses generated at all three scales. Each face hypothesis defines one
or more seed contour sets representing those hounding contours of the image face
(entire face or specific boundary groups) which define the label of the face.®

8In the case of a face hypothesis whose image face exactly matches an aspect
hierarchy face (defined by the label of the face hypothesis), there will be a single
seed contour set containing all the bounding contours of the image face. However, in
the case of a face hypothesis whose image face does not match an aspect hierarchy
face, there will be one seed contour set for every boundary group supporting the
face hypothesis.
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3.2. Extracting Aspects
3.2,1 Problem Definition

The image can now be represented by a face graph, in which nodes represent
faces (or regions) and arcs represent face adjacencies. Furthermore, following face
extraction, each node (face) in the face graph has one or more face hypotheses
associated with it. We can formulate the problem of extracting aspects as follows:
Given a face graph and a set of face hypotheses at each face, find a covering of the
face graph using aspects in the aspect hierarchy, an aspect covering, such that no
faceis left uncovered and each face is covered by only one aspect. Or, more formally:
Given aninput face graph, FG, partition the vertices (faces) of F'G into disjoint sets,
Sy, 82, 83, -, S, such that the graph induced by each set, S, is isomorphic to the
graph representing some aspect, A;, from a fixed set of aspects, A3, 42, As, ..., An.

There is no known polynomial time algorithm to solve this problem (see [8] for
a discussion on the problem’s computational complexity); however, the conditional
probability matrices provide a powerful constraint that can make the problem
tractable After the previous steps, each face in the face graph has a number of
associated face hypotheses. For each face hypothesis, we can use the face to aspect
mapping o generate the possible aspect hypotheses that might encompass that
face, as shown in Figure 5; the face hypothesis becomes the seed fuce hypothesis of
each of the resulting aspect hypotheses. The probability of an aspect hypothesis
is the product of the face to aspect mapping and the probability of its seed face
hypothesis At each face, we collect all the aspect hypotheses (corresponding to all
face hypotheses) and rank them in decreasing order of probability.

3.2.2. Aspect Instantiation

Each aspect hypothesis is merely an informed guess as to the aspect label of its
seed face hypothesis. The process of verifying the hypothesized aspectlabel is called
aspect instaniiation. For an aspect to be instantiated from an aspect hypothesis,
the relations between the seed face hypothesis and neighboring face hypotheses
must be consistent with the definition of the aspect. More formally, there must
exist a set of faces, 5, including the face corresponding to the seed face hypothesis,
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such that the face subgraph induced by § is isomorphic to the graph representing
the aspect. Since there may be multiple sets of faces which satisfy this criteria,
there may be multiple aspects instantiated from a single aspect hypothesis. Hence,
the process of aspect instantiation produces a {possibly empty) set of instantiated
aspects for a given aspect hypothesis.

Let us explore the aspect instantiation process in more detail. Consider a face
graph, (G, and an aspect hypothesis, ok, with label ¢, seeded at face f in FG. The
aspect hierarchy aspect corresponding to label ¢, herein called the aspect definition,
specifies that the aspect contains k faces, each with specified Iabel and adjacency
relations. We first collect together all neighboring faces of f (including f itself) in
FG. Next, we generate all face subsets of size < k from this collection; recall that
there is an upper bound on k which is fixed (specified by the aspect hierarchy) and
independent of the size of FG. For each subset, we check to see if the subgraph
of FG (i.e, face subgraph) induced by the face subset is isomorphic to the aspect
definition. For each matching subset, we instantiate an aspect; the result is a
(possibly empty) lst of instantiated aspects.

An aspect can be instantiated from an aspect hypothesis and a face subgraph if
and only if the following conditions are satisfied:

o For each face in the face subgraph, there must exist, among its lst of face
hypotheses, a hypothesis whose label agrees with the label of its matching
face in the aspect definition; if such a face hypothesis is found, it is assigned
to the face in the subgraph.

