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Abstract We present a framework for representing and matching multi-
scale, qualitative feature hierarchies. The coarse shape of an object is
captured by a set of blobs and ridges, representing compact and elon-
gated parts of an object. These parts, in turn, map to nodes in a directed
acyclic graph, in which parent/child edges represent feature overlap, sib-
ling edges join nodes with shared parents, and all edges encode geometric
relations between the features. Given two feature hierarchies, represented
as directed acyclic graphs, we present an algorithm for computing both
similarity and node correspondence in the presence of noise and occlu-
sion. Similarity, in turn, is a function of structural similarity, contextual
similarity (geometric relations among neighboring nodes), and node con-
tents similarity. Moreover, the weights of these components can be varied
on a node by node basis, allowing a graph-based model to effectively pa-
rameterize the saliency of its constraints. We demonstrate the approach
on two domains: gesture recognition and face detection.

1 Introduction

Matching is a fundamental problem in computer vision, and plays an important
role in many tasks, ranging from stereo reconstruction to object recognition.
Given two images, matching can be simply defined as establishing a correspon-
dence between features in one image and similar features in the other image.
The representation of image features at multiple scales has long been a powerful
paradigm in computer vision, offering a number of attractive properties. From a
representational standpoint, scale spaces support the processing of information
at appropriate (even variable) levels of resolution. Moreover, the computational
complexity of many tasks can be reduced by using the results of processing at
coarser scales to constrain processing at finer scales. Matching multi-scale feature
hierarchies therefore raises a number of important challenges, including: 1) what
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features make up the hierarchy?; and 2) how do we effectively and efficiently
match two feature hierarchies in the presence of noise and occlusion?

In this paper, we address the problem of matching two image structures
based on qualitative shape. We describe the construction of a qualitative fea-
ture hierarchy, based on the detection of ridges and blobs with automatic scale
selection. These features, and the relations between them, attempt to capture
the coarse shape of an object in terms of a set of parts. Given two such feature
hierarchies, each represented by a directed acyclic graph (DAG), we describe
a matching algorithm that computes both an overall measure of similarity (or
distance) as well as node correspondence. The matching algorithm takes into
account the structure of the feature hierarchy, the contents of the nodes, and
the attributed relations (i.e., context) among nodes. Moreover, the weights of
these components can be varied on a node by node basis, allowing a graph-based
model to effectively parameterize the saliency of its constraints. To demonstrate
the approach, we apply it to two separate domains: gesture recognition and face
detection.

2 Related Work

There has been considerable effort devoted to both scale space theory and hi-
erarchical structure matching, although much less effort has been devoted to
combining the two paradigms. Although space prohibits an extensive review, a
few examples are worth noting. Coarse-to-fine image descriptions are plentiful,
including work by Burt [2] and Lindeberg [6]. Some have applied such models
to directing visual attention, e.g., Tsotsos [19], while others have applied multi-
scale structures to matching, including Crowley and Sanderson [3], Rao et al.
[12], Bretzner and Lindeberg [1], and Pizer et al. [11].

Although graph matching is a popular topic in the literature, including both
inexact and exact graph matching algorithms, there is far less work on dealing
with hierarchical graphs, i.e., DAGs, in which lower levels reflect less saliency.
The work most relevant to the work reported here is the work of Shokoufandeh et
al. [15], which matched multi-scale blob representations represented as directed
acyclic graphs. Our framework differs in that: 1) it includes geometric relations
among features; 2) the importance of structure and geometry as a matching
criteria can be varied continuously within a single framework (as opposed to
two separate algorithms); and 3) our matching framework offers several orders
of magnitude less complexity. Another related approach is due to Wiskott et
al., who apply elastic graph matching to a planar graphs whose nodes represent
collections of wavelet jets. Although their features are multi-scale, their repre-
sentation is not hierarchical, and matching requires that the graphs be coarsely
aligned in scale and image rotation [21]. A similar approach was applied to hand
posture recognition by Triesch and von der Malsburg [18].
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Figure 1. Feature Extraction: (a) extracted blobs and ridges at locally adapted scales;
(b) extracted features after removing multiple responses and ridge linking.

3 Building a Qualitative Shape Feature Hierarchy

As mentioned in Section 1, our qualitative feature hierarchy represents image
structures in terms of blob and ridge features with a set of attribute relations.
The representation is an extension of the work presented in [1]. Blob and ridge
extraction is performed using automatic scale selection, as described in previous
work (see [8] and [7]). It should be noted, however, that the resulting represen-
tation is not intended as complete representation. In a more general setting, ex-
tensions to other types of image features and feature relations should, of course,
be considered.

