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Abstract. Object recognition systems have their roots in the Al com-
munity, and originally addressed the problem of object categorization.
These early systems, however, were limited by their inability to bridge
the representational gap between low-level image features and high-level
object models, hindered by the assumption of one-to-one correspondence
between image and model features. Over the next thirty years, the main-
stream recognition community moved steadily in the direction of exem-
plar recognition while narrowing the representational gap. The commu-
nity is now returning to the categorization problem, and faces the same
representational gap as its predecessors did. We review the evolution
of object recognition systems and argue that bridging this representa-
tional gap requires an ability to match image and model features many-
to-many. We review three formulations of the many-to-many matching
problem as applied to model acquisition and object recognition.

1 Introduction

The evolution of object recognition over the past thirty years has witnessed
a shift from shape-based category recognition to appearance-based exemplar
recognition. As seen in Figure [Tl early object recognition systems modeled ob-
ject categories as collections of high-level, volumetric parts, such as generalized
cylinders. These models represented intuitive, parts-based abstractions of ob-
jects that offered invariance to minor shape deformations, part articulation, and
occlusion (due to the locality of the representation). Unfortunately, the vision
community lacked the tools to recover such shape abstractions from real im-
ages of real objects, leaving a representational gap that remains a challenge to
this day. Instead, category-level object recognition systems were presented with
images of simple, textureless objects in which image features, such as edges,
mapped directly to the surface discontinuities and occluding boundaries of the
abstract parts comprising categorical models. In effect, the representational gap
was artificially eliminated by bringing the images closer to the models. However,
the simplistic nature of the resulting scenes left many unsatisfied.

The 1980’s witnessed a movement toward geometric CAD models that cap-
tured the exact geometry of an object. Rather than defining object categories,
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Fig. 1. Evolution of object recognition. In each period, the representational gap was
avoided by either bringing the images closer to the models, bringing the models closer
to the images, or both. Figure taken from [3], copyright IEEE, 2005.

such models were effectively 3-D shape templates of object exemplars. Once
again, simple image features, such as edges, mapped directly to surface dis-
continuities and occluding boundaries of the model. This time, however, the
representational gap was artificially eliminated by bringing the models closer
to the image. Although the models were not categorical, they could be used to
recognize object exemplars in real images, provided that a detailed geometric
model could be acquired and that the imaged objects were textureless. These
two restrictions meant that not only did a user have to construct or acquire
a faithful 3-D geometric model of the object, the object had to be smoothly
shaded, resulting yet again in an unrealistic recognition setting.

The 1990’s saw a significant shift in object recognition philosophy from
object-centered modeling and recognition to viewer-centered modeling and recog-
nition. Whereas object-centered systems recognize 3-D models from 2-D images,
viewer-centered systems modeled an object as a set of 2-D views, thereby reduc-
ing “3-D from 2-D” recognition to simple 2-D recognition, at the cost of having to
store/match potentially many views. Within the viewer-centered framework, the
same representational gap exists between low-level image features and categori-
cal, view-based models. Instead of bridging this gap, the community eliminated
the gap by bringing the models even closer to the image, storing the actual im-
ages of an object exemplar as its (appearance-based) model views. This paradigm
gained tremendous popularity, as 3-D object modeling was no longer required
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and an object could have arbitrarily complex structure and surface texture. An
object database could be constructed by simply placing an object on a turntable
and spinning it in front of a camera to acquire a dense set of views.

For the first time, real images of real objects could be recognized. However,
it is important to note that through this evolution, the recognition community
redefined the recognition problem from category recognition (the predominant
goal of recognition systems in the 70’s/80’s) to exemplar recognition. In each of
the three periods above, the difficult problem of image abstraction, i.e., bridging
the representational gap by mapping low-level image features to high-level shape
primitives, was avoided by either moving the images up or moving the models
down. Underlying this movement is a fundamental assumption that for every
salient image feature (e.g., region, line, pixel, pixel neighborhood, etc.) there
exists a corresponding salient model feature. However, due to noise, segmentation
errors, articulation, scale difference, within-class variation, etc., a feature in one
image may correspond to a collection of features in another image.