¢ For each arc (or face adjacency relation) in the face subgraph, there must exist
a corresponding arc in the aspect definition. Similarly, for each arc in the
aspect definition, there must exist a corresponding arc in the face subgraph.

o For each arc in the face subgraph involving two faces, 4 and B, there must
exist a seed confour set belonging to the face hypothesis assigned to A, and
a seed contour set belonging to the face hypothesis assigned to B, such that
each of the two seed contour sets includes the contours shared by A and 5.
Oz, more intuitively, the contour{s} shared by two faces must be seed contours
of both faces

o For each face in the face subgraph, there must exist at least one seed contour
set belonging to its assigned face hypothesis that satisfies all face adjacency
relations invelving that face.

If an aspect with k faces cannot be instantiated from an aspect hypothesis, it may
be due to the fact that the aspect is occluded in the image. In this case, our goal is
to find subsets of image faces that match portions of the aspect definition. Consider
the set 5 of all subsets of image faces such that for each s in S, |s| < k and the face
subgraph induced by s matches some portion of the aspect definition (according to
the above set of conditions). In addition, according to the partial match, let the valid
seed contour setsat faceiin sbe SC},SC§, =, SC!. Finally, letr represent the faces
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in the aspect definition not included in s (presumably oecluded). We instantiate the
aspect encompassing s provided the following conditions are satisfied:

o There exists no other subset ¢ in § such that s is a proper subset of { and the
aspect encompassing { has been instantiated. Or, more intuitively, if a set
of faces satisfies an aspect, we ignore its subsets (which may also satisfy the
aspect).

s For each arcin the face graph involving a face, fs, in s, and a face, fr,inr,
there must exist a valid seed contour set SC’J-f * belonging to the face hypothesis
agsigned to fs such that the contours shared by fs and fr do not appear in
the seed contour set. Or, more intuitively, if face A is occluded by face B, then
the contours shared by faces 4 and B (which belong to face B) should not be
seed contours of face A.

The above restrictions have a significant impact upon the selection of boundary
groups. If we have a weak (i.e, low probability) face hypothesis, then it is likely
that each of its seed contour sets represents a small fraction of the contours com-
prising the face. Consequently, instantiation of an aspect including such a face
hypothesis may fail since it is likely that the required neighboering faces do not bor-
der at seed contours. However, with the lack of seed contours, smaller subgraphs
may match the aspect definition since it is lLikely that neighboring faces do not
border at seed contours. We conclude that there is a trade-off between selecting
only the best boundary groups and exhaustively selecting all boundary groups. In
the former case, a strong face hypothesis supported by strong boundary groups will
likely match few aspect definitions, pruning out many interpretations of the face.
However, if weaker boundary groups are not included in the face hypothesis, a cor-
rect interpretation may be impossible. Conversely, the presence of weak boundary
groups allows sccluded aspects to be instantiated. Although this may guarantee
a solution, the increased number of interpretations may lengthen the search for a
solution, and may result in less likely solutions being prematurely generated.

3.2.3. Algorithm

We can now reformulate our problem as a search through the space of aspect
labelings of the faces in our face graph.! In other words, we wish to choose one
aspect hypothesis from the list at each face, such that the instantiated aspects
completely cover the face graph. Figure 6 illustrates the correct aspect covering of
the face graph representing a scene containing an object composed of two blocks; one
aspect label, in this case, A27 (see [8] for a description of all aspects), is selected
from the list at each face to completely cover the graph There may be many
labelings which satisfy this constraint. Since we cannot guarantee that a given
aspect covering represents a correct interpretation of the scene, we must be able to
enumerate, in decreasing order of likelihood, all aspect coverings until the objects
in the scene are recognized.