3.1 Extracting Qualitative Shape Features

A scale-space representation of the image signal f is computed by convolution
with Gaussian kernels g(-; t) of different variance t, giving L(+; t) = g(-; t)* f(*).
Blob detection aims at locating compact objects or parts in the image. The entity
used to detect blobs is the square of the normalized Laplacian operator,

V2 omL =t (Lyz + Lyy). (1)

norm

Blobs are detected as local maxima in scale-space. Figure 1(a) shows an image of

a hand with the extracted blobs superimposed. A blob is graphically represented

by a circle defining a support region, whose radius is proportional to the scale.
Elongated structures are localized where the multi-scale ridge detector

RnormL = t3/2 |Lpp - qu|2 = 13/ (Lew — Lyy)2 + 4L3y) (2)

assumes local maxima in scale-space. Figure 1(a) also shows the extracted ridges,
represented as superimposed ellipses, each defining a support region, with width
proportional to the scale. To represent the spatial extent of a detected image
structure, a windowed second moment matrix
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is computed at the detected feature position and at an integration scale t;,: pro-
portional to the scale of the detected image feature. There are two parameters
of the directional statistics that we make use of here: the orientation and the

anisolropy, given from the eigenvalues A; and A2 (A; > A2) and their correspond-
1—)\2/)\1
1+Xo /)\1 ’

ing eigenvectors ey, and ey, of X. The anisotropy is defined as Q =
while the orientation is given by the direction of ey, .

To improve feature detection in scenes with poor intensity contrast between
the image object and background, we utilize color information. This is done by
extracting features in the R, G and B color bands separately, along with the
intensity image. Re-occurring features are awarded with respect to significance.
Furthermore, if we have advance information on the color of the object, improve-
ments can be achieved by weighting the significance of the features in the color
bands differently.

When constructing a feature hierarchy, we extract the N most salient image
features, ranked according to the response of the scale-space descriptors used
in the feature extraction process. From these features, a Feature Map is built
according to the following steps:

Merging multiple feature responses. This step removes multiple overlap-
ping responses originating from the same image structure, the effect of which
can be seen in Figure 1(a). To be able to detect overlapping features, a measure
of inter-feature similarity is needed. For this purpose, each feature is associated
with a 2-D Gaussian kernel g(x, X), where the covariance is given from the sec-
ond moment matrix. When two features are positioned near each other, their
Gaussian functions will intersect. The similarity measure between two such fea-
tures is based on the disjunct volume D of the two Gaussians [5]. This volume
is calculated by integrating the square of the difference between the two Gaus-
sian functions (g4, gg) corresponding to the two intersecting features A and B:

D(A,B) = ,/% Sz (94 — gB)?dx. The disjunct volume depends on the
differences in position, variance, scale and orientation of the two Gaussians, and
for ridges is more sensitive to translations in the direction perpendicular to the
ridge.

Ridge Linking The ridge detection will produce multiple responses on a ridge
structure that is long compared to its width. These ridges are linked together to
form one long ridge, as illustrated in Figure 1(b). The criteria for when to link two
ridges is based on two conditions: 1) they must be aligned, and 2) their support
regions must overlap. After the linking is performed, the anisotropy and support
region for the resulting ridge is re-calculated. The anisotropy is re-calculated from
the new length /width relationship as 1-(width of structure)/(length of structure).

3.2 Assembling the Features into a Graph

Once the Feature Map is constructed, the component features are assembled into
a directed acyclic graph. Associated with each node (blob/ridge) are a number of
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Figure 2. The four edge relations: two normalized distance measures, relative orienta-
tion, and bearing

attributes, including position, orientation, and support region. A feature at the
coarsest scale of the Feature Map is chosen as the root. Next, finer-scale features
that overlap with the root become its children through hierarchical edges. These
children, in turn, select overlapping features at any scale to be their children, etc.
From the unassigned features, a new root is chosen and the process is repeated
until all features are assigned to the graph. Two nodes that share a parent have
a sibling edge between them.! In cases where a feature could have two parents,
the feature at the coarsest scale is chosen.

