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Abstract 

We present an approach to  function-based object 
recognition that reasons about the functionality of an 
object’s intuitive parts. We extend the popular “recog- 
nition b y  parts” shape recognition framework to sup- 
port “recognition by  functional parts”, b y  combining a 
set of functional primitives and their relations with a 
sel of abstract volumetric shape primitives and their 
relations. Previous approaches have relied on more 
global object features, often ignoring the problem of 
object segmentation and thereby restricting theriiselves 
to range images of unoccluded scenes. We show how 
these shape primitives and relations can be easdy re- 
covered from superquadric ellipsoids which, in turn, 
can be recovered from either range or intensity im- 
ages of occluded scenes. Furthermore, the proposed 
framework supports both unexpected (bottom-up) ob- 
j ec t  recognition and expected (top-down) object recog- 
nition. We demonstrate the approach on a simple 
domain b y  recognizing a restricted class of hand-tools 
from 2- D images. 

1 Introduction 

When we consider recognition from a functional 
point of view, we leave the concept of shape-alone 
based recognition for a more general and flexible con- 
cept. For example, if we wish to model four chairs, 
each having a different configuration of differently 
shaped parts but all functioning as chairs, we would 
require four different object shape models. Alterna- 
tively, recognition based on functionality would enable 
a robot to possess knowledge of the needed function 
of a chair without explicitly specifying the possible 

shapes of a chair. The seminal work of Stark and 
Rowyer et al. [ l l ,  10, 12, 13, 14, 15, 16, 161 has ad- 
dressed function-based object recognition, foc.using on 
domains including chairs and dishes. In their work, 
they define a set of functional primitives specific to 
each object class. For example, in their system that 
recognizes chairs, they have functional primitives for 
support, sitting height, stability, etc. From a CAD 
representation of an object, they can compute these 
primitives and categorize the object. Although their 
system has been tested mainly with CAD data, they 
have applied it to complete range images of an 0bjec.t 
acquired through an Odetics range scanner. 

Despite the success of this approach, there are some 
limitations. To begin with, the approach assumes 
a 3-D representation of the image from which they 
can compute their functional primitives. Furthermore, 
their approach assumes an image of an isolated ob- 
ject; object occlusion in the image cannot be sup- 
ported since no object segmentation is performed on 
the image data. It is important to note that the work 
of Stark and Bowyer takes a global approach to func- 
tional recognition, making it sensitive to occlusion and 
partial views. Due to the nature of their functional 
reasoning, it does not extend to function-based recog- 
nition from 2-D imagery containing multiple occluded 
objects. 

In this paper, we present a theory of function-based 
recognition which is a natural extension of part-based 
shape recognition. Instead of focusing on global prop- 
erties such as stability, height, existence of large hor- 
izontal surfaces, etc., we will reason about the func- 
tionality of an object’s parts. Moreover, those parts 
are the same parts that we recover from the image for 
shape recognition. Thus, instead of reasoning about 
the functionality of a collection of 3-D points or planar 
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surfaces, we propose to reason about a more intuitive 
notion of an object’s parts (Pentland [9]). Although 
we will not index using part shape, we can use knowl- 
edge of part shape to help segment the image into 
parts. Given a set of recovered volumetric parts, we 
can then reason about the functionality of both the 
individual parts and interactions between the parts. 
Such interactions can include relative orientation, size, 
shape, or even motion! 

We outline our theory of functionality for objects 
in Section 2, and introduce a representation for volu- 
metric parts from which we reason about functional- 
ity. Section 3 discusses the recovery of the volumetric 
parts from both 3-D range and 2-D intensity images. 
Next, in Section 4, we describe our recognition algo- 
rithm as it applies to both expected (top-down) and 
unexpected (bottom-up) object recognition. Finally, 
in Section 5, we demonstrate the technique applied to 
the domain of hand tools. 

