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Abstract. In this paper, we propose a new approach to learn struc-
tured visual compound models from shape-based feature descriptions.
We use captioned text in order to drive the process of grouping boundary
fragments detected in an image. In the learning framework, we transfer
several techniques from computational linguistics to the visual domain
and build on previous work in image annotation. A statistical transla-
tion model is used in order to establish links between caption words and
image elements. Then, compounds are iteratively built up by using a
mutual information measure. Relations between compound elements are
automatically extracted and increase the discriminability of the visual
models. We show results on different synthetic and realistic datasets in
order to validate our approach.

1 Introduction

Parallel datasets are an interesting source for learning models that offer seman-
tic access to huge collections of unstructured data. Given a corpus of paired
images and captions, we aim to learn structured visual appearance models that
can be used to automatically annotate images newly observed among other ap-
plications. In related work, a number of approaches already have been reported.
These can be differentiated by the kind of image representation used, the kind
of labelling expected, and the word-image association model applied. Barnard
et al. [1,2] start from a blob representation of the image which is provided by
a general image segmentation algorithm, and construct a vocabulary of visual
words from the color and texture features extracted for each blob. They have
explored different modelling approaches. First, they apply a generative hierar-
chical co-occurrence model proposed by Hofmann [3] that treats blobs and words
as conditionally independent given a common topic. Thus, the visual correspon-
dent of a word is not explicitly localized in an image. A second approach applies
a statistical translation model (Model 1) of Brown et al. [4] which includes a
set of alignment variables that directly link words to single blobs in the image.
A third approach, followed by Blei & Jordan, combines both approaches using
latent dirichlet allocation (LDA) [1]. Our approach strongly builds on the trans-
lation model approach but extends it towards compounds of shaped-based visual
features.
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Further work by Berg et al. [5] finds correspondences of image faces and
caption names, but needs an initial set of unique assignments in order to drive
the model construction process. Caneiro et al. [6] start from bags of localized
image features and learn a Gaussian mixture model (GMM) for each semantic
class which is provided by a weak labelling. They do not need any previous
segmentation, but rely on the assumption that each caption word relates to
the image. In contrast to the structureless bag-of-features model, Crandall &
Huttenlocher [7] refer to the problem of learning part-based spatial object models
from weakly labelled datasets. However, they assume a single label for each image
that refers to the depicted compound object. Opelt et al. [8] propose a shape-
based compound model that builds on class-discriminative boundary fragments.
Each boundary fragment is defined relative to the object centroid. This provides
a straightforward method for dealing with the object’s spatial layout, but implies
further constraints on training data because, besides the label, a bounding box
needs to be specified for each image instance.

The work described in this paper is more tightly related to Jamieson et al. [9].
There, visual compound models are represented as collections of localized SIFT
features. A visual vocabulary is learned on a separate data set. Initial feature-
word correspondences are established by using a translation model similar to
Barnard et al. [1]. Compound models are generated in an iterative search process
that optimizes the translation model. Jamieson et al. [10] further improve the
compound model by adding spatial relations of localized SIFT features, using
pairs of features for initialization, and applying a more efficient correspondence
model rather than a full-blown translation model. As impressive as these results
are, the approach circumvents certain problems occurring for more general object
categories. Many categories need to be characterized by their global shape rather
than local gradient statistics. This includes the treatment of segmentation issues.

In the following, we will describe our approach to learning structured shape-
models from image-caption pairs. It builds on some ideas already discussed by
Wachsmuth et al. [11]. Again, initial correspondences are established by apply-
ing a statistical translation model. For learning visual compound models the
framework of Melamed [12] is applied that is able to re-combine recurring sub-
parts. Several new ideas are introduced in order to apply the general framework
to shape-based representations. Boundary fragments are used for generating a
visual vocabulary, the translation model is used in order to optimize detection
thresholds of visual words, and compound models are extended by adding spa-
tial relations between boundary fragments. The approach is evaluated on two
datasets of image-caption pairs with different characteristics and shows its ap-
plicability for annotation tasks.

2 Image Representation

As mentioned before, we represent images by a set of localized visual words
which are learned over shape-based features extracted from training images.
Following Opelt et al. [8], we extract so called boundary fragments that are
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connected components of region boundaries. In order to gain a more global mea-
sure of boundary pixels, we overlay several region segmentations using the EDI-
SON system described by [13]. The accumulated boundary pixels are thresholded
to create edge images, from which boundary fragments are extracted by concate-
nating edge pixels starting from randomly chosen seed pixels. However, in order
to only select highly discriminative features, fragments are rejected if they (i)
consist of too few pixels, (ii) consist of too many pixels, (iii) are not sufficiently
curved.