The community is now beginning to return to its categorization roots, armed
with new machine learning techniques and invariant image features. But the
one-to-one feature correspondence assumption remains, and today’s models still
tend to encode the appearance (i.e., discriminating texture) of specific exem-
plars rather than the prototypical shapes of object categories. Hence, two ex-
emplars with different texture/appearance that belong to the same shape cate-
gory will have little in common with respect to their low-level image structure
(e.g., neighborhood-encoded interest points or image patches). The success of
object categorization depends on solving two problems. First, we must strive
to recover the coarse, high-level shape features that define the prototypical
shape of an object, with such features representing abstractions/groupings of
low-level image features. Second, we must relax the restrictive, one-to-one cor-
respondence assumption and develop mechanisms for matching image features
many-to-many.

In this paper, we review three formulations of the many-to-many matching
problem and its application to both shape category acquisition and recognition.
We assume that an image can be processed to yield a structured collection of
image features, conveniently represented as a graph whose nodes encode at-
tributed features and whose edges encode feature relations. In each formulation,
one-to-one feature (i.e., one-to-one node) correspondence between exemplars in
a given category may not exist at the level of extracted features, but may exist at
the level of groups of features. This sets up an intractable many-to-many graph
matching problem, for which approximation methods must be sought. Each for-
mulation takes a different approach to the problem, and we review preliminary
progress on each front.

2 Model Abstraction from Examples

Our first formulation of many-to-many matching addresses the problem of try-
ing to recover a structural model from a set of exemplars belonging to a known
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Fig. 2. The Lowest Common Abstraction (LCA) of a set of input exemplars (blocks).
In this case, the LCA of the three input exemplars would be the canonical view of the
block, in which three surfaces are visible. Figure taken from [3], copyright IEEE, 2005.

class. Consider the simple example shown in Figure 2] in which three differ-
ent exemplar images are presented to the system, each region segmented to
yield a region adjacency graph. Although the structure of the input graphs may
be different — in fact, not a single one-to-one node (feature) correspondence
may exist between the input exemplar graphs — the exemplars are similar at
a higher level of abstraction. If we consider the space of all possible graphs
formed by merging two adjacent regions, then each input exemplar gives rise
to a lattice of region adjacency graphs, representing all possible region group-
ings. Finding a model abstraction that best accounts for the input exemplars
consists of finding the most complex (maximum cardinality equals most in-
formative) graph that lies in the intersection of the lattices. Since more com-
plex abstraction graphs are lower in the lattice, we call this graph the lowest
common abstraction (LCA), representing a category-level, view-based descrip-
tion of one view class; additional view classes are acquired by rotating each
of the exemplars and repeating the process. Note that the LCA may not be
unique.

The above formulation is intractable, for neither the lattices nor their inter-
section can be realistically generated. Instead, we first narrow the scope of the
problem by finding the lowest common abstraction of two lattices, and exploit
the fact that we know one member of the intersection lattice, namely the sil-
houette. As shown in Figure 3, we work top-down from the silhouette, searching
for a pair of cuts, one per graph, in the two exemplars’ region adjacency graphs,
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Fig. 3. Finding the lowest common abstraction between two exemplars through a coor-
dinated, recursive decomposition of their silhouettes. Figure taken from [3], copyright
IEEE, 2005.

such that corresponding shapes (each cut yields two shapes) and their relations
are similar. When a successful cut is found, the corresponding shapes represent
a many-to-many matching of component regions.

The process continues recursively down the intersection lattice until no fur-
ther decomposition is possible. The union of primitive shapes forms the LCA of
the two graphs. This procedure is applied to all pairs of input exemplar graphs,
leading to a weak approximation of the intersection lattice for all inputs. Finally,
we search this approximation for the global lowest common abstraction. Figure [
shows the LCA computed for three different coffee cup exemplars and the re-
sulting intersection lattice; the computed global LCA is highlighted in orange
and represents a good abstraction of the cup, including a handle, body, top, and
hole (which it can’t distinguish from a surface). Details of the algorithm can be
found in [3].