2 Representing Object Functionality 

Our theory of function-based object recognition is 
a natural extension of part-based shape recognition. 
That  is, we reason about the functionality of an ob- 
ject’s parts and their interrelations. Figure 1 illus- 
trates the concept. At the shape level, objects are 
constructions of coarse volumetric primitives with spa- 
tial relations between the primitives. At the function 
level, the shape primitives map to a set of functional 
primitives and the spatial relations map to a set of 
functional relations. At the functional level, objects 
are not represented in terms of shape, but in terms 
of a set of functional primitives and relations. In the 
following sections, we describe this hierarchical rep- 
resentation in more detail. We begin by describing 
the coarse shape representation and follow with the 
functional representation. Finally, we illustrate the 
representation by means of an example. 

2.1 Representing Shape 

2.1.1 Shape Primitives 

Our shape representation models objects as construc- 
tions of coarse volumetric shape primitives belonging 
to four classes: sticks, strips, plates, and blobs. The 
representation is an extension to  the generalized blob 
models (sticks, plates, and blobs) proposed by Mul- 
gaonkar, Shapiro, and Haralick [SI. Our four classes 
are distinguished by their relative dimensions. Letting 

object 
definition 

functional 
relation 

functional 

+ shape/function 
mapping 

functional relation/ 
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Figure 1: Representing Object Functionality 

a ] ,  a2, and a3 represent length, width, and height, re- 
spectively, of a volumetric part, we can define the four 
classes as follows: 

Stick : a1 N a2 << a3 V a1 2: a3 << a:! V a:! 2: a3 << a:! 

Strip : a1 # a2 A a2 # a3 A ai # a3 

Plate : a1 N a2 >> a3 V a1 2: a3 >> a2 V a2 N a3 >> a2 

Blob : a1 2: 02 2: a3 

Intuitively, if all three dimensions are about the same, 
we have a blob. If two are about the same and the 
third is very different, we have two cases: if the two 
are bigger than the third, we have a plate, while if 
the two are smaller than the third, we have a stick. 
Finally, when no two dimensions are about the same, 
we have a strip. For example, a knife blade is a strip, 
because no two of its dimensions are similar. 

2.1.2 Spatial Relations 

We can qualitatively describe the ways in which two 
shape primitives can be combined. For example, we 
can attach two shapes end-to-end, end-to-side, or side- 
to-side, as proposed by Biederman when building ob- 
jects out of geons [2]. To further specify these attach- 
ments, we adopt the convention of labeling each prim- 
itive’s attachment surfaces [ 6 ] .  For example, a square 
plate has six attachment surfaces, while a cylindrical 
stick has three attachment surfaces. For simplicity, we 
shall require any junction of two primitives to involve 
exactly one attachment surface from each primitive. 
In addition to specifying the two attachment surfaces 
participating in the junction of two primitives, we can 
also consider the angles a t  which they join, and we can 
classify the joints as perpendicular, oblique, tangen- 
tial, etc. Another refinement would be to qualitatively 
describe the position of the joint on each surface. 

. -. . 
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2.2 Representing Function 

2.2.1 Functional Primitives 

Functional primitives represent the building blocks of 
a functional representation of an object. For example, 
the functional primitives defining a coffee cup would 
include a handle and a container; a chair would include 
a seat, a base, and a bi&ck [ l l ,  lo]. For the remain- 
der of this paper, we will illustrate our approach to 
functional object recognition by focusing on a class of 
manipulation tasks. Bearing in mind that a manipu- 
lation task involves an agent grasping an object and 
using it to perform some action, we will define a class 
of objects that have an end-eflector (the part which 
delivers the action) and a handle (the part that the 
agent grasps). Examples of such objects might include 
simple hand tools like a screw driver or a hammer, or 
everyday objects like cups, glasses, or plates. 

2.2.2 Functional Relations 

A given set of parts might independently satisfy the 
needs for an end-effector or a handle. However, they 
must be joined in a particular way so as to satisfy the 
needs of a particular task. The set of functional rela- 
tions linking the primitives describes the function of 
the interaction between the primitives. In the ham- 
mer example, the functional relation linking the han- 
dle and end-effector specifies that the handle is used to 
swing the end-effector in a direction which maximizes 
the force tangential to the swing arc while maximizing 
striking stability. 

