Indexing using a Spectral Encoding of Topological Structure

Ali Shokoufandeh

Abstract

In an object recognition system, if the extracted im-
age features are multilevel or multiscale, the indexing
structure may take the form of a tree. Such struc-
tures are not only common in computer vision, but
also appear in linguistics, graphics, computational bi-
ology, and a wide range of other domains. In this pa-
per, we develop an indexing mechanism that maps the
topological structure of a tree into a low-dimensional
vector space. Based on a novel eigenvalue character-
ization of a tlree, this topological signature allows us
to efficiently retrieve a small set of candidates from a
database of models. To accommodate occlusion and lo-
cal deformation, local evidence is accumulated in each
of the tree’s topological subspaces. We demonstrate the
approach with a series of indexing experiments in the
domain of 2-D object recognition.

1 Introduction

In an object recognition system, indezxing is the pro-
cess by which a collection of one or more extracted im-
age features belonging to an object is used to select,
from a large database of object models, a small set
of candidates likely to contain the object. From this
relatively small set of candidates, a verification proce-
dure is applied to select the most promising candidate.
If the extracted image features are multilevel or mul-
tiscale, the indexing structure may take the form of
a tree. Such structures are not only common in com-
puter vision, e.g., [22, 7], but also appear in linguistics
(syntax trees), graphics (CSG trees), computational
biology (phylogenetic trees), and a wide range of other
domains.

If the image (or query) tree has rich structure in
terms of depth and/or branching factor, its topol-
ogy alone may serve as a discriminating index into
a database of model trees. Although false positives

*Sven Dickinson gratefully acknowledges the support of the
National Science Foundation (IRI-9623913 and ISI-9818332).

tKaleem Siddiqi gratefully acknowledges the support of the
National Sciences and Engineering Research Council of Canada
(NSERC) and Le Fonds pour la Formation de Chercheurs et
I’Aide la Recherche (Fonds FCAR).

¥Steven Zucker gratefully acknowledges the support of the
Air Force Office of Scientific Research (AFOSR).

Sven J. Dickinson*
Rutgers University Rutgers University McGill University

Steven W. Zucker?
Yale University

Kaleem Siddigif

(e.g., model trees that have the same structure, but
whose node labels are different) may arise, they may
be few in number and can be pruned during verifica-
tion. To be an effective index, a topological encoding
of a tree’s structure should: 1) map a tree’s topology
to a point in some low-dimensional space; 2) capture
local topology to support matching/indexing in the
presence of occlusion; 3) be invariant to re-orderings
of the tree’s branches, i.e., re-orderings which do not
affect the parent-child relationships in the tree; 4) be
as unique as possible, i.e., different trees should have
different signatures; 5) be stable, i.e., small perturba-
tions of a tree’s topology should result in small per-
turbations of the index; and 6) should be efficiently
computed.

In this paper, we present a novel encoding of a tree’s
topology which satisfies the above criteria. Our encod-
ing, or topological signature, is derived from an eigen-
value characterization of a tree’s {0, 1} adjacency ma-
trix. We draw on a number of important theorems in
the domain of eigenspaces of graphs to show how our
index meets the above criteria. Although applicable
to a wide range of tree indexing problems, we demon-
strate our approach in the domain of 2-D silhouette
recognition, in which image and model silhouettes are
represented as trees. In current work, we are exploring
the application of our indexing mechanism to prob-
lems in computational linguistics, computer graphics,
and bioinformatics.

2 Related Work

Eigenspace approaches to shape description and in-
dexing are numerous. Due to space constraints, we
cite only a few examples. Turk and Pentland’s eigen-
face approach [21] represented an image as a linear
combination of a small number of basis vectors (im-
ages) computed from a large database of images. Na-
yar and Murase extended this work to general 3-D ob-
jects where a dense set of views was acquired for each
object [9]. Other eigenspace methods have been ap-
plied to higher-level features, offering more potential
for generic shape description and matching. For ex-
ample, Sclaroff and Pentland compute the eigenmodes
of vibration of a 2-D region [15], while Shapiro and