The size of this space is O(A"), where A is the number of aspects in the aspect
hierarchy, and F is the number of faces in the image.
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Figure 6 Covering the face graph with aspects (the aspect labeling problem)
{reprinted from [7], ©1992 Academic Press)

For our search through the possible aspect labelings of the face graph, we employ
Algorithm A (Nilsson [20]) with a heuristic based on the probability estimates
for the aspect hypotheses. The different labelings are ordered in the open list
according to the heuristic. At each iteration, a labeling, or state, is removed from
the open list and checked (using a depth-first search) to see if it represents a
solution {(a covering). The successor states are then generated, evaluated, and
added to the open list. The actual instantiation of aspects is performed during
successor generation. The algorithm continues until all possible solutions are
found, i.e. all labelings are checked. However, it should be peinted out that in an
object recognition framework, once a solution is found, the search is only continued
if the recovered shapes (inferred from the aspect covering) can not be recognized.

Before adding a successor state to the open list, it is evaluated using a heuristic
function. The function has been designed to meet three objectives. First, we
favor selections of aspects instantiated from higher probability aspect hypotheses.
Second, we favor selections whose aspects have fewer occluded faces, since we are
more sure of their labels. Finally, we favor those aspects covering more faces in
the image; we seek the minimal aspect covering of the face graph. These three
objectives have been combined to form an algorithm for evaluating a state, as
shown in Figure 7; note that a node consists of a number of indices, one per face,
with each index referring to a particular aspect hypothesis for that face 10

WThe values of ¢; and c; were empiricaliy chosen to be 0.25 and 0 50, respectively.



input: node

output: value

value = 0

for each index in node do
aspect set = set of instantiated aspects pointed to by index
aspect hypothesis = aspect hypothesis from which aspect set was instantiated
value = value -

probability(aspect hypothesis) -

(er * maximom number of visible faces of any aspect in aspect set.) }
1 number of faces in aspect Aypothesis definition

(cz + maximum number of visible faces of any aspect in aspect set)

return value

Figure 7. Heuristic for Evaluating a State (reprinted from [8], ©1992 IEEE)

3.3. Extracting Primitives

We can represent an aspect covering by a graph in which nodes represent aspects
and arcs represent aspect adjacencies. For each aspect in the aspect covering,
we can use the aspect to primitive mapping to hypothesize a set of primitives,
as illustrated in Figure 8.% As in the case of aspect hypotheses generated from
face hypotheses, we can rank the primitives in decreasing order of probability.
A selection of primitives, one per aspect, represents a 3-D interpretation of the
aspect covering; we call such a selection a primitive covering ® Since we cannot
guarantee that a given primitive covering represents a correct interpretation of
the scene, we must be able to enumerate, in decreasing order of likelihood, all
primitive coverings until the objects in the scene are recognized. To enumerate the
selections, we employ a variation on the search algorithm used to enumerate the
aspect coverings. The heuristic function simply negates the sum of the probabilities
of the primitive, thereby favoring higher probability interpretations.

A primitive covering, represented by a graph in which nodes represent primitives
and arcs represent primitive adjacencies, is then compared to the object database
during the recognition process. If two aspects are not connected in the aspect
covering, their corresponding primitives are not connected in the primitive covering
However, if two aspects are connected in the aspect covering, this does not mean
that their corresponding primitives are necessarily connected in 3-I; one primitive
may be occluding the other without being attached to it. A primitive connection

“In addition, the aspect hierarchy defines a mapping from the faces in an aspect to
the attachment surfaces of a primitive.

*The number of possible primitive coverings is O(P*), where P is the number of
primitives in the aspect hierarchy, and A is the number of aspects in the aspect
covering.
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Figure 8. Generating the primitive labels of an aspect (reprinted from [7], ©1892
Academic Press)

between primitives P, and P, is said to be visible if the following condition is
satisfied:

» There exists a pair of faces, 3 and F», such that F; belongs to the aspect
corresponding to P, and F; belongs to the aspect corresponding to P, Fy and
F, are adjacent in the face graph, and Fy and F, share a contour.

