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Abstract. We present an active object recognition strategy which com-
bines the use of an attention mechanism for focusing the searck for a
3-D object in a 2-D image, with a viewpoint control strategy for disam-
biguating recovered object {ealures. The aitention mechanism consists
of a probabilistic search through a hierarchy of predicled feature obser-
vations, taking objects into a set of regions classified according to the
shapes of their bounding contours. If the features recovered during the
attention phase do not provide 2 unique mapping to the 3-D object be-
ing searched, the probabilistic feature hierarchy can be used to guide the
camera to a new viewpoint {rom where the object can be disambiguated.

1 Introduction

An important aspect of active vision is the use of an attentional mechanism
to decide where in the image to search for a particular object [14]. Template
matching schemes which move an object template throughout the image offer
no atfention mechanism since all positions in the image are treated equally.
However, any recognition scheme that preprocesses the image to extract some
set of features provides a basis for an attention mechanism Assuming that the
recovered lmage features correspond to model features, object search can be
performed at those locations in the image where the features are recovered.
For an attention mechanism to be effective, the features must be distinguish-
ing, i e., have low entropy. If the recovered features are common to every object
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being searched, they offer little in the way of focusing a search for an object
This is typical in object recognition systems which match simple image features
like corners or zeroes of curvature to model features, e.g., [10, 5, 8]. Although
invariant to viewpoint, there may be an abundance of such features in the image,
leading to a combinatorial explosion in the number of possible correspondences
between image and mode! features that must be verified. In the first part of this
paper, we will argue that regions, characterized by the shapes of their bounding
contours, provide a more effective attention mechanism than simple linear fea-
tures. We go on to present a Bayesian attention mechanism which maps objects
into volumetric parts, maps volumetric parts into aspects, and maps aspects to
component faces. Face predictions are then matched to recovered regions with a
goodness-of-fit providing an ordering of the search locations

In the second part of this paper, we extend our objeck representation for
attention to support active viewpoint control. We will introduce a representation,
called the aspect prediction graph, which is based on the aspect graph. Given an
ambiguous view of an object, the representation will fixst tell us if there is & view
of the object which is more discriminating. If so, the representation will tell us in
which direction we should move the camera to encounter that view. Finally, the
representation will tell us what visual events (the appearance or disappearance
of features on the object) we can expect to encounter while moving the camera
to the new viewpoint

2 Attention

2.1 Review of the Object Representation

"f'o dernonstrate our approach to attention, we have selected an object represen-
tation similar to that used by Biederman [1], in which the Cartesian product of
contrastive shape properties gives rise to a set of volumetric primitives called
geons. For our investigation, we have chosen three properties including cross-
section shape, axis shape, and cross-section size variation (Dickinson, Pentland,
and Rosenfeld [3]). The cartesian product of the dichotomous and trichotomous
values of these properties give rise to the set of ten volumes illustrated in Fig-
ure 1; to construct objects, the volumes are simply attached to one another.
Traditional aspect graph representations of 3-D objects model an entire ob-
ject with a set of aspects, each defining a topologically distinct view of an object
in terms of its visible surfaces (Koenderink and van Doorn [7]) Our approach
differs in that we use aspects to represent the (typically small) set of volumetric
part classes from which each object in our database is constructed, rather than
representing an entire object directly. The representation, called the aspect hi-
erarchy, consists of three levels, including of the set of gspecis that model the
chosen volurnes, the set of component faces of the aspects, and the set of boundary
groups Tepresenting all subsets of contours bounding the faces. The ambiguous
mappings between the levels of the aspect hierarchy were originally captured in a
set of upward conditional probabilities (Dickinson et al. [3]), mapping boundary
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Fig. 1. The Ten Modeling Primitives

groups to faces, faces to aspects, and aspects to volumes? However, for the at-
tention mechanism described in this paper, the aspect hierarchy was augmented
to include the downward conditional probabilities mapping volumes to aspects,
aspects to faces, and faces to boundary groups. Figure 2 illustrates a portion of
the augmented aspect hierarchy
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Fig. 2. The Augmented Aspect Hierarchy

* The probabilities are estimated from a frequency analysis of features viewed over a
sampled viewing sphere centered on each of the ten volume classes.