3 Matching Structural Abstractions

The previous formulation of categorical model acquisition from examples
searched for abstractions (groupings) of regions (features) that were similar in
shape and common to many input lattices. The intractable complexity of the
resulting many-to-many graph matching problem led to an effective approxi-
mation method that yielded matching abstractions among pairs. However, the
abstractions were still graphs, and isomorphism had to be effectively computed.
One way of reducing the complexity of graph matching in the presence of noise
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Fig.4. Computed LCA (orange border) of 3 examples. From a set of three region
adjacency graphs representing the appearance of three different cup exemplars, the
algorithm extracts the salient surfaces of the cup, including the body, inside surface
(ellipse at top), handle, and hole (indistinguishable from a real surface). Figure taken
from [3], copyright IEEE, 2005.

(spurious nodes and edges), occlusion (both extraneous and missing structure),
and minor deformation (leading to graphs of different size) is not to match the
graphs themselves but rather low-dimensional vector abstractions of the graphs,
each of which encodes the “shape” of a subgraph. Drawing on the domain of
spectral graph theory, we have developed a low-dimensional abstraction of di-
rected acyclic graph structure that is robust to noise and perturbation yet rich
enough to distinguish structural differences between graphs. It assigns a “struc-
tural signature” vector to each node, encoding the “shape” of the underlying
subgraph rooted at that node. In a hierarchical structure, where nodes reflect
a coarse-to-fine feature decomposition, these vectors provide us with a powerful
tool for coarse-to-fine object recognition.

Our vector abstraction of graph structure is a function of the magnitudes of
the eigenvalues of a directed graph’s underlying adjacency matrix. The eigen-
values encode the degree distribution of the graph and are provably robust
to minor perturbation of the graph. Moreover, the dimensionality of the re-
sulting vectors is bounded by the maximum branching factor of the graph
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Fig. 5. Part correspondences in two Shock Graphs. Each colored branch in the shape’s
skeleton represents a node in the shape’s hierarchical shock graph. Node correspon-
dences are shown, with correspondences at coarser levels of the hierarchy implicitly
defining many-to-many correspondences among substructures at finer levels.

and not by the number of nodes in the graph. Not only do these structural
signature vectors offer an effective mechanism for rapid indexing from large
databases of graphs [7], but they offer a mechanism for matching graph ab-
stractions [86I5]. If the vectors computed for two nodes of two directed acyclic
graphs are similar, then their underlying subgraphs have similar structure, i.e.,
the collection of nodes forming the subgraph rooted at a node in one graph
matches a collection of nodes forming the subgraph rooted at a node in a sec-
ond graph, effectively yielding a many-to-many node (and structure) correspon-
dence. Figure Bl indicates the part correspondence computed for two silhouettes,
each represented using a shock graph [8], a qualitative decomposition of a sil-
houette’s medial axis structure in terms of a vocabulary of qualitatively de-
fined parts.

4 Structural Matching as Weighted Point Matching

Our first problem formulation could be seen as computing a set of many-to-many
node correspondences across a set of input graphs. However, the graphs were
known to belong to the same class, i.e., isomorphic at some level of abstraction.
Our second problem formulation was more general in that it computed corre-
spondences between nodes whose underlying (rooted) subgraphs have similar
structure. The vector abstraction of graph structure implicitly defined a many-
to-many matching of the underlying nodes without explicitly computing node
correspondences. In this section, we look at the most general formulation of
the many-to-many matching problem. Specifically, how do we match two graphs
whose structure may be different (as in our first problem) but which may not
belong to the same class (as in our second problem)?