Associated with each sibling or hierarchical edge are a number of important
geometric attributes. For an edge £, directed from a vertex V4 representing
feature F4, to a vertex Vp representing feature Fp, we define the following
attributes, as shown in Figure 2:

— Distance. Two measures of inter-feature distance are associated with the
edge: 1) the smallest distance d from the support region of F4 to the support
region of Fpg, normalized to the the largest of the radii r4 and rp; and 2)
the distance between their centers normalized to the radius r4 of F4 in the
direction of the distance vector between their centers.

— Relative orientation. The relative orientation between F4 and Fg.

— Bearing. The bearing of a feature Fp, as seen from a feature F4, is defined
as the angle of the distance vector zg — x4 with respect to the orientation
of A measured counter-clockwise.

— Scale ratio. The scale invariant relation between F4 and Fpg is a ratio
between scales tx, and tr,.

— Type. Classifies the edge as parental or sibling.

4 Matching Problem Formulation

Given two images and their corresponding feature map graphs, Gy = (V1, Eq)
and G2 = (Vi, Ey), with |Vi| = ny and |V2] = na, we seek a method for com-
puting their similarity. In the absence of noise, segmentation errors, occlusion,
and clutter, computing the similarity of G; and G2 could be formulated as a
label-consistent graph isomorphism problem. However, under normal imaging

! Sibling edges are not included in a structural description of the graph, thereby
ensuring that it is a DAG.
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conditions, there may not exist significant subgraphs common to G; and Gs.
We therefore seek an approximate solution that captures both the topological
and geometrical similarity of G; and G5 as well as corresponding node similarity.
Topological similarity is a domain-independent measure that accounts for sim-
ilarity in the “shapes” of two graphs, in terms of numbers of nodes, branching
factor distributions, etc. Geometrical similarity accounts for consistency in the
relative positions, orientations, and scales of nodes in the two graphs, while node
similarity is a domain-dependent function that accounts for the similarity of the
contents of corresponding nodes.

In previous work, we mapped the structure of a unique rooted tree to a low-
dimensional vector [16]; two vectors that were close together represented two
trees that were nearly isomorphic in terms of topology, or structure. In this pa-
per, we extend the approach to cover directed acyclic graphs, a more powerful
characterization of hierarchical structure, of which trees are a special case. More-
over, whereas our previous work examined the stability of this mapping under a
restricted class of structural perturbations (the perturbed tree was a subtree of
the original tree or vice versa), we now extend this analysis to directed acyclic
graphs and strengthen it to include any perturbation. Our previous work focused
primarily on structural similarity, with node information (restricted to label in-
formation) playing a minor role. In this paper, we describe a method for mapping
the geometry of a directed acyclic graph into a low-dimensional vector; in this
case, two vectors that are close together represent two graphs whose nodes are
similar in terms of feature type, scale, position, orientation, and support region.
Finally, we combine these functions in an extension of our original algorithm
(originally intended for rooted trees) that will take two directed acyclic graphs
and compute their similarity.

4.1 Encoding Graph Structure

To describe the topology of a DAG, we turn to the domain of eigenspaces of
graphs, first noting that any graph can be represented as an antisymmetric
{0,1, -1} adjacency matrix, with 1’s (-1’s) indicating a forward (backward) edge
between adjacent nodes in the graph (and 0’s on the diagonal). The eigenvalues of
a graph’s adjacency matrix encode important structural properties of the graph.
Furthermore, the eigenvalues of an antisymmetric (or Hermitian) matrix A are
invariant to any orthonormal transformation of the form P!AP. Since a permu-
tation matrix is orthonormal, the eigenvalues of a graph are invariant to any
consistent re-ordering of the graph’s branches. However, before we can exploit
a graph’s eigenvalues for matching purposes, we must establish their stability
under minor topological perturbation, due to noise, occlusion, or deformation.
We will begin by showing that any structural change to a graph can be
modeled as a two-step transformation of its original adjacency matrix. The first
step transforms the graph’s original adjacency matrix to a new matrix having
the same spectral properties as the original matrix. The second step adds a
noise matrix to this new matrix, representing the structural changes due to
noise and/or occlusion. These changes take the form of the addition/deletion of
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nodes/arcs to/from the original graph. We will then draw on an important result
that relates the distortion of the magnitudes of the eigenvalues of the matrix
resulting from the first step to the magnitude of the noise added in the second
step. Since the eigenvalues of the original matrix are the same as those of the
transformed matrix (first step), the noise-dependent bounds on the magnitudes
of the eigenvalues therefore apply to the original matrix. The result will establish
the insensitivity of a graph’s spectral properties to minor topological changes.

