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1 Introduction 

Research in 3-D object tracking is typified by ap- 
proaches which attempt to recover the six degrees of 
freedom of an object in each frame, e.g., [ l l ,  14, 6 ,  171. 
Once a correspondence between image and model fea- 
tures is determined, changes in the positions of image 
features in successive frames is used to update the pose 
of the object. Although providing accurate pose of the 
object at  each frame, these techniques require an ex- 
act geometric specification of the object. At the other 
extreme, active contour methods have been used to 
track objects in the image with little or no knowledge 
of the 3-D object, e.g., [8, 13, 3, 21. However, these 
methods can only track the position of the object in 
the image and not its orientation. 

In this paper, we track changes in the appearance of 
the object as it moves from one frame to the next. At a 
symbolic level, an aspect graph clusters all the views of 
an object into a set of topologically distinct classes in 
terms of which surfaces of an object are visible from a 
given viewpoint (Koenderink and van Doorn [9]). Two 
nodes (or aspects) in the aspect graph are connected 
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by an arc if it is possible to directly move from a view- 
point in which the first aspect is visible to a viewpoint 
in which the second aspect is visible. Qualitatively, we 
can envision a tracking strategy which simply tracks 
an object as it moves from one node to another in the 
object’s aspect graph. Although it does not provide us 
with accurate pose of the object, it does qualitatively 
describe the motion of the object wi thou t  the need for 
a CAD representation of the object. 

To track an object as it moves from one view to 
another requires that we can detect visual events in 
the image. Using a network of active contours, called 
an adap t i ve  ad jacency  graph [7], we will track aspects 
from one frame to the next. Since visual events are 
characterized by the appearance or disappearance of 
faces in an aspect, we will use the adaptive adjacency 
graph to monitor the changes in each aspect’s face 
from one frame to the next. When a face in an aspect 
is rapidly diminishing, a signal is sent to a monitor- 
ing process responsible for keeping track of the cur- 
rent position in the aspect predzctaon graph (APG), a 
derivative of the aspect graph. In addition to assign- 
ing probabilities to each node in a compressed aspect 
graph, the APG explicitly encodes at  which contours 
of an aspect visual events occur, and maintains a cor- 
respondence between faces in adjacent nodes in the 
graph. When the monitor, or symbolzc t racker ,  is in- 
formed by the image tracker that some face is disap- 
pearing, it decides to which node in the aspect predic- 
tion graph the object is moving. The symbolic tracker 
then sends a set of predictions to the image tracker in 
terms of structural changes to the network. 
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Figure 1: System Overview 

2 Related Work 

One approach to tracking a 3-D object in a 2-D im- 
age is to begin with a 3-D CAD model specifying the 
exact geometry of the object, as surveyed in [14]. Of 
more relevance to our approach are view-based strate- 
gies which encode a 3-D object as a set of views; exam- 
ples include Wallace and Mitchell [15], Liu and Tsai 
[lo], and Siebert and Waxman [12]. Although such ap- 
proaches do not solve for the exact pose of an object, 
they do use aspects to capture an object’s “qualita- 
tive” pose. If even the qualitative pose of the object 
is unnecessary, we can track only the boundary of the 
object in the image. Active contours (snakes) pro- 
posed by Kass et al. [a] posses the ability to adapt 
themselves to image features while maintaining their 
smoothness and rigidity. Different versions and im- 
plementations of active contours have been used for 
tracking moving contours, finding salient contours in 
images, and stereo matching, e.g., Amini et al. [l], 
Williams and Shah [lS], Curven et al. [3], and Ter- 
zopoulos and Szeliski [13]. 

The symbolic tracker, as shown in Figure 1, tracks 
movement from one node to another in a represen- 
tation called the aspect prediction graph [4]. Each 
of the nodes in this representation, derived from an 
aspect graph (Koenderink and van Doorn [9]), repre- 
sents a topologically different viewpoint of the object, 
while arcs between nodes specify the visual events or 
changes in image topology between nodes. The role of 
the symbolic tracker is to: 

Determine which view or aspect of the object is 
currently visible (current node). 

Respond to visual events detected by the image 
tracker by predicting which node (aspect) will ap- 
pear next (target node). 

From the visual event specification defined by the 
current and target nodes, add or delete structure 
from the active contour network (predictions). 