Boundary fragments lend themselves well to fault-tolerant shape recognition
using chamfer matching as described by Borgefors [14]. In our approach, we
exploit this property for two purposes: (i) using chamfer matching, we locate
previously built features in unknown images as described in [14]; and (ii) we
apply chamfer matching as a distance metric between boundary fragments:

dsymm(f1, f2) := dfrag(f1, f2) + dfrag(f2, f1) (1)
where dfrag(f1, f2) := min

T∈S
dedge(f1, T, If2).

S is a discrete set of transformations1 that is applied to boundary fragment f1

when overlaying it over an image during chamfer matching, If2 is a bitmap-
representation of the fragment f2, and dedge is the edge distance as described
in [14].

In order to build up the visual vocabulary, we use a clustering approach on
boundary fragments.

Definition 1. A cluster is a triple (F, r, h) consisting of a set F = {f1, . . . , fn}
of boundary fragments, a representative boundary fragment r ∈ F with minimal
distance dsymm to all other fragments in F , and a threshold h ∈ R+.

Following Opelt et al. [8] we apply an agglomerative clustering technique, be-
cause the fact that boundary fragments do not form a vector space rules out
methods such as k-means. The distance function2 between two clusters l1, l2 can
be derived from the distance between boundary fragments (Eq. 1) by

dmax(l1, l2) := max
f1∈F1,f2∈F2

dsymm(f1, f2) where lk = (Fk, rk, hk), k ∈ {1, 2} (2)

As it requires a large number of expensive computations of the edge distance,
dmax cannot be used to cluster huge amounts of boundary fragments. To remedy
this problem, we take the following two-step approach:

1. boundary fragments are agglomeratively clustered into classes of roughly
the same overall shape using a computationally cheap distance function that
compares variances along principal directions.

2. these classes of boundary fragments are further refined according to the
distance function dmax by using agglomerative clustering on each subset.

1 Here we only allow translations.
2 Actually, a whole family of distance functions can be obtained by using aggregation

functions like minimum or average, instead of maximum.
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Fig. 1. Left: A cluster of boundary fragments. The highlighted boundary fragment
represents the cluster. Right: Training images from which the two leftmost boundary
fragments of the cluster have been extracted.

Besides building classes of similar fragments (see Fig. 1 for an example) for the
translation model, each cluster also provides a detector for its corresponding class
in unseen images. The detector exploits the representative boundary fragment
as well as the threshold value h and is explained in more detail in Sec. 5.

3 Translation Model

We use a simple statistical machine translation model of the sort presented by
Brown et al. [4] as Model 1. This model exploits co-occurences of visual words
c = {c1, . . . , cM} and image caption words w = {w1, . . . , wL} in our training
bitext3 to establish initial correspondences between them:

P (c | w) =
∑

a

P (M)
M∏

j=1

P (aj | L)P (cj | aj , waj ) (3)

where aj ∈ {0, . . . , L}, 1 ≤ j ≤ M are the alignment variables for the visual
words cj , and aj = 0 is an assignment to the empty word. Once its parameters
have been estimated, the model can be used to find the most likely translation:

w̃ = argmax
w

P (w | c) = argmax
w

P (c | w)P (w) (4)

(Eq. 4) generates annotations w̃ when presented image features c. The param-
eters of the translation model can be estimated from parallel data using an
EM-style algorithm described by Brown et al. [4]. It simultaneously establishes
explicit correspondences between instances of visual and caption words and es-
timates translation probabilities t(c | w) for pairs of visual and textual words.

4 Compound Features

Despite good results for text translation tasks, the translation model described
in Section 3 does not perform well when applied to boundary fragments and
3 A body of two roughly aligned (e.g., on the level of sentences for bilingual texts)

pieces of data.
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caption words. There are several reasons for this problem: (i) individual bound-
ary fragments are not discriminative enough to produce a reasonable low rate
of false positive matches, and (ii) the translation model has difficulty in relating
relatively many image features to relatively few caption words. As suggested by
Wachsmuth et al. [11], Jamieson et al. [9] and others, this problem can be solved
by grouping individual image features into larger compound objects. This ap-
proach has the additional benefit that such compounds can be augmented with
descriptions of the spatial layouts of their component features in training images.

Definition 2. A compound-object (or compound for short) is a pair (L, R)
consisting of a set L = {l1, . . . , ln} of clusters and a set of sums of Gaussian

densities R = {dl1l2 | l1, l2 ∈ L, l1 �= l2} with dl1l2 =
nl1l2∑
i=1

N (µi, σ) defining

spatial relations between pairs of clusters. nl1l2 is determined by the procedure
described at the end of this section. The vectors µi determine the expected spatial
offsets while the variance σ is fixed.