Let’s begin with some definitions. Let A, € {0,1, —1}™>™ denote the adja-
cency matrix of the graph G on m vertices, and assume H is an n-vertex graph
obtained by adding n — m new vertices and a set of edges to the graph G. Let
v {0,1,-1}m*™ — {0,1,—1}"*", be a lifting operator which transforms a
subspace of R™*™ to a subspace of R"*", with n > m. We will call this opera-
tor spectrum preserving if the eigenvalues of any matrix A4 € {0,1, —1}™*™ and
its image with respect to the operator (¥(.A)) are the same up to degeneracy,
i.e., the only difference between the spectra of A and ¥(.A) is the number of zero
eigenvalues (¥ (A) has n —m more zero eigenvalues then A).

As stated above, our goal is to show that any structural change in graph G can
be represented in terms of a spectrum preserving operator and a noise matrix.
Specifically, if A,, denotes the adjacency matrix of the graph H, then there exists
a spectrum preserving operator ¥() and a noise matrix Eg € {0,1, —1}"*"™ such
that:

A, =0(A,)+ E,. (4)

We will define ¥() as a lifting operator consisting of two steps. First, we will
add n — m zero rows and columns to the matrix A, and denote the resulting
matrix by A’ . Next, A’ will be pre- and post-multiplied by a permutation
matrix P and its transpose P!, respectively, aligning the rows and columns
corresponding to the same vertices in A,, and ¥(A,). Since the only difference
between the eigenvalues of A, and A, is the number of zero eigenvalues, and
PA! P has the same set of eigenvalues as the matrix A/, ¥() is a spectrum
preserving operator. As a result, the noise matrix E, can be represented as
A, —¥(A,) €{0,1,—-1}*".

Armed with a spectrum-preserving lifting operator and a noise matrix, we
can now proceed to quantify the impact of the noise on the magnitudes of the
original graph’s eigenvalues. Specifically, let Ay for k£ € {1,...,n} denote the
magnitude of the k" largest eigenvalue of the matrix A. A seminal result of
Wilkinson [20] (see also Stewart and Sun [17]) states that:

Theorem 1. If A and A+ E are n x n antisymmetric matrices, then:
)\k(A) + /\k(E) < )\k(A + E) < )\k(A) + )\1(E), for all k € {]., ,n} (5)

For H (perturbed graph) and G (original graph), the above theorem yields, for
all ke {1,...,n}:
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Me(P(Ag)) + Me(By) < Ae(Ay) S M(P(AR)) + M(Ey,) =
Ak (Ey ) <M(A4y) = A (P(AL)) S M(BE,) = (6)

|>‘k(AH) - /\k(W(AG)” < ma‘x{|>‘1(EH)|) |/\k(EH)|}7

and since |\ (E,)| = ||Ex||2 (spectral radius), we have:
Ak (Ay) = Ak (P (A))] < B2 (7)

The above chain of inequalities gives a precise bound on the distortion of the
magnitudes of the eigenvalues of ¥(A,) in terms of the largest eigenvalue of the
noise matrix E,,. Since ¥() is a spectrum preserving operator, the magnitudes
of the eigenvalues of A, follow the same bound in their distortions.

The above result has several important consequences for our application of a
graph’s eigenvalues to graph matching. Namely, if the perturbation E,, is small
in terms of its complexity, then the magnitudes of the eigenvalues of the new
graph H (e.g., the query graph) will remain close to their corresponding non-
zero eigenvalues of the original graph G (e.g., the model graph), independent
of where the perturbation is applied to G. The magnitude of the eigenvalue
distortion is a function of the number of vertices added to the graph due to
the noise or occlusion. Specifically, if the noise matrix E,, introduces k new
vertices to G, then the distortion of every eigenvalue can be bounded by vk — 1
(Neumaier [10]). This bound can be further tightened if the noise matrix has
simple structure. For example, if E, represents a simple path on k vertices,
then its norm can be bounded by (2cosw/(k + 1)) (Lovasz and Pelikan [9]). In
short, large distortions are due to the introduction/deletion of large, complex
subgraphs to/from G, while small structural changes will have little impact on
the higher order eigenvalues G. The magnitudes of the eigenvalues of a graph
are therefore stable under minor perturbations in graph structure.