If predicted aspects cannot be verified by the im- 
age tracker or visual event predictions cannot be 
recognized by the symbolic tracker, the symbolic 
tracker must be able to bootstrap the system to 
relocate itself in the aspect prediction graph. 

In the following sections, we explore the symbolic 
tracker in more detail, first examining the aspect pre- 
diction graph, and then describing its role in monitor- 
ing the image tracker. 

3.1 The Aspect Prediction Graph 

The aspect prediction graph (APG) is derived from 
two sources: the aspect graph and the aspect hier- 
archy. Our aspect prediction graph is a more effi- 
cient version of the aspect graph in which topologically 
equivalent nodes are grouped regardless of whether 
their faces map to different surfaces on the object. 
Next, the aspect prediction graph specifies the visual 
events in terms of which faces appear/disappear when 
moving from one aspect to another. Furthermore, the 
position of such a face appearance/disappearance from 
a source aspect to a target aspect is specified with re- 
spect to particular contours of faces in the source as- 
pect (event contours). Finally, the transition between 
two nodes (aspects) encodes the direction(s) relative 
to the event contours that one must move in the image 
plane in order to observe the visual event. 

The aspect prediction graph is also based on a 
hierarchical part-based aspect representation, called 
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the aspect hzerurchy, which uses aspects to represent 
a (typically small) set of volumetric primitives from 
which each 3-D object in a database is constructed, 
rather than representing entire objects directly [5]. 
Consequently, we use aspects to recover the 3-D vol- 
umetric primitives that make up an object in order 
to carry out a recognition-by-parts procedure, rather 
than attempting to use aspects to recognize the en- 
tire object. A unique feature of the aspect hierarchy 
is a set of conditional probabilities linking features a t  
different levels of the hierarchy. The aspect predic- 
tion graph borrows from the aspect hierarchy both the 
Prob(volume1aspect) and Prob(aspect [volume) con- 
ditional probabilities, and assigns them to the nodes 
in the aspect prediction graph. 

We have constructed an aspect prediction graph for 
a number of simple volumetric primitives. Given an 
aspect of a volume, the observer can usually move in 
more than one direction to get to some other aspect. 
To cover all these alternatives, the aspect prediction 
graph encodes multiple arcs between the aspects, each 
representing a qualitatively distinct view change direc- 
tion. In addition, associated with each of these arcs 
are one or more face events. Each face event specifies 
what face will appear or disappear under the change 
of view corresponding to the arc, and where the event 
will occur relative to the source aspect. 

To illustrate the above concepts, Figure 2 presents 
the aspect prediction graph for the block volume, il- 
lustrating the three possible aspects of the block. Be- 
tween every two nodes (aspects) in the aspect predic- 
tion graph are a pair of directional arcs. The direc- 
tional arc between aspect 1 and aspect 2 in Figure 2 
is expanded in Figure 3. From aspect 1 in Figure 2 ,  
there are three ways to move to a view in which aspect 
2 will be visible. Movement relative to contours 0 and 
1 on face 2 will cause a visual event in which face 2 
disappears a t  contour 1 on face 0 and a t  contour 3 
on face 1. Or, movement relative to contours 0 and 
1 on face 0 will cause a visual event in which face 0 
will disappear a t  contour 0 on face 1 and contour 0 on 
face 2. Finally, movement relative to contours 0 and 
3 on face 1 will cause a visual event in which face 1 
will disappear a t  contour 0 on face 0 and contour 1 on 
face 2. 

I t  should be noted that in the aspect hierarchy, 
each aspect has an indexing of its component faces, 
and each component face has a similar indexing of its 
bounding contours. By referring to the normals of 
such well-defined contours, we can qualitatively spec- 
ify direction rules with respect to an aspect-centered 
coordinate system. The direction of view change is 

2 

Figure 2: Aspect Prediction Graph (APG) for Block 

specified as a vector sum of the normals to a partic- 
ular set of recovered aspect contours that correspond 
to the model contours of an aspect prediction graph 
node.' The face events are also defined with respect 
to these specified contours. For example, we can pre- 
dict along which contour in the current aspect a new 
face will appear or disappear when moving towards a 
new aspect. 