Therefore, we define two types of primitive connectivity based on connection visi-
bility:

» Two primitives are said to be strongly connected if their corresponding aspects
are adjacent in the aspect covering, and the primitive connection is visible; in
this case, we assume that the primitives are attached.

s Two primitives are said to be weakly connected if their corresponding aspects
are adjacent in the aspect covering, and the primitive connection is not visible;
in this case, one primitive occludes the other and it is not known whether or
not they are attached.

A strong primitive connection strongly suggests the existence of a connection
between two primitives. We can enhance the indexing power of a strongly connected
subgraph if the attachment surfaces involved in each connection are hypothesized.
Although it is impossible to define a set of domain independent rules which will,
for any given set of primitives, correctly specify the attachment surfaces involved
in a connection, we can define a set of heuristics which will specify a set of likely
candidates. If a strongly connected subgraph is common to two object models, these
heuristics can then be used to rank order the candidates for verification.

Hypothesizing the attachment surfaces proceeds as follows. Let S; be the set
of faces belonging to the aspect corresponding to P, which are adjacent to a face
belonging to the aspect corresponding to P,. Similarly, let S, be the set of faces
belonging to the aspect corresponding to /> which are adjacent to a face belonging
to the aspect corresponding to ). There are three cases to consider:
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1. Sets S, and S» each contain a single face. The attachment surface for P is
among the set of attachment surfaces that are adjacent to, and including, the
surface representing the face in ;. The attachment surface for # is among
the set of attachment surfaces that are adjacent to, and including, the surface
representing the face in 5;. More intuitively, we believe that the attachment
surface is in the local vicinity (on the primitive) of the attachment surface
corresponding to the single visible face.

2 Set S, contains a single face and set Sp contains multiple fuces In this case,
the attachment surface for P is the surface that the face in 5, maps to The
attachment surface for P, is among the set of surfaces that are adjacent to, but
not included in, the surfaces representing the faces in 53 More intuitively, we
believe that P, penetrates F;; since the connection is visible, the attachment
surface for S is therefore attached to an occluded surface of Po. (The same
holds true when set So contains a single face and set 5 contains multiple
faces )

3. Sets S; and S both contain multiple faces. In this case, the attachment surface
for P, is among the set of surfaces that are adjacent to, but not included in,
the set of surfaces representing the faces in 5;. The attachment surface for
P» is among the set of surfaces that are adjacent to, but not included in, the
set of surfaces representing the faces in Sp. More intuitively, we believe that
although the attachment of P and P is visible, both their attachment surfaces
are occluded.

4. Object Recognition

Given a primitive covering representation of the scene, in which nodes represent
3-I volumetric primitives and arcs represent strong or weak connections between
the primitives, the final task is to identify the object(s) in the scene. There are two
cases to consider. In an unexpected object recognition domain, we have no a priori
knowledge of the contents of the scene. In this case, the recognition task consists
of two steps: 1) identifying possible candidate models that might be present in the
scene (model indexing), and 2) verifying that these models actually appear in the
scene. In an expected object recognition domain, we search the image for one or
more instances of a particular object

4.1, Unexpected Object Recognition

The simplest unexpected ohject recognition strategy is to compare the entire
primitive covering to each model in the object database, ie., verify each object
model in the image. If the graph representing the primitive covering is isomor-
phic to the graph (or subgraph) representing an object in the database, then the
object in the scene has been identified. However, there are two major problems
with this naive approach. First, for large object databases, the cost of verification
may be prohibitive, as was shown by Grimson {11]. Second, this approach assumes
that a primitive covering represents a single object. If the scene contains multi-
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ple occluded objects, the primitive covering will not match a single object in the
database. Thus, we are left with two problems: 1) How do we avoid matching the
recovered primitives to each object in the database?; and 2) What portions of the
primitive covering likely belong to a single objeet, and should hence participate in
the matching process?