Having established the stability of a DAG’s eigenvalues under minor pertur-
bation of the graph, we can now proceed with our task of capturing a graph’s
structure with a low-dimensional vector. We could, for example, define a vector
to be the sorted eigenvalues of a DAG. However, for large DAGs, the dimen-
sionality of the index (and model DAG database) would be prohibitively large.
Moreover, since the graph’s eigenvalues reflect global structure, they cannot ac-
commodate significant occlusion. Our solution to these problems will be based
on: 1) computing eigenvalue sums to reduce dimensionality, and 2) to compute
a vector at each node that reflects the node’s local structure in the hierarchy.

We will now briefly review our encoding of directed acyclic graph structure,
originally used to encode undirected, rooted tree structure [16]. For brevity, sub-
sequent references to eigenvalues imply magnitudes of eigenvalues. Specifically,
let D be a DAG whose maximum branching factor is A(D), and let the sub-
graphs of its root be Dy, D, ..., Dg, as shown in Figure 3(a). For each subgraph,
D;, whose root degree is §(D;), we compute the eigenvalues of D;’s submatrix,
sort the eigenvalues in decreasing order by absolute value, and let S; be the sum
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Figure 3. Forming the structural and geometric signatures.
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of the §(D;) — 1 largest absolute values. The sorted S;’s become the components
of a A(D)-dimensional vector assigned to the DAG’s root. If the number of S;’s
is less than A(D), then the vector is padded with zeroes. We can recursively
repeat this procedure, assigning a vector to each nonterminal node in the DAG,
computed over the subgraph rooted at that node. We call each such vector a
topological signature vector, or TSV.

Although the eigenvalue sums are invariant to any consistent re-ordering of
the DAG’s branches, we have given up some uniqueness (due to the summing
operation) in order to reduce dimensionality. We could have elevated only the
largest eigenvalue from each subgraph (non-unique but less ambiguous), but
this would be less representative of the subgraph’s structure. We choose the
0(D;) — 1 largest eigenvalues for two reasons: 1) the largest eigenvalues are more
informative of subgraph structure, and 2) by summing §(D;) — 1 elements, we
effectively normalize the sum according to the local complexity of the subgraph
root. In [16], we describe an efficient method for computing the sum of the k
largest eigenvalues directly (without computing the individual eigenvalues).

4.2 Encoding Graph Geometry

The above encoding of structure suffers from the drawback that it does not cap-
ture the geometry of the nodes. For example, two graphs with identical structure
may differ in terms of the relative positions of their nodes, the relative orienta-
tions of their nodes (for elongated nodes), and the relative scales of their nodes.
Just as we derived a topological signature vector, which encodes the “neighbor-
hood” structure of a node, we now seek an analogous “geometrical signature
vector”, which encodes the neighborhood geometry of a node. Below, we derive
a geometrical signature of a node’s local context. This geometrical signature will
be combined with our topological signature in a new algorithm that computes
the distance between two directed acyclic graphs.

Let G = (V,E) be a graph to be recognized (input image). For every pair
of vertices u,v € V, if there is an edge & = (u,v) between them, we let R, ,
denote the attribute vector associated with edge £. The entries of each such
vector represent the set of relations R = {distance, relative orientation, bearing,
scale ratio} between u and v, as shown in Figure 3(b). For a vertex u € V,
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we let N(u) denote the set of vertices v € V such that the directed edge (u,v)
corresponds to a sibling relation. For a relation p € R, we will denote P(u,p)
as the set of values of relation p between vertex u and all the vertices in the set
N(u), i.e., P(u,p) corresponds to the entry p of the vectors R, , for v € N(u).?

Given two graphs G = (V,E) and G' = (V', E') with vertices v € V and
u' € V', we compute the similarity between u and u' in terms of their respective
values in the sets P(u,p) and P(u',p), for all p € R. Now, let d,(u,u’) denote
the Hausdorff distance between sets P(u,p) and P(u', p), i.e.

dp(u,u’) = max{ max min  |a — b|} )
a€P(u,p) bEP(u,p)

In other words, the distance between sets P(u,p) and P(u',p) is the smallest
value d such that every element of P(u,p) has an element of P(u’,p) within
distance d. If the relation is not normalized, we can introduce a translation, ¢,
and compute the distance wy(u,u') between sets P(u,p) and P(u', p) by finding
the value of ¢ for which the distance between points of P(u,p) and P(u',p) is
minimized, i.e.,

wy(u,u’) = mind,(u,u’) = min max{ max min |la+t—>5
p(u,u) = mipdy(u, ') = iy a€P(u.p) bewu',p)' Iy

wp(u,u') can be computed using the algorithm of Rote [14], in time O((|N (u)|+

[N (u")])log(|N (u)| + |[N(u')])). Given the the values of wp(u,u') for all p € R,
we arrive at a final node similarity function for vertices v and u':