2.2 A Case for Focusing on Regions

Given the various levels of the augmented aspect hierarchy, the question arises:
At which recovered features from the image do we focus our search for a partic-
ular object? Many CAD-based recognition systems advocate extracting simple
features like corners, high curvature points, or zeroes of curvature. Although
robustly recoverable from the image, there may be many such features in the
image offering marginal utility for directing a search. Such features are analogous
to the boundary group level of features in the augmented aspect hierarchy. By
exarnining the conditional probabilities in the augmented aspect hierarchy, we
can compare the relative utility of boundary groups and faces in inferring the
identity of a volumetric part ®

To compare the utility of boundary groups versus faces in recovering volumes,
we will use the conditional probabilities captured in the augmented aspect hi-
erarchy to define a measure of average inferencing uncertainiy, or the degree to
which uncertainty remains in volume identity given a recovered boundary group
or face. More formally, we define average inferencing uncertainty for boundary
groups, U ffg, and for recovered faces, U, g B8 follows:®

1 Npc Nv

Uk = ~¥es 3 ST Pr(V; | BGy)log Pr(V; | BG:) (1)
i=1 j=1
1 Ng Ny

Ukvg = “Non S5 Pr(; | F)log Pr(V; | ) (2)
i=1l j=1

where:

Nge = number of boundary groups in the augmented aspect hierarchy
Np4 = number of faces in the augmented aspect hierarchy
Nv = number of volumes in the augmented aspect hierarchy

i

The average inferencing uncertainty for faces is 0.23 while that for boundary
groups is 0.74. Cleartly, faces offer a more powerful focus feature for the recovery
of volumetric parts than do the simpler features that make up the boundary
groups. However, this advantage is only realizable if the cost of extracting the
two types of features is comparable By using simple region segmentation tech-
niques whose complexity is comparable to common edge detection technigues,
we can avoid the complexity of grouping lines into faces. We can accommodate
the segmentation errors associated with a cheap region grower by using partial
information to intelligently guide viewpoint control to improve the interpreta-
tion.

5 Since aspect recovery first requires the recovery of component faces, we will examine
the choice between recovering simple contour-based features (boundary groups) and
regions (faces)

§ We have suppressed the zero-probability terms in this and remaining expressions for
notational simplicity.



2.3 TFocus of Attention

Our attention mechanism will exploit the aungmented aspect hierarchy to map
target objects down to target faces which, in turn, will be compared to image
faces recovered during preprocessing. In selecting which recovered face to focus
our attention on, we utilize a decision theoretic approach using a Baysian frame-
work. A similar approach was reported by Levitt et al. [9], who use Baysian
networks for both model representation and description of recovered image fea-
tures. Specifically, they use Baysian networks for both data aggregation and
selection of actions and feature detectors based on expected utility. The ap-
proach is thus centered around the use of a Baysian approach to integration and
control. Similar techniques have also been reported by Rimey and Brown [13],
and Jensen et al. [6], where both regions of inferest and feature detectors are
selected according to utility/cost strategies.

To select a region of interest, i e , attend to a particular face, the augmented
aspect hierarchy may be considered as a Baysian network, allowing us to utilize
decision theory as described, for example, by Pearl [12]. To apply such a strategy,
it is necessary to define both utility and cost measures. The utility function,
U, specifies the power of a given feature at one level of the augmented aspect
hierarchy, e.g., volumes, aspects, faces, and boundary groups, to discriminate a
feature at a higher level. The cost function, C, specifies the cost of extracting
a particular feature The subsequent planning is then aimed at optimizing the
benefit, max B(U/, C); profit, e g , utility — cost, is often maximized in this step.

For the system described in this paper, the face recovery algorithm was chosen
to support a simple implementation on a Datacube image processor. From an
input image, our bottom-up processing step yields a face topology graph, in which
nodes encode the possible face interpretations of segmented image regions, and
ares encode region adjacency For a given node, the face interpretations are
ranked in decreasing order of probability; for details on face recovery, see [11].
Since the cost of face recovery is assumed to be constant and equal for all types
of faces, the selection of which face to consider next should simply optimize the
utility function.