4.1L1 Model Indexing

An alternative to sequentially matching the recovered primitives to each model
object is provided by hashing techniques A hash table is a precomputed data
structure each of whose entries (in our case) map some recovered image feature(s) to
a list of object models that contain that feature. The mapping between a recovered
image feature and a location in the table is provided by a hash function. Once
an image feature is “hashed” to an entry in the hash table, each of the objects
referenced in the table entry must be verified. The advantage of hashing is that
by preprocessing off-line the models in the object database, considerable on-line
gearch can be avoided.

The hash table alone does not solve the problem, for if the recovered image
features are simple, e.g., points, lines, or corners, they will be present in every
ohject. The resulting hash table wil} have few entries (corresponding to a few simple
indexing primitives), with each entry pointing to every object. Unfortunately, such
a hash table leads us back to a sequential search of the database. Clearly, the goal
in designing the hash table is to increase the size of the table, so that there are
more entries, each having fewer pointers to object models.

As stated in Section 1, our goal has been to recover from the image richer, more
complex primitives whose combination offers a more discriminating index into the
object database. Unlike simple features such as lines, points, or corners which
are abundant in every object, a particular collection of 3-D) volumetric primitives is
unlikely to be common to many objects. Our solution, therefore, is to index using a
collection of recovered primitives Since we have a variety of primitives which can
be eonnected in a variety of ways, the size of our hash table will be larger than if we
index using simple primitives. However, our second problem still remains: What
collection of recovered primitives do we use as an index?

From a primitive covering of the input scene, we would like to index using a
collection of recovered primitives that belongs to the same object In Section 3.3,
we hypothesized that if a connection between two primitives was visible, ie, a
strong connection, the two primitives were connected in 3-D. Our model indexing
strategy therefore consists of identifying all the strongly conmected components in
the primitive graph, each hypothesizing a set of object candidates according to the
two-level hash function described in Figure 9(a)

At the first level, we hash on the basis of a string formed from the labels of the
primitives in the strongly connected component. Each entry in this table points
to a separate hash table at the second level which encodes primitive connections;
each hash table at the second level corresponds to objects that contain a particular
set of primitives (mumber and type). Once at the second level, we hash on the basis
of a string formed from the connections in the strongly connected component. It is
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Figure 9  Object recognition strategies: (a) Unexpected object recognition
{reprinted from [7), ©1992 Academic Press), (b) Expected object recognition
{reprinted {rom [7], ©1992 Academic Press)

at this level that we further discriminate the ohjects en the basis of their primitive
connections. The entire process is repeated for each strongly connected component
in the primitive covering, resulting in a set of candidate cbject hypotheses.

4.12. Model Verification

Given a set of candidate models, each containing a given strongly connected
component (or part thereof), the final step is to evaluate how well each medel fits
the scene (primitive covering). This process is known as hypothesis verification
and consists of twa stages. The first stage finds maximal correspendences between
recovered primitives and model primitives.

Since our hash function ignores the connections in the strongly connected sub-
graph, the first step is to check that the strong connections in the strongly connected
subgraph exist between the corresponding primitives in each candidate model; this
may result in some candidate models being discarded. At this peint, for each re-
maining candidate model, the strongly connected subgraph in the primitive graph
is isomorphic to a subgraph of the candidate model. We then grow this correspon-
dence acecording to the following steps:
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goodness of fit = 0
for each image primitive in correspondence do
goodness of fit = goodness of fit + probability(image primitive)
for each arc in primitive subgraph do
if arc is weak then
goodness of fit = goodness of fit + ¢
else {(arc is strong)
if arc correctly specifies attachment surfaces then
goodness of fit = goodness of fit + ¢
else
goodness of fit = goodness of fit + ¢3

Figure 10. Goodness of fit algorithm for model candidates (reprinted from [7],
©1992 Academic Press)

1. Given a correspondence between a primitive (covering) subgraph PS and a
model subgraph M5, we first choose a model primitive M; that is not con-
tained in the model subgraph, but is connected to a primitive M; in the model
subgraph. In the primitive subgraph, let the primitive corresponding to M;
be P;.