W(u,u') = e~ Lrer Wrltt)

4.3 Matching Algorithm

In previous work, we developed an algorithm for computing the distance (and
correspondence) between two unique rooted undirected trees [16]. We now ex-
tend our algorithm to compute the distance between two directed acyclic graphs.
As mentioned earlier, our major challenge is in computing an approximate iso-
morphism when, due to noise, occlusion, etc., a nontrivial subgraph isomorphism
may not exist. Let’s consider relaxing the isomorphism constraint for a moment.
Each node in our graph (query or model) is assigned a TSV, which reflects the
underlying structure in the subgraph rooted at that node. In addition, each node
is assigned a set of relation histograms, which capture the geometry of the graph.
If we simply removed all the edges in our two graphs, we would be faced with the
problem of finding the best correspondence between the nodes in the query and
the nodes in the model; two nodes could be said to be in close correspondence
if the distance between their TSVs and the distances between their geometric

2 The exception to this rule is the orientation relation. Rather than use absolute
orientation, measured with respect to a reference direction, we instead use the angle
from the previous edge in a clockwise ordering edges emanating from a vertex.
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feature histograms was small. In fact, such a formulation amounts to finding the
maximum cardinality, maximum weight matching in a bipartite graph spanning
the two sets of nodes.

At first glance, such a formulation might seem like a bad idea (by throwing
away all that important graph structure!) until one recalls that the graph struc-
ture is really encoded in the node’s TSV, and the graph geometry is encoded in
the node’s relation histograms. Is it then possible to reformulate a noisy, largest
isomorphic subgraph problem as a simple bipartite matching problem? Unfortu-
nately, in discarding all the graph structure, we have also discarded the underly-
ing hierarchical structure. There is nothing in the bipartite graph matching for-
mulation that ensures that hierarchical constraints among corresponding nodes
are obeyed, i.e., that parent/child nodes in one graph don’t match child/parent
nodes in the other. This reformulation, although softening the overly strict con-
straints imposed by the largest isomorphic subgraph formulation, is perhaps
too weak. We could try to enforce the hierarchical constraints in our bipartite
matching formulation, but no polynomial-time solution is known to exist for the
resulting formulation. Clearly, we seek an efficient approximation method that
will find corresponding nodes between two noisy, occluded DAGs, subject to
hierarchical constraints.

Our algorithm, a modification to Reyner’s algorithm [13], combines the above
bipartite matching formulation with a greedy, best-first search in a recursive pro-
cedure to compute the corresponding nodes in two rooted DAGs. As in the above
bipartite matching formulation, we compute the maximum cardinality, maxi-
mum weight matching in the bipartite graph spanning the two sets of nodes.
Edge weight will encode a function of the topological similarity, the geomet-
ric similarity, and a domain-dependent node similarity. Moreover, the relative
weights of these two components can be specified in the model on a node by
node basis!, allowing certain geometrical constraints to be relaxed while others
strengthened. The result will be a selection of edges yielding a mapping between
query and model nodes. As mentioned above, the computed mapping may not
obey hierarchical constraints. We therefore greedily choose only the best edge
(the two most similar nodes in the two graphs, representing in some sense the
two most similar subgraphs), add it to the solution set, and recursively apply
the procedure to the subgraphs defined by these two nodes.

Unlike a traditional depth-first search which backtracks to the next statically-
determined branch, our algorithm effectively recomputes the branches at each
node, always choosing the next branch to descend in a best-first manner. In this
way, the search for corresponding nodes is focused in corresponding subgraphs
(rooted DAGs) in a top-down manner, thereby ensuring that hierarchical con-
straints are obeyed. In moving from rooted trees to DAGs, we have to deal with
multiple reachability of a vertex in a DAG. Specifically, there may exist two
vertices v and v, such that one is not an ancestor of the other, that share a sub-
graph rooted at vertex w. If the vertices in w are matched, for example, while
recursively descending from wu, they must not be made available for matching
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procedure isomorphism(G,H)

®(G, H) «+ 0 ;solution set

d — max(8(G), §(H)) ;TSV degree

for u € Vg { jcompute TSV at each node and unmark all nodes in G
compute x(u) € R4™1 (see Section 4.1)
unmark u

for v € Vg { jcompute TSV at each node and unmark all nodes in H
compute x(v) € RE™1 (see Section 4.1)
unmark v