Brady looked at how the modes of vibration of a set
of 2-D points could be used to solve the point corre-
spondence problem under translation, rotation, scale,
and small skew [17]. In an attempt to index into a
database of graphs, Sossa and Horaud use a small
subset of the coefficients of the da-polynomial corre-
sponding to the Laplacian matrix associated with a
graph [20], while a spectral graph decomposition was
reported by Sengupta and Boyer for the partitioning
of a database of 3-D models, where nodes in a graph
represent 3-D surface patches [16]. Sarkar [14] and Shi
and Malik [18] have formulated the perceptual group-
ing and region segmentation problems, respectively,
as graph partitioning problems and have used a gen-
eralized eigensystem approach to provide an efficient
approximation. We note that in contrast to many of
the above approaches to indexing, the representation
that we present in this paper is independent of the
contents of the model database and uses a uniform
basis to represent all objects.

3 A Novel Topological Description
3.1 Eigenspaces of Graphs

To describe the topology of a tree, we turn to the
domain of eigenspaces of graphs, first noting that any
graph can be represented as a symmetric {0,1} ad-
jacency matrix, with 1’s indicating adjacent nodes in
the graph (and 0’s on the diagonal). The eigenval-
ues of a graph’s (or tree’s) adjacency matrix encode
important structural properties of the graph (or tree).
Furthermore, the eigenvalues of a symmetric matrix A
are invariant to any orthonormal transformation of the
form P*AP. Since a permutation matrix is orthonor-
mal, the eigenvalues of a tree are invariant to any con-
sistent re-ordering of the tree’s branches. However,
before we can exploit a tree’s eigenvalues for indexing
purposes, we must, establish their stability under mi-
nor topological perturbation, due to noise, occlusion,
or deformation.

We begin with the case in which the image tree is
formed by either adding a new root to the model tree,
adding one or more subtrees at leaf nodes of the model
tree, or deleting one or more entire model subtrees.
In this case, the model tree is a subtree of the query
tree, or vice versa. The following theorem relates the
eigenvalues of two such trees:

Theorem 1 (see Cvetkovié et al. [3]) Let A be a
symmeltrict matriz with eigenvalues Ay > Xo > ... >
An and let B be one of its principal’ submatrices. If

IThe original theorem is stated for Hermitian matrices, of
which symmetric matrices are a subclass.
2A principal submatrix of a graph’s adjacency matrix is

the eigenvalues of B are vy > va > ... > vy, then

Aemti v < N =1,...,m).

This important theorem, called the Interlacing Theo-
rem, implies that as A and B become less similar (in
the sense that one is a smaller subtree of the other),
their eigenvalues become proportionately less similar
(in the sense that the intervals that contain them in-
crease in size, allowing corresponding eigenvalues to
drift apart).

The other case we need to consider consists of a
query tree formed by adding to or removing from
the model tree, a small subset of internal (i.e., non-
leaf) nodes. The upper bounds on the two largest
eigenvalues (A1 (T") and A2(T')) of any tree, T, with n
nodes and maximum degree A(T') are \; (T) < vn — 1
and \(T) < 4/(n—3)/2, respectively (Neumaier,
1982 [10]). The lower bounds on these two eigen-
values are A\ (T) > /A(T) (Nosal, 1970 [11]) and
A (T)X(T) > 22=2 (Cvetkovi¢, 1971 [2]). Therefore,
the addition or removal of a small subset of internal
nodes will result in a small change in the upper and
lower bounds on these two eigenvalues. As we shall
see in the following subsection, our topological de-
scription exploits the largest eigenvalues of a tree’s
adjacency matrix. Since these largest eigenvalues are
stable under minor perturbation of the tree’s internal
node structure, so too is our topological description.