2. Among the neighbors (through strong or weak connections) of P; in the primi-
tive covering which are not contained in P S, select those whose label matches
that of M;. If more than one such neighbor exists, we create a new correspon-
dence for each neighbor

We repeat this sequence of steps for each correspondence until its size stabilizes.
The entire process is then repeated for each strongly connected subgraph in the
primitive covering. The final result is a list of correspondences, each mapping a
subgraph of the primitive covering to a model subgraph.

The final step ranks the correspondences according to a goodness of fit measure
defined by the algorithm shown in Figure 10. The goodness of fit measure is a
function of the size of the correspondence, the probability of the recovered primitive
hypotheses, the visibility of the primitive connections, and the degree to which the
connections are correctly specified. The input to the algorithm is a correspondence,
consisting of a primitive subgraph whose nodes represent image primitives, and a
model subgraph whose nodes represent model primitives.}?

Once the correspondences are ranked according to the goodness of fit measure, we
choose the best correspondence and remove those aspects from the image that cor-

19 or the experiments described in Section 5, the values of ¢y, ¢p, and ¢z were chosen
to be 1.0, 3.0, and 2 0, respectively
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respond to the recognized primitives. From the remaining aspects, forming a new
aspect covering, we repeat the entire process. We first apply the primitive covering
algorithm, establish primitive connectivity, extract strongly connected compenents,
determine candidate models, grow and rank the correspondences, and select the
most likely correspondence. The process is repeated until no aspects remain in the
image. At any stage, a primitive covering may not yield any recognizable ohjects,
ie, candidate models. In this case, we generate a new primitive covering from the
current aspect covering and repeat the process. Only when all primitive coverings
are exhausted do we generate a new aspect covering.

4.2. Expected Object Recognition

In the domain of expected object recognition, the image is searched for one or
more instances of a particular object. In this case, there is no need for a complicated
indexing step since we know to what object the image features will be matched.
Instead, we are faced with the question: What features of the object do we search
for in the image? Qur approach is to start with a primitive covering and then
constrain further primitive and aspect covering generation by exploiting knowledge
of the object. The assumption here is that the first aspect and primitive coverings
of the scene represent a correct interpretation for much of the scene, and provide a
good starting point for object search.

Figure 9(b) ilustrates our approach to expected object recognition. The first step
is the generation of the first primitive covering given the first aspect covering; this
represents the most likely interpretation of the scene in terms of recovered shape.
Next, as in the case of our approach to unexpected object recognition, we extract
the strongly connected components. For each strongly connected component, the
indexing step returns a list of model candidates that contain the component Since
we are looking for a particular object, we can discard all candidates but the object we
are searching for (if it exists as a candidate) Ashefore, we grow the correspondence
hetween image and model primitives. However, it is during this last step that our
approach differs

In the unexpected object recognition algerithm, we attempt to completely rec-
ognize the entire primitive covering. Only when recognition fails do we generate
another primitive covering Furthermore, only when all primitive coverings are ex-
hausted do we generate another aspect covering Our expected object recognition
approach attempts to integrate the three processes based on knowledge of which
object part we are searching for.

During the correspondence prowing step, some primitive in the primitive covering
is checked to see if it matches some primitive in the moedel If not, the unexpected
object recognition approach does not include that primitive in the correspondence,
i.e., growth of the correspondence is discontinued through that primitive. However,
there may be an alternative primitive interpretation of that primitive’s seed aspect
(aspect used to infer primitive) that matches the expected model primitive Recall
that from the aspect covering, each aspect was used to infer a list of primitives in
decreasing order of probability By checking the various primitive hypotheses (in
which the current primitive is included), we may find that the primitive label we
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are searching for is among the possible primitive interpretations of the seed aspect.
If so, we choose the alternate interpretation and add it to the correspondence. If
not, we can probe deeper for the correct interpretation.