¥

call match(root(G),root(H))

return(cost(&(G, H))

end

procedure match(u,v)
do

let Gy + rooted unmarked subgraph of G at u
let Hy <+ rooted subgraph of H at v
compute |V, | X |Vg, | weight matrix IT(Gu, Hy)
M ¢+ max cardinality, max weight bipartite matching

in §(Vg,, » Vi, ) with weights from II(Gy, Hy) (see [4])
(u', v') + max weight pair in M

&(G,H) « &(G,H)U {(u/,v")}
call match(u’,v")

mark G/
B

mark G,

3
while (G # 0 and Hy # 0)

Figure 4. Algorithm for Matching Two Hierarchical Structures (DAG’s) (mod-
ified from our previous algorithm for matching undirected rooted trees [16])

while descending v. We therefore need to keep track of matched vertices in our
top-down matching process.

As mentioned above, the algorithm computes, at each step, a maximum car-
dinality, maximum weight matching in the bipartite graph. This requires that we
define an objective function that can evaluate the quality of a matching. Given
feature map graphs, G; = (V1, Ey) and G2 = (V», E»), representing query and
model images, respectively, along with a partial matching function, @ : V; — V5,
between the regions of Gy and G, we define the mapping matrix, M (&), between
G; and G, to be a |Vi] x |Vz], {0,1} matrix as follows:

M = lifue Vi, vely, u=f(v),
U 71 0 otherwise.

Since &() is a bijective mapping, M (@) will satisfy the following conditions:

EUEVQ Muﬂ, <1Vue€ Vl,

Euevl Mu,v <1VveVs.

Given this formulation of the mapping, ¢(), we define the similarity of G; and
G5 to be:

S@) =e) Y My|uv)] +(1-2) Y Y(w). (8)

ueVy veEVL uEVe

The terms of the convex combination S(®) reflect the similarity between the
query and model graphs. Specifically, the first term represents the quality of
correspondence between the matched regions, while the second term penalizes
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unmatched regions in model graph. By definition, the value of v(v) is one if the
the region v in G is matched to a region u in G1; otherwise, it will have a value
strictly less than one if the vertex u is unmatched under &(). Specifically, for
a vertex v we will define an error function £(v) which grows proportionally to
the complexity of its topological signature, the relative scale of v with respect to
its neighbors, and the normalized support size. The penalty for an unmatched
region v is defined as:

y(v) = e 5. (9)

Finally, the parameter of convexity ¢ will be computed through a least-squares
approximation, using a set of sample training query and model correspondences.
Note that the penalizing of unmatched model nodes (regions) is a a domain-
dependent assumption for domains in which the target object is unoccluded,
i.e., all model regions should be visible. For domains in which target occlusion
can be expected, € can be set to 1.0.

In terms of algorithmic complexity, observe that during the depth-first con-
struction of the matching chains, each vertex in G or H will be matched at most
once in the forward procedure. Once a vertex is mapped, it will never participate
in another mapping again. The total time complexity of constructing the match-
ing chains is therefore bounded by O(n?y/nloglogn), for n = max(ni,n2) [4].
Moreover, the construction of the x(v) vectors will take O(n\/nL) time, implying
that the overall complexity of the algorithm is max(O(n?y/nloglogn), O(n?y/nL)).
The above algorithm therefore provides, in polynomial time better than O(n?),
an approximate optimal solution to the largest isomorphic subgraph problem in
the presence of noise.

It is important to note that since TSV’s are computed at each node, thereby
providing both global structural descriptions (at coarser scale nodes) and local
structural descriptions (at finer scale nodes), the algorithm can exploit locality
of representation to accommodate occlusion and clutter. Moreover, the matching
algorithm does not require connectedness, allowing multiple roots to spawn dis-
joint DAG’s. However, there is a potential problem when there are, for example,
two candidate roots. If there are (finer scale) nodes overlapping the two roots,
then the underlying DAG structure will depend on the choice of root, affecting
the stability of the description. Under these conditions (and more generally), we
allow a node to be a child of both (multiple) roots, thereby providing invariance
to root selection order.