3.2 Formulating an Index

We now seek a compact representation of the tree’s
topology based on the eigenvalues of its adjacency ma-
trix. We could, for example, define a vector to be the
sorted eigenvalues of a tree. The resulting index could
be used to retrieve nearest neighbors in a model tree
database having similar topology. There are two prob-
lems with this approach. First, the eigenvalues don’t
encode the ordering of nodes in the tree; if the tree was
inverted with a leaf becoming the root, the eigenvalues
would remain invariant. Second, for large trees, the di-
mensionality of the index (and model tree database)
would be prohibitively large. Our solution to the first
problem will be to compute an eigenvalue-based de-
scription at each node in terms of the eigenvalues of
its subtrees, while to solve our second problem, this
description will be based on eigenvalue sums rather
than on the eigenvalues themselves.

Specifically, let T be a tree whose maximum
branching factor is A(T'), and let the subtrees of its
root be T1,Ts,...,Ts. For each subtree, T;, whose
root degree is 0(7;), compute the eigenvalues of T;’s

formed by selecting the rows and columns that correspond to a
subset of the graph’s nodes.

submatrix, sort the eigenvalues in decreasing order by
absolute value, and let S; be the sum of the 6(7;) — 1
largest absolute values. The sorted S;’s become the
components of a A(T)-dimensional vector assigned to
the tree’s root. If the number of S;’s is less than A(T'),
then the vector is padded with zeroes. We can recur-
sively repreat this procedure, assigning a vector to the
root of each subtree in the tree for reasons that will
become clear in the next section.

Although the eigenvalue sums are invariant to any
consistent re-ordering of the tree’s branches, we have
given up some uniqueness (due to the summing opera-
tion) in order to reduce dimensionality. We could have
elevated only the largest eigenvalue from each sub-
tree (non-unique but less ambiguous), but this would
be less representative of the subtree’s structure. We
choose the §(T;) — 1-largest eigenvalues for two rea-
sons: 1) the largest eigenvalues are more informative
of subtree structure, 2) by summing §(7;) —1 elements,
we effectively normalize the sum according to the local
complexity of the subtree root.

To efficiently compute the submatrix eigenvalue
sums, we turn to the domain of semidefinite program-
ming. A symmetric n X n matrix A with real en-
tries is said to be positive semidefinite, denoted as
A = 0, if for all vectors z € R"*, z' Az > 0, or equiv-
alently, all its eigenvalues are non-negative. We say
that U > V if the matrix U — V is positive semidefi-
nite. For any two matrices U and V having the same
dimensions, we define U o V' as their inner product,
ie,UeV = Z Z Ui ;Vi ;- For any square matrix

i
U, we define trace(U) =), U;;. Let I denote the
identity matrix having suitable dimensions. The fol-
lowing result, due to Overton and Womersley [12],
characterizes the sum of the first k largest eigenvalues
of a symmetric matrix in the form of a semidefinite
convex programming problem:

Theorem 2 (Overton and Womersley [12])
For the sum of the first k eigenvalues of a symmel-
ric matriz A, the following semidefinite programming
characterization holds:

AM(A)+ ...+ (A) = max AeU
s.t. trace(U) =k
02U <1,

The elegance of Theorem (2) lies in the fact that the
equivalent semidefinite programming problem can be
solved, for any desired accuracy ¢, in time polynomial
in O(ny/nL) and log 1, where L is an upper bound on
the size of the optimal solution, using a variant of the
Interior Point method proposed by Alizadeh [1]. In

effect, the complexity of directly computing the eigen-
value sums is a significant improvement over the O(n?)
time required to compute the individual eigenvalues,
sort them, and sum them.
3.3 Properties of the Index

Our topological index satisfies the six criteria out-
lined in Section 1. The eigendecomposition yields a
low-dimensional (criterion 1) vector assigned to each
node in the tree, which captures the local topology
of the subtree rooted at that node (criterion 2). Fur-
thermore, a node’s vector is invariant to any consistent
re-ordering of the node’s subtrees (criterion 3). The
components of a node’s vector are based on summing
the largest eigenvalues of its subtree’s adjacency sub-
matrix. Although our dimensionality-reducing sum-
ming operation has cost us some uniqueness, our par-
tial sums still have very low ambiguity (criterion 4).
From Theorem 1, along with our analysis of eigenvalue
bounds, we have shown our index to be stable to mi-
nor perturbations of the tree’s topology (criterion 5).
As shown in Theorem 2, these sums can be computed
even more efficiently (criterion 6) than the eigenval-
ues themselves. The vector labeling of all rooted trees
isomorphic to T not only has the same vector labeling
but spans the same subspace in RA(T)~1. Moreover,
this extends to any rooted tree which has a subtree
isomorphic to a subtree of T'.