Descending one more level of the aspect hierarchy, there may be other aspect
interpretations of the faces belonging to the seed aspect. Furthermore, one of these
interpretations may be used to infer the primitive we are searching for. Therefore,
our strategy consists of searching the aspect labels of the faces belonging to the
seed aspect for an aspect which not only can be verified, but whose mapping to the
desired primitive has a nonzero conditional probability. If such an aspect is found,
the desired primitive is inferred and added to the correspondence. If the search is
unsuccessful, the correspondence will not include the faces belonging to the seed
aspect.

5. Results

We have built a system to demonstrate our approach to 3-D object recogni-
tion. The system is called OPTICA (Object recognition using Probabilistic Three-
dimensional Interpretation of Component Aspects), and has been implemented in
Common Lisp on a Sun 4/3307" workstation. The image preprocessing which takes
animage and returns a gap-filled skeletonized image is performed in the KBVision
environment. In this section we apply OPTICA to the six images presented in Fig-
ure 11; images (¢) and {d) are real images of objects constructed out of clay, while
{(a), (b}, (e}, and (f) were generated using Pentland’s Thingworld modeling tool.

Figures 12(a) through (d) present the results of applying OPTICA to the images
in Figures 11{a)} through (d). There are four windows in each figure. At the top, the
image window contains the contours extracted from the image, along with the face
numbers. To the left is the diagnostic window describing the recovered primitives
(primitive covering) The mnemonics PN, PL, PP, and PS, refer to primitive number
(sinply an enumeration of the primitives in the covering), primitive label (see
Figure 2(a)), and primitive probability, respectively. The mnemonics AN, AL, AP,
and AS refer to the aspect number {an enumeration), aspect label (see [8]), aspect
probability, and aspect score (how well aspect was verified), respectively. The
mnemonics FN, FL, FP, and PS refer to face number {in image window}, face label
(see [8]), face probability, and corresponding primitive attachment surface (see [8]),
respectively, for each component face of the aspect

To the right are the “Recognized Objects” and “Primitive Connections” windows.
The “Recognized Objects” window indicates the aspect covering iteration and prim-
itive covering iteration (given the aspect covering) In addition, this box lists all
objects currently {at the above iterationsg) identified in the image, including their
corresponding primitive numbers (PN). The “Primitive Connections” window indi-
cates the primitive connections by primitive number (PN}); if two primitives are
strongly connected, a list of probable attachment surfaces appears in parentheses
next to the primitive number This list is not exclusive, but rather a list of likely
candidates

In each case ({a) through (d)), the first aspect and primitive coverings represent
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{d) {e)

Figure 11. The six images input to OPTICA ((c) and (d) are real images, while (a),
{b), (c), {d) were generated using Pentland’s Thingworld modeling toel) ((c) and {d)
reprinted from [8], (©1992 IEEE)

the correct interpretation of the scene. Total execution time, excluding the time
required to extract the contours (90 seconds), was approximately 60 seconds in
each case; the majority of that time was spent in building a graph representation
of an image face, i e., connected components analysis, curve partitioning, curve
classification, and symmetry and parallelism detection.

Figure 13(a) presents the results of applying OPTICA to the image in Figure 11(e).
In this case, the first aspect and primitive coverings do not represent the correct
interpretation of the scene (arm of lock is misinterpreted as a cylinder). If we let
the algorithm continue, we arrive at the correct interpretation with the second
primitive covering given the first aspect covering, as shown in Figure 13(b) When
we apply the expected object recognition algorithm (searching for a lock), the search
for the bent cylinder arm is constrained to the area covered by the cylinder faces
{first covering) In this case, the correct primitive interpretation was found by
descending only one level of the aspect hierarchy, i.e. the aspect was correct but
the primitive inference was wrong.