5 Demonstration

We demonstrate our representation and matching framework on a gesture recog-
nition problem and a face detection problem. Figure 5(a) shows an example
gesture image, along with extracted graph superimposed. Hierarchical edges are
shown as red lines, so we see that the ridges corresponding to the fingers are
all children of the blob corresponding to the palm. This means that all fingers
are siblings, connected with green lines. We conducted experiments with query
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Figure 5. Gesture Recognition. On the left are detected features as vertices superim-
posed on the image with the hierarchical relations/edges (red-parent, green-sibling),
while on the right is an example computed correspondence between two Feature Maps.

gestures against a uniform background and with query gestures against complex
backgrounds.

For each of seven gesture classes, we had five different exemplar queries, vary-
ing slightly in shape, finger articulation, scale, etc. That exemplar whose sum
distance to all other members of the same class was minimum was designated as
the model and removed from the database. All other queries were then compared
to each model, yielding 100% recognition over the 28 trials. The first three rows
of Table 1 illustrate three of the 28 trials, showing one example query from each
of the first three classes, while Figure 5(b) illustrates the computed correspon-
dence between an example pair of gesture Feature Maps. The distances in the
matrix reflect similarity, while the boxed entry is that prototype (with maximum
similarity) chosen to be the label of the query on the left.

In the next set of experiments, the uniform query background was replaced
by a complex background, varying in degree of clutter. Five cluttered queries
from each of seven classes were compared to the same model graphs, yielding
a 57% (20/35) recognition rate. Of the 15 queries that were most similar to
another class, 10 were second closest to the correct class. The next three rows
of Table 1 illustrate two correctly matched queries and one incorrectly matched
query. Upon examination, it was found that the abundance of blobs and ridges,
due to clutter, tended to favour the more complex models whose additional
fingers could be accounted for by the additional “accidental” features. We are
currently conducting experiments in which the geometric signature weight is
strengthened, to see if that filters out extraneous features (at the possible cost
of allowing less within-class deformation/articulation).
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Query Similarity to Model |

i s Ly fe b ]- |

12.3519 || 5.7314 | 6.0184 7.514 10.2547| 11.1544 | 9.1162

4.0512 | 6.8804 | 5.2172 | 3.2655 | 2.8425 | 4.1812 | 5.9484

5.3701 | 3.1344 || 8.3965 || 4.4714 | 7.5609 | 4.2079 | 2.7155

15.1816 | 9.0173 | 5.4417 |13.1903|10.1817|| 15.9527 ||13.2277

21.8351 ||11.0117|12.1684 |15.8837| 9.2105 | 17.7449 |16.3712

10.4261 || 3.4102 | 4.1917 | 4.0021 | 7.2581 | 5.6933 | 4.9601

Table 1. Similarity Between Query and Each Prototypical Model View (most similar
model view is boxed)

In the final experiment, we attempt to find a face in cluttered scenes con-
taining a face. Five cluttered scenes, each containing a face, were matched to a
face model. In each of the five trials, the scene object most similar to the model
face was the scene face (or some portion thereof). Figure 6 shows two such ex-
amples, with the face feature correspondences overlaid. The results illustrate
the algorithm’s ability to deal with cluttered backgrounds, missing features, and
deformed objects.

It is important to note that we are not claiming a superior framework for
either gesture recognition or face detection; there are specific solutions to these
problems that will yield better results. Rather, we are simply demonstrating
that our framework for representing and matching blob decompositions is appli-
cable to a variety of domains (we are currently exploring its application to other
domains) and under a variety of imaging conditions.



16 Ali Shokoufandeh et al.

Figure 6. Face Detection Experiment. On the left is the model face image with ex-
tracted blobs, while on the right is the closest match, with corresponding features
shown. In the top example, the face, left eye, and mouth regions were detected, while
in the bottom example, the face and both eyes were detected. The threshold for blob
detection is low to generate more clutter.

6 Conclusions

Matching two images whose similarity exists at a qualitative level and at differ-
ent scales requires a hierarchical representation in terms of a set of qualitative
parts. Blob and ridge features, together with an array of relational attributes,
provide a hierarchical characterization of the coarse shape of an object. The
matching framework presented attempts to exploit both topological and geo-
metrical properties of multi-scale feature hierarchies. Preliminary testing on two
separate domains (without domain-specific tuning) suggests that the approach
may offer general applicability. However, much further work and experimentation
remains, including the exploration of alternative graph formulations of the blob
decomposition, enriching the description of a blob, and comprehensively testing
the framework in the presence of occlusion, background clutter, and lighting
variation. Finally, we plan to test the framework on other generic recognition
domains, including view-based 3-D object recognition.
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