Many-to-many graph matching is intractable, for any subset of nodes in one
graph may correspond to any subset of nodes in the other graph. Our approach,
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Fig. 6. Many-to-Many Graph Matching as Weighted Geometric Point Matching. Two
graphs to be matched are embedded with low distortion into a low-dimensional Eu-
clidean space, the two weighted sets of points are matched many-to-many using the
Earth Mover’s Distance (EMD) algorithm, and the solution defines a many-to-many
node correspondence in the original graphs.

Fig. 7. Many-to-Many Graph Matching Applied to Skeleton Graphs. Corresponding
groups of nodes (whose cardinalities may be different) are colored the same, with white
nodes unmatched. Figure taken from [4], copyright IEEE, 2003.

depicted in Figure [6, transforms the many-to-many graph matching problem
into a domain in which many-to-many matching is easier. Specifically, in work-
ing with edge-weighted, attributed graphs, each node maps to a point in a low-
dimensional geometric space, with the node’s attributes mapping to a mass vec-
tor assigned to the point. The structure of the graph is effectively mapped (em-
bedded) into the geometric space by ensuring that the shortest path distances
(along graph edges, summing edge weights) between pairs of nodes in the orig-
inal graph are preserved (with low distortion) as Euclidean distances between
their corresponding points in the transformed space; the edges of the graph are
effectively discarded.

The above graph embedding framework allows us to translate our origi-
nal many-to-many graph matching problem to a many-to-many point matching
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Fig. 8. Many-to-Many Graph Matching Applied to Blob Graphs. Many-to-many fea-
ture correspondences have been colored the same. Corresponding groups of nodes
(whose cardinalities may be different) are colored the same. Figure taken from [2]
(pg. 332), copyright, Springer, 2004, used with kind permission of Springer Science
and Business Media.

problem. If we let one graph’s points (embedded nodes) be represented as piles
of dirt, each of whose volume is proportional to the node’s mass, and the other
graph’s points be represented as holes, each of whose volume is proportional to
the node’s mass, the many-to-many weighted point matching problem can be
formulated as finding the assignment of dirt to holes that minimizes the work
required to move the dirt. The Earth Mover’s Distance (EMD) algorithm [I]
provides an efficient solution, allowing a pile of dirt to be spread across multi-
ple holes and allowing a hole to receive dirt from multiple piles. Moreover, the
computed flows between piles and holes can be translated back to the original
problem, yielding a many-to-many node correspondence between the original
graphs. Details can be found in [4)2].

Figures[d and [l illustrate two example domains in which we have successfully
applied the approach. In Figure [ we compute many-to-many node correspon-
dences between two silhouettes represented as skeleton graphs, in which nodes
represent medial axis points, edge weights represent Euclidean distances between
connected points, and node masses represent the radii of the maximally inscribed
circles. The algorithm computes the many-to-many correspondence shown below
the silhouettes, with corresponding points colored similarly. In Figure[8, we com-
pute many-to-many node correspondences between two hand images represented
as hierarchical blob and ridge decompositions [6]; note that the number of blobs
used to model the fingers or palm differs between the two decompositions. The
algorithm computes the many-to-many correspondences indicated by the similar
coloring.
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5 Conclusions

The within-class shape and appearance variation of many object categories pre-
cludes recognition strategies that assume a one-to-one correspondence between
low-level image features, for it is only at higher levels of abstraction that similar-
ity or correspondence may exist. Image abstraction is an open problem, and it’s
not clear what form image abstractions should take or how to compute them.
In one part of this paper, we review a particular graph (structural description)
abstraction and apply it to matching structural descriptions. In a second part
of this paper, we use the fact that two objects belong to the same category to
help search for a common abstraction. In the final part of the paper, we map
structural descriptions to be matched into a geometric space in which rules (i.e.,
edge weights) for abstracting/grouping features in graph space can be exploited
by computationally tractable strategies (e.g., EMD) in geometric space to find
corresponding abstractions. Each of these formulations effectively addresses the
underlying problem of many-to-many object matching, an important challenge
to categorization systems.
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