4 Candidate Selection

Given a query tree corresponding to an image, our
task is to search the model tree database for one or
more model trees which are similar to the image tree.
If the number of model trees is large, a linear search of
the database is intractable. Therefore, the goal of our
indexing mechanism is to quickly select a small num-
ber of model candidates for verification. Those candi-
dates will share coarse topological structure with the
image tree (or one of its subtrees, if it is occluded or
poorly segmented). Hence, we begin by mapping the
topology of the image tree to a set of indices that cap-
ture its structure, discounting any information associ-
ated with its nodes. We then describe the structure of
our model database, along with our mechanism for in-
dexing into it to yield a small set of model candidates.
Finally, we present a local evidence accumulation pro-
cedure that will allow us to index in the presence of
occlusion.

4.1 A Database for Model Trees

Our eigenvalue characterization of a tree’s topol-
ogy suggests that a model tree’s topological structure
can be represented as a vector in d-dimensional space,
where ¢ is an upper bound on the degree of any vertex
of any image or model tree. If we could assume that

an image tree represents a properly segmented, unoc-
cluded object, then the vector of eigenvalue sums, call
it the topological signature vector (or TSV), computed
at the image tree’s root could be compared with those
topological signature vectors representing the roots of
the model trees. The vector distance between the im-
age tree’s root TSV and a model tree’s root TSV would
be inversely proportional to the topological similarity
of their respective trees: recall from Section 3 that
finding two subtrees with “close” eigenvalue sums rep-
resents an approximation to finding the largest isomor-
phic subtree.

Unfortunately, this simple framework cannot sup-
port either cluttered scenes or segmentation errors,
both of which result in the addition or removal of tree
structure. In either case, altering the structure of the
tree will affect the TSV’s computed at its nodes. The
signatures corresponding to those subtrees that sur-
vive the occlusion will not change. However, the sig-
nature of a node having one or more subtrees which
have undergone any perturbation will change which,
in turn, will affect the signatures of any of its ancestor
nodes, including the root. We therefore cannot rely on
indexing solely with the root’s signature. Instead, we
will take advantage of the local subtrees that survive
the occlusion.

We can accommodate such perturbations through
a local indexing framework analogous to that used in
a number of geometric hashing methods, e.g., [6, 4].
Rather than storing a model tree’s root signature, we
will store the signatures of each node in the model
tree, along with a pointer to the object model con-
taining that node as well as a pointer to the corre-
sponding node in the model tree (allowing access to
node label information). Since a given model subtree
can be shared by other model trees, a given signature
(or location in d-dimensional space) will point to a
list of (model object, model node) ordered pairs. At
runtime, the signature at each node in the image tree
becomes a separate index, with each nearby candi-
date in the database “voting” for one or more (model
object, model node) pairs. To quickly retrieve these
nearby candidates, we will precompute the sorted pair-
wise distances between every signature in the database
and every other signature in the database.

4.2 An Efficient Indexing Mechanism

We achieve efficient indexing through a d-
dimensional Voronoi decomposition P(B) of the model
space V(B). For a given image TSV, the Voronoi de-
composition will allow us to find the nearest model
TSV in expected O(log®(kn)) time for fixed & [13].
From the ranked list of neighbors L computed for

Figure 1: Selecting the Candidate Model Objects

each model TSV, either the ¢ nearest neighbors or
all neighbors within a radius r can be computed in
constant time (assuming fixed ¢ or r). To construct
the Voronoi database, we partition R’ into regions,
so that for each vector v € V(B), the region P(v)
will denote the set of points in R which are closer
to v than any other vector in V(B) with respect to a
metric norm, such as d(.,.). Such a partition is well-
defined. The complexity of the Voronoi decomposition
is O((kn)LC+D/21+1) 4 O((kn) LO+D/2) log(kn)) ([13]),
although this is a cost incurred at preprocessing time.