Similarly, Figure 13(c) presents the resulis of applying OPTICA to the image in
Figure 11{f}. Again, the first aspect and primitive coverings do not represent the
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correct interpretation of the scene (handle of pot is misinterpreted as a block) If
we let the algorithm continue, we eventually arrive at the correct interpretation
with the fifth primitive covering given the third aspect covering, as shown in Fig-
we 13(b). When we apply the expected object recognition algorithm (searching
for a pot), the search for the cylinder handle is constrained to the area covered by
the block faces (first covering). In this case, the correct primitive interpretation
was found by descending two levels of the aspect hierarchy, i.e. a new aspect was
recovered before the correct primitive inference could be made.

6. Conclusions

The inefficiency of most 3-D object recognition systems is reflected in the rela-
tively small number of objects in their databases; in many cases, algorithms are
demonstrated on a single object model. The major problem is that these systems
terminate the bottom-up primitive extraction phase very early, resulting in simple
primitives such as lines, corners, and inflections. These primitives do not provide
very discriminating indices into a large database, resulting in a large number of
hypothesized matches. Conseguently, the burden of recognition falls on top-down
verification, which for simple geomeiric image features requires both accurate es-
timates of the object’s pose and prior knowledge of the object’s geometry.

We instead index into the model database with more discriminating primitives,
ie, ones that do not require precise knowledge of model geometry or accurate
estimates of pose. An appropriate choice for higher-order indexing primitives is
the class of volumetric primitives which capture the intnitive notion of an object’s
parts. In this approach, object models are constructed from object-centered 3-D
volumetric primitives. The primitives, in turn, are represented in the image by a
set of viewer-centered aspects.

Unlike typical aspect-based recognition systems which model each entire object
in a database using a set of aspects, we use aspects to model a fnite number of
volumetric parts used to construct the objects. The size of the resulting aspect set
is fixed and, more important, independent of the contents of the object database To
accommodate the representation of accluded aspects arising from occluded prim-
itives, we introduce a hierarchical aspect structure, called the aspect hierarchy,
based on the faces appearing in the aspect set The ambiguous mappings between
levels of the aspect hierarchy are captured by a set of conditional probabilities
resulting from a statistical analysis of the aspects. The aspect hierarchy is precom-
puted once off-line and remains fixed while objects are added or removed from the
database.

We have demonstrated our approach using a vocabulary of primitives resem-
bling Biederman's geons [2]; however, our approach is not dependent on geons as
object modeling primitives. Although any selection of volumetric primitives can be
mapped to a set of aspects, our hierarchical aspect representation is particularly
appropriate for primitives with distinct surfaces, i.e, primitives whose aspect:
contain distinct faces. The use of a face-based aspect hierarchy is the backhbone of
our approach, allowing us to obtain probabilistic rules for inferring more complex
features from less complex features, and for merging oversegmented contours ané
regions [8]. Although the individual features represented in our aspect hierarch;
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may change when using other types of volumetric primitives, the concepts of rep-
resenting a set of 3-I volumetric primitives as a probabilistic hierarchy of image
features, and exploiting these probabilities during recovery and recognition are
applicable to any object representation that models objects using volumetric parts

The cost of extracting more complex primitives from the image is the difficulty of
grouping less complex features into more complex features; the number of possible
groupings is enormous. Our recovery algorithm uses a statistical analysis of the
aspects (explicitly represented in the aspect hierarchy) to rank-order the possible
groupings. The result is a heuristic that has been demonstrated to quickly arrive
at the correct interpretation. Note, however, that our approach will, if need be,
enumerate all possible interpretations (or groupings); the correct interpretation of
any scene, no matter how ambiguous or unlikely, will eventually be generated.

We have presented a database indexing scheme that maps a group of recovered
primitives and their connections to a hash table location whose contents specify
those models containing a similar primitive structure. The candidate hypotheses
are then topologically verified and ranked based on the strengths of the hypothe-
sized primitives. We show that for both the problems of unexpected and expected
object recognition, the same recognition engine can be used.
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