Given a target object, objecty, the first step is to choose a target volume,
volumer, to search for. Next, given a target volume, velumer, we choose a target
aspect, aspectt, to search for. Finally, given a target aspect, aspecty, we choose
a target face, facer, to search for. Given a target face, facer, we then examine
the face topology graph for labeled faces which match facep. If there is more
than one, they are ranked in descending order according to their probabilities.

The above top-down sequence of predictions represents a best-first search of
a tree defined by each object; the root of the tree represents the target object,
while the leaf nodes of the tree represent target faces. The target volume subtrees
for each object tree are independent of the object database and can be specified
at compile time. The branching factor at a given node in any object tree can
be reduced by specifying a probability (or utility} threshold on a prediction.
The heuristic we use to guide the search is based on the power of an object’s
features, e g., volumes, aspects, and faces, to identify the object. For example,
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to determine how discriminative a particular volume, volumt;, is in identifying
the target object, objectr, we use the following function:

. Pr{objecty|volume;) 7
D(volume;, objecit) = 5 Br{object; [volumes) * Pr(

The numerator specifies how discriminative volumne; is for chjeciT, while
the ratio specifies the “voting power” of volume; for the object of interest.
Pr{object;|volume;), for any given i and j, is computed directly from the con-
tents of the object database. The last term specifies the likelihood of finding the
volume, and is included to discourage the selection of a volume which is highly
discriminative but very unlikely. The Pr{volume) may be calculated as follows:

Pr(volume;} = Z(Pr(volume,-]objectk) + Pr(objectt)) (4)
k

volume;) (3)

where Pr(volume;|objecty), for any given i and k, is computed directly from the
object database, and Pr(object §) represents a priori knowledge of scene content.
D{aspect;, volumer } and D{face;, aspectr) are defined in an analagous fashion.

When we descend the search tree to a given target face, we search for match-
ing face candidates in the face topology graph. We focus our attention on the
best face matching the target face, and proceed to verify the object. if a target
face, target aspect, or target volume cannot be verified, the search algorithm
backtracks, applying the above utility functions to remaining faces, aspects, and
volumes in the search tree

2.4 Verification

Verification is the process by which we move from a matched target face node
in the search tree back up to an object. Once we have a matched face leaf node,
our next step is to verify its parent (target) aspect [3]. This entails searching
the vicinity of the target face for faces whose labels and configuration match the
target aspect using an interpretation tree search (Grimson and Lozano-Pérez
[4]). Note that the resulting verified aspect has a score associated with it which
can be compared to a score threshold to terminate the search from a particular
target face. The score of a recovered aspect is calculated as follows:

Length(BGy)
ength(Regiony)

1 N
AspectSecore = N 2;1 Pr(Face) * 7 (5)
where: N is the number of faces in model aspect, Length(BGr) is the length
of boundary group, and Length{Regiong) is the perimeter of the region. Note
that i the region boundary graph recovered for the shape ezactly matches some
face in the angmented aspect hierarchy, its probability will be 1.0 and the length
of its boundary group will be the perimeter of the entire region The score of a

volume is calculated as follows:
VolumeSeore = AspectScore ¥ Pr{ModelV olume| M odel Aspect) (6)

where:



Pr{ModelVolume|Model Aspect) = probability of volume given aspect
(from the augmented aspect hierarchy)

Once a target aspect is found, we then proceed up the tree one level to the
target volume, defining a mapping between the faces in the target aspect and
the surfaces on the target volume Moving back one level to the object, we must
then decide whether or not we have enough information confirming the target
object. If so, the recognition process is complete. If not, we must then decide
which volume to search for next. If we choose a volume which is connected to
a volume we have already verified, we can move back down its branch in the
tree and, when matching its target faces to image faces, consider only those
image faces that are topologically adjacent to the faces belonging to the verified
volume.