The process of building compounds is driven by co-occurrences of boundary frag-
ments in the training data. The method we use was suggested by Melamed [12]
and is originally intended to identify Non-Compositional-Compounds
(NCCs) like hot dog in bilingual texts.4 Melamed’s method is based around the
observation that the mutual information

I(C,W) =
∑

c∈C

∑

w∈W
P (c, w) log

P (c, w)
P (c)P (w)

(5)

of a translation model increases when the individual words that comprise NCCs
are fused and treated as single tokens. The joint distribution P (c, w) is deter-
mined by the alignments that the translation model produces for the visual and
captions words of the training bitext. We use the following counting rule to ob-
tain the joint distribution:

P (c, w) ∝
S∑

s=1

min{#cs, #ws}︸ ︷︷ ︸
number of links c → w

weight︷ ︸︸ ︷
min{#ws, #cs

w}
#cs

w

(6)

In (Eq. 6) the sum is over all pairs of the bitext, #cs, #ws and #cs
w refer to

the number of instances of the respective token in the pair (cs,ws), and cw are
visual words which translate to w. While in principle (Eq. 5), in conjunction with
(Eq. 6), is sufficient to test any given NCC candidate using a trial translation
model, the computational cost of this naive approach is not feasible for realistic
numbers of NCC candidates. Therefore Melamed uses certain independence as-
sumptions to derive a predictive value function V from (Eq. 5) that can be used
to estimate the contributions of individual NCC candidates to the performance
of the translation model without actually computing the mutual information:
4 Melamed’s approach was first applied to captionized datasets in [11]. However, results

were only shown for synthetic symbol sets.
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V (C,W) =
∑

c∈C
VW(c) where VW (c) = P (c, wc) log

P (c, wc)
P (c)P (wc)

(7)

Even though V allows us to test numerous NCC candidates c1c2 in parallel
by independently computing their contributions ΔVc1c2 , it is still too computa-
tionally expensive for practical applications. Fortunately further independence
assumptions allow us to estimate the change of V caused by a NCC candidate
without even introducing a trial translation model:

Δ̃V c1c2 =max{VW(c1 | s(c1, c2)), VW (c2 | s(c2, c1)}
+ VW(c1 | ¬s(c1, c2)) + VW(c2 | ¬s(c2, c1)) − VW(c1) − VW (c2)

The predicate s evaluates to true if an instance of the second argument is present
in the image from which the instance of the first argument originates. The pro-
cess of identifying compounds is very similar to Melamed’s original method and
consists of several iterations of the steps 2 – 8 of the following algorithm:

1. create empty lists of validated and rejected compounds
2. use bitext to train base translation model
3. produce candidate compounds for all pairs (c1, c2) that are not on list of

rejected compounds and co-occur in at least two images of the training bitext
and compute Δ̃V c1c2 (in the first iteration, c1 and c2 are simply clusters; in
later iterations, however, c1 and c2 can be compound objects themselves)

4. sort candidate list according to Δ̃V c1c2 and discard candidates if (i)
Δ̃V c1c2 ≤ 0, or (ii) c1 or c2 is part of a candidate that is closer to the
top of the list

5. train a test translation model in which components of candidate compounds
are fused into single objects

6. discard and put on list of rejected compounds all candidates for which
ΔV c1c2 ≤ 0

7. permanently fuse the remaining candidate compounds into single objects
8. goto step 2 until no more candidates are validated or the maximum number

of iterations is reached

After compounds have been identified, information about typical spatial re-
lations of the components of the compounds are added. This is done by finding
images in which boundary fragments of different clusters of a compound are
present. Then relative positions of the boundary fragments give rise to spa-
tial relations. Relative positions of boundary fragments in training images are
shown in Fig. 2. Finally, optimal values for the individual detection thresholds
of all clusters are computed using the translation model and the training images.
As each compound possesses a word as its most likely translation, it is known
in which training images a given compound should be detected. Therefore the
detection threshold h can be adjusted to ensure that clusters are detected in pos-
itive but not in negative training images. In order to avoid overfitting, distorted
versions of the training images are used in this process.
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Fig. 2. Relative positions of boundary fragments. The left image shows the extraction
of a spatial relation from a training image, the right image visualizes a compound
generated from the furniture dataset. The different fragments of each component cluster
are shown.

5 Automatic Image Annotation

The most obvious application5 of the correspondence data created by the pre-
sented process is automatic image annotation, i.e., assigning suitable caption
words to previously unseen and uncaptioned images. In our approach, auto-
matic annotation is done by detecting compounds in the presented images and
assigning the most likely translation words of the detected compounds as caption
words. However, since detecting boundary fragments always produces localized
results, it is also possible to relate image regions to caption words, therefore
allowing region naming as an extension of automatic annotation.