The process of selecting candidates at runtime is
shown in Figure 1. Let H be an image tree, and
let Fy and V(Fpg) be defined as before, and let
d(u,v) = ||v — u||2. For each TSV h € V(Fy), we
will find the region P(v) (and corresponding vector
v) in P(B), in which h resides. Using the list L(v),
we will find the set of model TSV’s {uq,..,u¢} such
that d(h,v) + d(v,u;) < r. Clearly, since the met-
ric norm d(.,.) satisfies the triangle inequality, the set
{v}U{us, .., ue} is a subset of the TSV’s whose distance
from h is less than r. Each node in the image tree
therefore leads to a number of (model object, model
node) candidate votes. In the next section, we discuss
the weighting of these votes, along with the combina-
tion of the evidence over all nodes in the image tree.

4.3 Accumulating Local Evidence

Each node in the image tree will generate a set of
(model object, model node) votes. To collect these
votes, we set up an accumulator with one bin per
model object. Furthermore, we can weight the votes
that we add to the accumulator. For example, if the

label of the model node is not compatible with the la-
bel of its corresponding image node, then the vote is
discarded, i.e., it receives a zero weight. If the nodes
are label-compatible, then we can weight the vote ac-
cording to the distance between their respective TSV’s
— the closer the signatures, the more weight the vote
gets.

We can also weight the vote according to the com-
plexity of its corresponding subtree, allowing larger
and more complex subtrees (or “parts”) to have higher
weight. This can be easily accommodated within our
eigenvalue framework, for the richer the structure, the
larger its maximum eigenvalue:

Theorem 3 (Lovasz and Pelikdn [8]) Among the
trees with n vertices, the star graph (Ki n_1), has the
largest eigenvalue (\/n — 1), while the path on n nodes
(Py,) has the smallest eigenvalue (2cosw/(n + 1)).

Since the size of the eigenvalues, and hence their sum,
is proportional to both the branching factor as well as
the number of nodes, the magnitude of the signature
is also used to weight the vote. If we let u be the
TSV of an image tree node and v the TSV of a model
tree node that is sufficiently close, the weight of the
resulting vote, i.e., the local evidence for the model, is
computed as (we use p = 2):

[lullp
W= (1)
L4 [lo—ull

Once the evidence accumulation is complete, those
models whose support is sufficiently high are selected
as candidates for verification. The bins can, in ef-
fect, be organized in a heap, requiring a maximum of
O(log k) operations to maintain the heap when evi-
dence is added, where k is the number of non-zero ob-
ject accumulators. Once the top-scoring models have
been selected, they must be individually verified ac-
cording to some matching algorithm.

5 Experiments

To demonstrate our approach to indexing, we turn
to the domain of 2-D object recognition. Although we
could choose any tree-based image description, e.g.,
[22, 7], our representation for 2-D shape is based on
a coloring of the shocks (singularities) of a curve evo-
lution process acting on simple closed curves in the
plane [5]. Intuitively, the taxonomy of shocks con-
sists of four distinct types: the radius function along
the medial axis varies monotonically at a 1, achieves
a strict local minimum at a 2, is constant at a 3 and
achieves a strict local maximum at a 4. We have re-
cently abstracted this system of shocks into a shock

3-002 3-001

S l,m>ffﬂm7 “1-001
N S

1-005

1-004

|

A
T

3-003

1-003

1-002

Figure 2: An illustrative example taken from [19]. The
labels on the shocks of the hammer (left) correspond
to vertices in the derived shock graph (right).

graph where vertices are labelled by their shock types,
and the shock formation times direct the edges (see
Figure 2). The space of such shock graphs is com-
pletely characterized by a small number of rules, which
in turn permits the reduction of each graph to a unique
rooted tree. In recent work, we developed an algorithm
for matching two shock trees based on both topolog-
ical structure and geometric structure [19]. Still, the
problem of indexing was not addressed. How, from
a shock-based encoding of an occluded scene, can we
select from a large database of 2-D objects, a small set
of candidates to which we can apply our matching al-
gorithm in order to recognize the embedded object(s)?