3.2 Recognizing Visual Events 

The symbolic tracker specifies the criteria for which 
a visual event will be detected by the image tracker. 
For the experiments in this paper, we will use region 
area as the single criteria. If a t  any time during the 
image tracking of an aspect, one or  more of its faces' 
areas goes below some threshold, we interpret that to 
mean that the face is undergoing heavy foreshortening 
and will soon disappear. When a region's area drops 
below the threshold, the image tracker sends a signal 
to the symbolic tracker. Given its current position 
(node) in the aspect prediction graph, the symbolic 
tracker compares the outgoing arcs, or visual events, 
with the events detected by the image tracker. The arc 
in the aspect prediction graph matching the observed 
visual event defines a transition to a new aspect. 

3.3 Predicting a New Aspect 

The transition between the current APG node and 
the predicted APG node defines a set of visual events 

'For concave and convex curve segments, the normal at the 
inidpoint is used. 
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Figure 3: APG Transitions from Aspect 1 to Aspect 
2 in Figure 2 

in terms of the faces in the aspect defined by the cur- 
rent APG node. If one or more faces disappear from 
the current aspect to the predicted aspect, the sym- 
bolic tracker directs the image tracker to delete those 
contours from the adaptive adjacency graph which 
both belong to the disappearing faces and are not 
shared by any remaining faces. Alternatively, if one 
or more new faces are expected to  appear, the sym- 
bolic tracker directs the image tracker to add structure 
to the adaptive adjacency graph. Since the symbolic 
tracker knows along which existing contours new faces 
should appear, it can specify between which nodes in 
the adaptive adjacency graph new contours should be 
added. The method in which new contours are added 
to the AAG will be addressed in Section 4. 

The image tracker employs a representation called 
an  adaptive adjacency graph, or AAG. The AAG is 
initially created from a recovered aspect, and consists 
of a network of active contours (snakes) [8] which are 
connected at nodes. In addition, the AAG captures 
the topology of the network’s regions, as defined by 
minimal cycles of contours. Contours in the AAG 
can deform subject to both internal and external (im- 
age) forces while retaining their connectivity at nodes. 
Connectivity of contours is achieved by imposing con- 
straints applied a t  contour ends. If an AAG detected 
in one image is placed on another image that is slightly 
out of registration, the AAG will effedively “pull” it- 
self into place. 

4.1 Creating the Adaptive Adjacency 
Graph 

As pointed out in Section 3.4, the initialization pro- 
cedure recovers an object’s (or part’s) aspect from the 
image in order to  locate its position in the APG. A 
recovered aspect encodes a set of faces and their con- 
nectivity. Furthermore, each recovered face defines a 
chain of bounding contour pixels partitioned a t  signif- 
icant curvature discontinuities. In addition, each face 
defines a region mask specifying those pixels internal 
to the face. Nodes in the AAG are located a t  points 
where partitioned contours in the recovered aspect 
coterminate, while arcs are created from the recovered 
partitioned contours. The open rigid curves bounding 
a face are converted into “flexible” active contours by 
resampling the original chain, and are stored in the 
AAG together with information on their connectivity. 
The main feature of the AAG is its adaptability to 
internal and external forces while retaining its topol- 
ogy. This is achieved by specifying a set of constraints 
for active contours that preserve connectivity of the 
contours a t  their nodes [7]. 

3.4 Initialization and Error Recovery 
4.2 Tracking with the AAG 

An error state is reached when the visual events 
signaled by the image tracker are not consistent with 
any of the transitions emanating from the current node 
in the aspect prediction graph. When the error state 
is reached, the symbolic tracker terminates tracking 
and attempts to relocate itself in the aspect prediction 
graph. This initialization procedure involves acquiring 
an image and recovering the aspect of the volume. 
Further details on this process can be found in [5, 41. 

The basic behavior of the AAG is to track image 
features while maintaining connectivity of the con- 
tours and preserving the topology of the graph. This 
behavior is maintained as long as the positions of ac- 
tive contours in consecutive images do not fall outside 
the zones of influence of tracked image features. This, 
in turn, depends .on the number of active contours, 
the density of features in the image, and the disparity 
between successive images. 
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If either the tracked object or the camera moves 
between successive frames, the observed scene may 
change due to disappearance of one of the object faces. 
The shape of the region corresponding to the disap- 
pearing face will change and eventually the size of the 
region will be reduced to zero. The image tracker mon- 
itors the sizes and shapes of all regions in the AAG and 
detects such events. 