3 Viewpoint Control

Through segmentation errors, occlusion, or “accidental viewpoint”’, a recovered
aspect may be ambiguous. By extending our object representation, we can use
the recovered aspect to drive the sensor to a new position from which the ob-
ject’s part can be disambiguated. The extended representation, called the aspect
prediction graph, tells us which of the volume’s aspects represents a “better”
view of the volume, how the camera should be moved in order to achieve this
view, and what visual events can be expected as the camera is moved.

The aspect prediction graph {APG) is derived from two sources: an aspect
graph and the augmented aspect hierarchy. The APG is a more efficient version
of the aspect graph in which topelogically equivalent nodes are grouped regard-
less of whether their faces map to different surfaces on the object. For example,
the APG encodes 3 aspects for a block (volume 1 in Figure 1) while an aspect
graph encodes 26 aspects. Next, the APG specifies the visnal events in terms
of which faces appear/disappear when moving from one aspect to another. Fur-
thermore, the position of such a face appearance/disappearance from a source
aspect to a target aspect is specified with respect to particular contours of faces in
the source aspect {event contours) Moreover, the transition between two nodes
{aspects) encodes the direction(s) relative to the event contours that one must
move in the image plane in order to observe the visual event. Finally, the APG
borrows from the augmented aspect hierarchy both the Pr(volumelaspect) and
Pr(aspect|volurne) conditional probabilities, and assigns them to the nodes in
the APG.

To illustrate the above concepts, Figure 3 presents the APG for the block
volume, illustrating the three possible aspects of the block. Between every two
nodes (aspects) in the aspect prediction graph are a pair of directed arcs The
directed arc between aspect 1 and aspect 2 in Figure 3(a) is expanded in Fig-
ure 3(b). From aspect 1 in Figure 3(a), there are three ways to move to a view

T The probability of an “accidental viewpoint” is actually gquite significant, as was
shown in [15].
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in which aspect 2 will be visible. Movement relative to contours 0 and 1 on face
9 will cause a visual event in which face 2 disappears at contour 1 on face 0 and
at contour 3 on face 1. Or, movement relative to contours O and 1 on face 0 will
cause a visual event in which face 0 will disappear at contour 0 on face 1 and
contour 0 on face 2. Finally, movement relative to contours 0 and 3 on face 1
will cause a visual event in which face 1 will disappear at contour 0 on face 0
and contour 1 on face 2,

\p: 246,1)

: 1 2 @ 0{13,1(3)
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Fig. 3. (a) Aspect Prediction Graph (APG) for Volume 1 (Block) (b) APG Transitions
from Aspect 1 to Aspect 2

It should be noted that in the augmented aspect hierarchy, each aspect has
an indexing of its component faces, and each component face has a similar in-
dexing of its bounding contours. By referring to the normals of such well-defined
contours in a recovered aspect, we can qualitatively specify direction rules with
respect to an aspect-centered coordinate system. The direction of view change
is hence specified as a vector sum of the normals to particular contours of the
recovered aspect corresponding to the current APG aspect ® The face events are
also defined with respect to these specified contours. For example, we can predict
along which contour in the current aspect a new face will appear or disappear
when moving towards a new aspect.

Using the attention mechanism deseribed earlier in section 2.3, the search for
an object includes a search for its component volurnes. Fach recovered volume
is characterized by the aspect in which it is viewed, For a given aspect of a
volume, we can use the volume to aspect mappings in the augmented aspect
hierarchy to determine which aspects (if any) are more probable (or stable) than
the current one, by maintaining an ordered list of aspects for each volurne, ranked
in decreasing order of their downward conditional probabilities. Conversely, if we
have an ambiguous aspect whose mapping to the hypothesized volume is weak,
we can use the aspect to volume mappings in the augmented aspect hierarchy to
determine which aspects offer a less ambiguous mapping to that volume. These

® For concave and convex curve segments, the normal at the midpoint is used.
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aspects, ranked in decreasing order of their upward conditional probabilities,
offer an effective means of disambiguating a given view of a volume.