When presented an unknown image, in principle, all boundary fragments could
be matched against the image using chamfer matching, which would lead to zero
or more matching locations for each boundary fragment. However, this approach
is not feasible because of the large number of chamfer matching operations neces-
sary. Instead we only match boundary fragments previously chosen to represent
clusters in order to quickly rule out clusters of boundary fragments that probably
do not match the image. The whole annotation procedure works as follows:

1. obtain edge image from input image
2. find matching boundary fragments using the following two-step approach

(a) for each cluster (F, r, h): match the representative boundary fragment r
against the image; discard cluster when edge distance is above a global
coarse threshold H

(b) match all boundary fragments F of the remaining clusters against the
image; store locations of all matches for which the edge distance is below
the cluster-specific tight threshold h; discard clusters that do not produce
at least one match

3. for all compounds for which all component clusters have been detected in
the image in at least one position: check spatial relations for all possible

5 For a more extended list of applications of multimodal correspondence models, see
Duygulu et al. [2].
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combinations of detected cluster instances (each of which could comprise a
compound instance); store combination that fulfills spatial relations best;
discard compound if such a combination does not exist

4. output most likely translation words of remaining compounds as caption

6 Results

In order to evaluate the annotation performance, we used our method to auto-
matically annotate training images and held-out test images from two datasets.
As both datasets contained full annotations, it was possible to compare original
and generated caption words. As in the evaluations of comparable methods, we
use precision and recall to quantify annotation performance.

The first dataset we evaluated was obtained from the product catalogue of a
large European supplier of furniture by extracting product images and head
nouns of the related product descriptions. The resulting dataset consists of
images of single pieces of furniture with simple backgrounds along with sets
of several caption words that mostly refer to the depicted objects. The 525
image-caption pairs of the dataset were divided into 300 training pairs and 225
test pairs. The dataset features some challenging aspects, namely large within-
category shape variations, different words for similarly shaped pieces of furniture,
and a number of categories that occur very rarely. Fig. 3 shows three examples
of automatic annotations. The precision and recall values for automatic annota-
tions of the training and test subsets of the furniture dataset are shown in Fig. 4.
The low precision values for most object categories were caused by clusters of
shapes (like legs, see Fig. 1) that occur in a wide variety of object categories.

The second dataset used in the evaluation was synthetically generated to allow
fine grained control over shape variation and image clutter. As the first dataset
turned out to be quite challenging, the generated dataset was tuned to be simpler
in some regards. A probabilistic grammar was developed to construct simple
hierarchically structured objects while allowing variations in structure and shape.
We distinguished five different object categories, some of which shared common
elementary shapes. For the training, suitable caption words were emitted along
with an adjustable number of random words. All words were chosen from a
pool of 27 words. The generated pairs were divided into 300 training and 200
test pairs. For test images, which were used in the annotation task, random

wall, up-
lighter,
lamp,

lamp,
bookcase,
chair, floor

table,
beech,
clock,

clock

bookcase, wall,

lamp, holder,
uplighter, book-
case, chair,
beech, chair,
. . .

Fig. 3. Results of automatic annotation for furniture dataset. Generated annotation
words are listed on the right side of the respective test image, correct annotation words
appear in bold print.
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Fig. 4. Precision vs. recall for furniture dataset. Each curve shows precision and recall
for a single concept. Left: training subset. Right: test subset.
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small, conference

Fig. 5. Results of automatic annotation for synthetic dataset. Generated annotation
words are listed on the right side of the respective test image, correct annotation words
appear in bold print.
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Fig. 6. Precision vs. recall for synthetic dataset. Left: training subset. Right: test
subset.

shapes were added to emulate background clutter. As the synthetically generated
objects were treated as regular images, the algorithm also needed to deal with
occlusion as well as over- and under-segmentation issues. As results show (see
Fig. 6), our method produced acceptable precision and recall when applied to
the training portion of the synthetic dataset. For the test portion however, the
achievable precision was considerably lower. Fig. 5 shows two examples of the
generated annotations.
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7 Conclusion

In this paper, we presented on-going work on learning visual compounds from
image-caption pairs. We focused on shape-based feature descriptions that pro-
vide a suitable characterization for many categories of man-made objects. The
approach is able to deal with slight occlusion as well as moderate over- and
under-segmentation by using boundary fragments for building a basic visual vo-
cabulary. The grouping of fragments into compounds is driven by caption words
using a translation model and a mutual information measure. We have shown
that the approach works on a set of synthetically generated images with cap-
tions. First tests on a realistic dataset from a furniture catalogue showed the
generation of some promising compounds but also indicated several problems
regarding the discriminability of boundary fragments and the sparseness of this
kind of dataset.
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