2.3 Mapping Shape to Function 

In general, the mapping between shape primi- 
tives (and their relations) and functional primitives 
is many-to-one. For example, three or more chair legs 
may satisfy the functional primitive of chair base. For 
simplicity, we will restrict ourselves to object mod- 
els with a one-to-one mapping between shape primi- 
tives and functional primitives. Consider, for exam- 
ple, the functional model for a hammer specifying an 
end-effector and a handle. The end-effector should be 
blob-like, ensuring that the dimensions of the strik- 
ing surface are roughly equal (rotationally symmetric 
to allow striking error in any direction). If the end- 
effector were stick-like, the distance between the han- 
dle junction and the striking surface would be large, 
making it more difficult tlo locate the nail. If the end- 
effector were plate-like, it would have insufficient mo- 
mentum for driving a nail. The handle, on the other 

T 
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Figure 2: Functional Model for a Hammer 

hand, should be stick-like, small enough that it can be 
grasped by a human hand, and long enough to provide 
a high moment a t  its junction with the end-effector. 

2.4 Mapping Function Relations to Spa- 
tial Relations 

The specification as to how the functional compo- 
nents defining an object are combined is captured by a 
set of functional relations. These functional relations 
are then mapped to a set of spatial relations linking 
the shape primitives. In the hammer example, the 
functional relation maps to an attachment between the 
stick (handle) and the blob (end-effector) such that 
the axis of the stick is orthogonal to the (principal) 
axis of the blob and is attached to  the centroid of the 
blob. The complete model for the hammer, including 
functional and shape primitives, functional and shape 
relations, and the mapping from functional shapes and 
relations to spatial shapes and relations is outlined in 
Figure 2. 

3 Recovering Shape 

In the last section, we described a set of func- 
tional primitives defined on a set of shapes consist- 
ing of sticks, strips, plates, and blobs. Since these 
four shape classes are defined according to their rela- 
tive dimensions, we need to not only segment an in- 
put image into parts, but recover 3-D (dimensional) 
information from those parts. In this section, we de- 
scribe an approach to recovering sticks, strips, plates, 
and blobs from an image. The approach consists of 
recovering a superquadric from the image, providing 
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explicit dimensions which we can then use to classify 
our shape. Superquadrics offer a compact, coarse, vol- 
umetric description of an object’s parts [9]. If finer 
shape modeling is required, deformable superquadrics 
can be used to capture both global part shape (using 
a superquadric) and local shape (using a deformable 
mesh) [17]. Since superquadrics capture more shape 
attributes than just the E, y, and z dimensions of a 
part, they provide us with a foundation from which to 
recover a richer vocabulary of qualitative shapes with 
which to reason about function. For example, we may 
dec.ide to distinguish among curved-axis vs. straight- 
axis shapes or tapering vs. constant cross-sectional 
sweep rules [2]. 

The approach we take, due to Dickinson and 
Metaxas [4, 71, is to use a qualitative segmentation 
of the image to provide strong constraints on the de- 
formable model fitting procedure described in [ 171. 
The result is a technique which allows us to recover 
certain classes of superquadrics from image data, un- 
der orthographic, perspective, and stereo projection 
[7], Furthermore, the technique supports the recov- 
ery of occluded parts, allowing us, unlike the work 
of Stark and Bowyer, to reason about the functional- 
ity of objects that are only partially visible. We will 
not describe the above recovery methods in this pa- 
per; details can be found in [4, 71. We will, however, 
proceed now to describe the geometry of a deformable 
superquadric and show how we classify a superquadric 
as a stick, strip, plate, or blob. 

3.1 Geometry of a Deformable Su- 
perquadric 

Geometrically, the models that we can recover from 
either range or image data are closed surfaces in space 
whose intrinsic (material) coordinates are U = (U, v), 
defined on a domain R. The positions of points on 
the model relative to an inertial frame of reference cb 
in space are given by a vector-valued, time varying 
function of U :  

x(u,  t )  = (EI(u, t ) ,  EZ(U, t ) ,  23(u, t))T, (1) 

where is the transpose operator. We set up a nonin- 
ertial, model-centered reference frame 4, and express 
these positions as 

x = c + R p ,  (2) 

where c(t) is the origin of 4 at  %he center of the model 
and the orientation of 4 is given by the rotation matrix 
R(t). Thus, p(u,  t )  denotes the canonical positions of 
points on the model relative to the model frame. We 

further express p as the sum of a reference shape s(u, t)  
and a displacement function d(u, t ) :  

p = s + d .  (3) 

The ensuing formulation can be carried out for any 
reference shape given as a parameterized func.tion of U .  