When we want to move the camera in a direction to get a “better” view, we
first check the APG to see which aspects (neighboring nodes) can be reached from
the current aspect (node). The probabilities associated with the APG nodes tell
us to which aspect to move in order to achieve a more likely view of the volume
or to disambiguate it The arc to this “best” neighbor node encodes the view
change direction (in the image plane) in terms of a function of the normals of
selected aspect contours. We calculate the values of these normals in the image
and get a direction for camera movement with respect to the current aspect

While moving the camera, we must track the aspect from one frame to the
next so that we can verify the visual events as specified in the APG TFor the
experiments described in this paper, we will assume a fixation mechanism which
can track a region through successive frames Our visual event verification strat-
egy will therefore consist of focusing the attention mechanism at the tracked
region and searching for predicted aspect. The recovered aspect can then be
compared to the original aspect to verify the expected visual events. Tracking
the object between frames is beyond the scope of this paper and is described in

[2]

4 Results

We test the attention and viewpoint control strategies in the context of a multi-
disciplinary research effort exploring active vision in the domain of robotic aids
for the handicapped (PLAYBOT) Through a touch-screen interface, & child
can instruct a mobile robot vision system to identify, localize, and manipulate
3-D objects in its environment. To support simple manipulation of the objects,
the domain of objects that the system can visually identify consists of the ten
volumetric shapes outlined in Figure 1°; more complex objects, modeled as con-
structions of the ten shapes, will be supported in the future In the following
results, the images were acquired using the stereo head at the CVAP Laboratery
at KTH, Stockholm. Only one camera was used to acquire images and during
viewpoint control, the camera was fixated on the object.

In Figure 4, we present the results of applying the attention mechanism to a
scene containing single-volume objects. Moving top to bottom and left to right,
the first irnage shows the results of the region segmentation step; recall that the
face topology graph constructed from the region topology graph is the input to
the attention mechanismn. The next three images show the three best instances
of the block viewed in its most likely aspect containing three faces. The faces in
the aspect are highlighted in the image; only those contours (boundary group)
used in defining the face are highlighted in the face.

Using this measure, the first three volumes received the score of 1.0, 1.0, and
0 86, respectively. The next three images show the best three instances of the

® Each of the ten objects is assumed to be equally likely
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second most likely aspect containing two faces; each recovered aspect received
the score of 048 Continuing, the next two images show the best two instances
of the least likely aspect containing one face; each recovered aspect received the
score of 0.22 The last three images show the highest-scoring instances of the
tapered block {0.79), the cylinder (0.27), and the barrel (0.486), respectively. Due
to noise and occlusion, only certain portions of each shape were recovered. In
the case of the barrel, region undersegmentation results in the recovered aspect
being incorrectly oriented with the visible end assumed to be occluded at the
bottom.

In Figure 5, we show the result of the attention mechanism as it searches
for a block (first image) and a cylinder (third image). The block is recovered
in its second most likely aspect which is ambiguous (common to volumes 1
and 4}, while the cylinder is recovered in its second most likely aspect whick
is ambiguous (common to volumes 1, 2, 3, 4, 5, and 10). Guided by the aspect
prediction graph, the camera is moved to the left in each case and the attentior
scheme is guided to disambiguate the volume by searching for its most likel)
aspect, as is shown in the second and fourth images.

5 Conclusions

In examining the balance between recovery and verification, we have cleari
moved towards recovery. Recovering more discriminating features facilitates &
effective attention mechanism based on the viewing probabilities in the aspec
hierarchy. However, there is a cost in attempting to recover more complex fea
tures (in our case, a set of regions and their bounding shapes). Our solution t
this problem is to pass along this cost to a dynamic sensor. We assume that som
relatively unoccluded, fronto-parallel surfaces will project into regions that cai
be quickly and cheaply extracted using simple region segmentation techniques
We use this recovered partial information to intelligently guide the sensor to
position where the object can be disambiguated. The aspect hierarchy, and it
extension to the aspect prediction graph, provides a unifying representation fc
the active vision problems of attention and viewpoint control.
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