We test our indexing algorithm on a database of
60 object silhouettes, some representative examples of
which are shown in Figure 3. In the first experiment,
we select 20 shapes from the database, compute their
shock trees, compute the topological signature vectors
for each of their nodes, and populate the resulting vec-
tors in a model database. Each element, in turn, will
be removed from the database and used as a query
tree for the remaining database of 19 model trees. For
each of the 20 trials, the 19 object candidates will be
ranked in decreasing order of accumulator contents.
To evaluate the quality of the indexing results, we will
compute the distance between the query tree and each
of the candidates, using the matcher developed in [19],
and note which model tree is the closest match. If in-
dexing is to be effective, the closest matching model
should be among the best (highest-weight) candidates
returned by the indexing strategy.

In the second and third experiments, we apply the
same procedure to databases of size 40 and 60 model
trees, respectively, in order to evaluate the scaling
properties of our indexing algorithm. Thus, in the
second experiment, we have 40 indexing trials, while

\NSsx\/
V@&~

Figure 3: Samples from a Database of 60 Object Sil-
houettes

in the third experiment, we have 60 indexing trials.
Finding the position of the closest model shape among
the sorted candidates for any given query shape re-
quires that we first compute the 60 x 60 distance ma-
trix.

The results of the first experiment are shown in
Figure 4(a), where the horizontal axis indicates the
rank of the target object (or closest matching object)
in the sorted candidates, and the vertical axis repre-
sents the number of times that rank is achieved. For
this experiment, the average rank is 1.6, which im-
plies that on average, 8.4% of the sorted candidates
need to be verified before the closest matching model
is found. The results of the second and third experi-
ments are shown in Figures 4(b) and (c), respectively.
The results are very encouraging and show that as
database size increases, the indexing algorithm con-
tinues to prune over 90% of the database (avg. rank
of 7.9% in expt. 2, 8.8% in expt. 3).

In a final experiment, we generate some occluded
scenes from shapes in our database. In Table 1,
we show three examples of occluded query images
(left column) and the top ten (sorted left to right)
model candidates from a database of 40 model shapes.
Twice, the rank of the target is 4th, while once it is
3rd, indicating that for these three examples, at most
10% of the model indexing candidates need to be veri-
fied. We are currently conducting a more comprehen-
sive set of occlusion experiments.

It should be noted that the indexing mechanism re-
flects primarily the topological structure of the query.
Thus, in row 1 of Table 1, for example, the topological
structure of the query (brush occluding the hammer)
is more similar to the pliers-like objects (two of the top
three candidates) than to the hammer itself. Topolog-
ical similarity of shock trees is a necessary but not
sufficient condition for shape similarity, as it ignores
the geometries of the object’s parts (nodes in its shock
tree). Therefore, the fact that objects with different
shape can rank high in the candidate list is not sur-
prising.

Freq.

16
Database size = 20
@ 12 avg.rank=1.6
8 (8.4% of database)
4
5 10 15 20
Rank of Target

Database size = 40
avg. rank = 3.1
(7.9% of database)

(b)

10 15 20
Rank of Target

Database size = 60
avg. rank = 5.21
(8.8% of database)

(c) 12

5 10 15 20
Rank of Target

Figure 4: Indexing Results for Three Databases of In-
creasing Size. In each case, the horizontal axis indi-
cates the rank of the target object (or closest matching
object) in the sorted candidates, and the vertical axis
represents the number of times that rank is achieved.
(See text for discussion.)