Based on the shapes we want to recover (sticks, strips, 
plates, and blobs with possible tapering and bending 
global deformations), we first consider the case of su- 
perquadric ellipsoids [l], which are given by the fol- 
lowing formula: 

where - ~ / 2  5 U 5 a/2 and -T 5 v < T ,  

and where S,‘ = sgn(sinw)(sinwI‘, and C,‘ = 
sgn(cos w)l COSW~‘ ,  respectively. Here, U 2 0 is a scale 
parameter, 0 5 a l ,  a2,  a3 5 1 are aspect ratio param- 
eters, and €1, € 2  >_ 0 are “squareness” parameters. 

We then combine linear tapering along principal 
axes 1 and 2 ,  and bending along principal axis 3 of 
the superquadric e’ into a single parameterized defor- 
mation T, and express the reference shape as 

where -1 5 t l ,  t z  5 1 are the tapering parameters in 
principal axes 1 and 2, respectively, and where bl de- 
fines the magnitude of the bending and can be positive 
or negative, -1 5 bz 5 1 defines the location on axis 
3 where bending is applied and 0 < 63 5 1 defines 
the region of influence of bending. Our method for 
incorporating global deformations is not restricted to 
only tapering and bending deformations. Any other 
deformation that can be expressed as a continuous pa- 
rameterized function can be incorporated as our global 
deformation in a similar way. 

We collect the parameters in s into the parameter 
vector: 

Once we have recovered a superquadric from an im- 
age (range or intensity), it is a very simple matter to 

’These coincide with the model frame axes z,y and z 
respectively. 
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extract the dimensions of the superquadric. The width 
(z dimension) of the superquadric is given by 

width = a a l ,  (8) 

its height (y dimension) by 

keigl i t  = aa2, (9) 

and its length ( z  dimension) by 

Given the dimensions of the part, we can classify the 
part as either a stick, strip, plate, or blob according 
to the rules described in Section 2. 

4 Recovering Object Function 

Our function-based object recognition strategy sup- 
ports bottom-up (or unexpected) object recognition, 
whereby an object is presented to the system and the 
system identifies the object based on the functional- 
ity of its parts. In addition, our strategy supports 
top-down (or expected) object recognition, whereby 
the system looks for a particular object in the image 
by mapping its functional parts to image feature pre- 
dictions. In this section, we will describe both these 
strategies . 

Unexpected Object Recognitiou 

In an unexpected object recognition task, we first seg- 
ment an input image intlo a set of homogeneous re- 
gions from which we recover a set of qualitative 3-D 
parts. using local part-based aspect matching tech- 
niques [6, 5, 31. Next, using the techniques of Dick- 
inson and Metaxas [4, 71, we use the recovered qual- 
itative shape to constrain the fitting of a set of de- 
formable superquadrics to the qualitative parts. From 
the resulting quantitative parts, we compare the di- 
mensions of the parts to abstract a set of sticks, strips, 
plates, and blobs. Furthermore, we can recover the 
spatial relations spanning the recovered parts. 

If there is no a priori knowledge of what object is in 
the image, then groups of spatial primitives and their 
spatial relations can be used to infer a set of func- 
tional primitives and relations. The recovered func- 
tional primitives and rela1,ions are then compared to 
a set of functional object models. In our simple do- 
main of hand tools, we can map shape primitives to 
possible functional primitives and map shape relations 
to possible functional relations, providing a number of 

functional object hypotheses that are then compared 
to the object database. As an example, suppose we 
place a hammer in front of the camera and ask the 
system to identify the object. The recovery process 
would recover a stick and a blob in some spatial con- 
figuration. The blob then maps to end-effector as well 
as to all other functions a blob could serve. Simi- 
larly, the stick maps to a handle as well as all other 
functions that it could serve. Finally, the spatial re- 
lation between the stick and blob would map to  all 
functional relations joining a stick and a blob in that 
configuration. Combining the various interpretations 
for the stick, the handle, and their relationship would 
yield a number of object hypotheses which satisfy the 
recovered functionality. 