4.3 Modifying the AAG topology 

Topological modification of the AAG is performed 
by the symbolic tracker and represents the predicted 
changes in appearance from one APG node to another. 
Specifically, a modification consists of either removing 
the unshared contours and nodes of an object face 
predicted to disappear, or to add nodes and contours 
belonging to a new face predicted to appear. Decision 
as to which contours to remove/add is specified by the 
transition from the current APG node to a predicted 
APG node. 

Creation of a new aspect face (region in the AAG) 
involves creating new nodes, creating new active con- 
tours between specified nodes, and linking specified 
contours with springs. Placement of new nodes and 
contours is specified according to the positions of ex- 
isting nodes and contours in the AAG. If the predicted 
contours do not “lock-on” to new gradient ridges ap- 
pearing in the image, the image tracker concludes that 
the prediction is wrong. The image tracker accom- 
plishes this verification step by monitoring the area of 
the predicted face. If it fails to increase in area shortly 
after it is added to the AAG, then the prediction is not 
verified. 

5 Results 

In Figure 4, we demonstrate our tracking technique 
on a sequence of images taken of a rotating block. 
Note that for the first frame, the AAG was created 
from the recovered aspect. For subsequent frames, 
a blurred, thresholded, gradient image is used to ex- 
ert external forces on the AAG. Moving left to right, 
top to bottom, we can follow the AAG as it tracks 
the image faces. When the foreshortened face’s area 
falls below a threshold, the visual event is signaled 
to the symbolic tracker. Consequently, the nodes and 
contours belonging to the disappearing faces are re- 
moved while nodes and contours belonging to the face 
predicted to appear are added. Note that in order 
to ensure that new contours and old contours do not 

“lock on” to the same image gradient ridge, the con- 
tours are automatically “pulled apart”, so that they 
will converge to the correct edges in the image. We 
are currently investigating the use of repulsion forces 
that would more effectively prevent network contours 
from converging. 

6 Limitations 

We are currently addressing a number of limitations 
of the current implementation. Although initialization 
can be performed in the presence of occlusion, there is 
currently no mechanism for detecting occlusion within 
the image tracker. Another limitation of the approach 
is the way in which the structure of the adaptive adja- 
cency graph is altered to reflect new face predictions. 
Since predictions are located at  specific model con- 
tours, the structure of the added face must reflect the 
structure of the model face in the model aspect. Fi- 
nally, our image tracker currently only reacts to the 
disappearance of faces in the image. We are currently 
investigating the use of face detectors positioned at  
points along the AAG’s outer boundary to detect the 
appearance of new faces. 

7 Conclusions 

We have presented a method for qualitatively track- 
ing the pose of a 3-D object without the need for a 
model specifying the object’s exact geometry. Use of 
an aspect prediction graph allows a symbolic tracker 
to track the object as i t  moves from one qualitatively 
different view to another. Using a network of active 
contours, the adaptive adjacency graph can quickly 
track an aspect using only gradient information com- 
puted from an image. By detecting certain kinds of 
deformations in the adaptive adjacency graph, the im- 
age tracker can predict impending visual events in the 
symbolic tracker. In addition to providing a means 
for qualitative object tracking, the aspect prediction 
graph extends previous active contour trackers beyond 
simply tracking an object’s silhouette. The integration 
between the aspect prediction graph and the adaptive 
adjacency graph allows us to track both the external 
and internal discontinuities of an object. Furthermore, 
being able to predict how the structure of this network 
can change allows us to track the qualitative orienta- 
tion of the object in terms of its aspect. 
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Figure 4: Tracking a Rotating Block. There were 1 1  images in the sequence with 10 iterations of the AAG per 
image for a total of 110 snapshots of the AAG. Working left to right and top to bottom, we show snapshots 1, 
23, 32, 41, 70, 82, 90, and 110. Note that when the disappearing face is detected (70), the new face is predicted 
and contours are added (82).  The added contours are automatically “pulled apart” to ensure that they do not 
converge to the same image edge; final position of the new edge is shown in frame 90. 
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