6 Conclusions

We have presented a computationally efficient
eigendecomposition of a tree that captures its coarse
topological structure. Furthermore, this eigendecom-
position is stable under minor perturbation of tree
structure. Each of the tree’s subtrees yields an in-
dependent topological index which can be used to ef-
ficiently accumulate evidence for a small set of models
sharing the query’s topological structure, even in the
presence of noise and occlusion. In a series of experi-
ments in the domain of 2-D object recognition (shock
trees), we demonstrate that our topological index is
very effective in selecting a small number of model
candidates likely to contain the target object. Fur-
thermore, our experiments show that its performance
scales well with increasing database size. Our index-
ing framework is general and can be applied to any in-
dexing domain, including, for example, hierarchical or
multiscale structures in computer vision, part-whole

N ¥
7 «d
y v v

Top Ten Model Hypotheses

} A

77 7NN\

< N NN\

N7 s« v\

Table 1: Indexing using an occluded query shape. For each row, the query is shown to the left, while the top
ten candidate models (from a database of 40 models) are shown on the right, in decreasing order of weight. The
database shape whose distance to the query is smallest, as computed by the matching algorithm described in [19],
is enclosed in a box. The likelihood that the closest shape is among the top-ranked candidates is high (see text
for discussion).

hierarchies in knowledge representation, parse trees
in computational linguistics, CSG trees in computer
graphics, and phylogenetic trees in computational bi-

ology.
References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(]

F. Alizadeh. Interior point methods in semidefinite program-
ming with applications to combinatorial optimization. SIAM
J. Optim., 5(1):13-51, 1995.

D. Cvetkovi¢. Graphs and their spectra. PhD thesis, Univer-
sity of Beograd, 1971.

D. Cvetkovié¢, P. Rowlinson, and S. Simié. Figenspaces of
Graphs. Cambridge University Press, Cambridge, United
Kingdom, 1997.

P. Flynn and A. Jain. 3D object recognition using invariant
feature indexing of interpretation tables. CVGIP:Image Un-
derstanding, 55(2):119-129, March 1992.

B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shape,
shocks, and deformations I: The components of two-
dimensional shape and the reaction-diffusion space. Interna-
tional Journal of Computer Vision, 15:189-224, 1995.

Y. Lamdan, J. Schwartz, and H. Wolfson. Affine invari-
ant model-based object recognition. IEEE Transactions on
Robotics and Automation, 6(5):578-589, October 1990.

T. Lindeberg. Detecting Salient Blob-Like Image Struc-
tures and Their Scales With a Scale-Space Primal Sketch—A
Method for Focus—of-Attention. IJCV, 11(3):283-318, Decem-
ber 1993.

L. Lovész and J. Pelicdn. On the eigenvalues of a tree. Peri-
odica Math. Hung., 3:1082—-1096, 1970.

H. Murase and S. Nayar. Visual learning and recognition of 3-D
objects from appearance. International Journal of Computer
Vision, 14:5-24, 1995.

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

A. Neumaier. Second largest eigenvalue of a tree. Linear Al-
gebra and its Applications, 46:9-25, 1982.

E. Nosal. Eigenvalues of graphs. Master’s thesis, University of
Calgary, 1970.

M. L. Overton and R. S. Womersley. Optimality conditions and
duality theory for minimizing sums of the largest eigenvalues
of symmetric matrices. Math. Programming, 62(2):321-357,
1993.

F. Preparata and M. Shamos. Computational Geometry.
Springer-Verlag, New York, NY, 1985.

S. Sarkar. Learning to form large groups of salient image fea-
tures. In IEEE CVPR, Santa Barbara, CA, June 1998.

S. Sclaroff and A. Pentland. Modal matching for correspon-
dence and recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17(6):545-561, June 1995.

K. Sengupta and K. Boyer. Using spectral features for mod-
elbase partitioning. In Proceedings, International Conference
on Pattern Recognition, Vienna, Austria, August 1996.

L. Shapiro and M. Brady.
an eigenvector approach.
10(5):283-288, June 1992.

Feature-based correspondence:
Image and Vision Computing,

J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, San Juan, Puerto Rico, June 1997.

K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker.
Shock graphs and shape matching. International Journal of
Computer Vision, to appear.

H. Sossa and R. Horaud. Model indexing: The graph-hashing
approach. In Proceedings, IEEE CVPR, pages 811-814, 1992.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal
of Cognitive Neuroscience, 3(1):71-86, 1991.

A. Witkin. Scale space filtering. In A. Pentland, editor, From
Pizels to Predicates. Ablex, Norwood, NJ, 1986.