Expected 0 b ject Recognit ion 

In an expected object recognition task, we use knowl- 
edge of the target object’s functional model to con- 
strain our search in the image both in terms of what 
we look for and where we look for it. Given a func- 
tional object model, we first choose some functional 
primitive whose presence in the image would provide 
the least ambiguous mapping to the target object. 
For example, in looking for a cup on a table contain- 
ing glasses and cups, we should look for a cup han- 
dle and not a container since the handle is unique to 
the cup. Next, the functional primitive is mapped to 
one of the four abstract shape primitives, i.e., sticks, 
strips, plates, and blobs. Finally, the shape primitive 
is mapped into an image region shape prediction in 
terms of extent or elongation. Like the unexpec,ted ob- 
ject recognition algorithm, the image is first processed 
to  extract a region topology graph. By examining the 
extent (or elongation) of an image region, along with 
that of its immediate neighbors, we can derive a simple 
heuristic for drawing attention to a particular image 
region. We can thus focus the recovery of the shape 
primitive and constrain the search for other primitives 
belonging to the object. 

For example, if we are searching for blobs or plates, 
we can rank-order the image regions by increasing ex- 
tent. Furthermore, regions whose immediate neigh- 
bors include a region with similar extent can be fa- 
vored as being part of a blob, while regions whose 
neighbors do not include a region with similar extent 
can be favored as being part of a plate. Similarly, if 
searching for sticks or strips, we can rank-order the 
image regions by decreasing extent. Regions whose 
immediate neighbors include a region with similar ex- 
tent can be favored as being part of a stick, while 
regions whose neighbors do not include a region with 
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similar extent can be favored as being part of a strip. 
These rules can provide a useful ordering on the posi- 
tions from which shape recovery is attempted. 

From a candidate search position, the next step is 
to recover a superquadric from which the 3-D part 
dimensions and orientation can be recovered. This 
consists of first recovering the qualitative shape of the 
part [6, 51, which is then used to constrain the fitting 
of a superquadric to the image data. Once the part 
is verified as a stick, strip, plate, or blob, the search 
for other parts of the object can be constrained to 
those image regions adjacent to or in the vicinity of 
any previously recovered volumes. 

Parameter 
a 

5 Results 

Head I Handle . 
37.19 1 37.19 

In this section, we apply the function-based ex- 
pected object recognition algorithm to the image of 
the mallet shown in Figure 3(a). In Figure 3(b), we 
show the segmented region image. Without any a pri- 
ori knowledge of scene content, each of the functional 
primitives, namely the end-effector and handle, are 
deemed equally likely to appear in the image. The 
algorithm arbitrarily chooses the end-effector (mallet 
head) and maps that choice to a search in the image 
for a blob. The algorithm rank-orders regions in the 
image according to their ratio of area to extent (com- 
puted from bounding box). The large region is chosen 
first and the bottom-up algorithm is used to recover 
the most likely interpretation of the region and its 
neighbors. The two most likely recovered volumes are 
found, corresponding to the head and handle of the 
mallet, respectively. 

In Figures 3(c) and (d), we show the results of using 
the recovered qualitative shape to constrain the fitting 
of a superquad to each part; the parameters of the 
two superquads are given in Table 1. Since only a 
monocular image w a s  used, the same arbitrary depth 
was chosen for both objects during the fitting stage. 
Without recovering true depth of the two parts, we 
cannot ensure that they intersect.2 However, in this 
case, since the two parts intersect in the image, we 
will assume that they intersect in 3-D. 

From the recovered superquad parameters in Ta- 
ble l ,  we can proceed to classify each part as ei- 
ther a stick, a strip, a plate, or a blob according 
to Equations 8, 9, and 10 in Section 2.1.1; the re- 
sults are shown in Table 2. Using Equations 1, 1, 
1, and 1, and defining two dimensions as similar 

1 

a1 0.45 0.22 
a2 0.45 0.22 

2See [7] for an approach to deformable model recovery from 
stereo pairs. 

a3 

t ,  

1 SuDerauad II Part ll 

0.69 1.14 
-4.40 4.97 

Y L 

0.51 -3.88 
1, -50.0 -50.0 
t ,  

L 
r33 0.42 0.09 
€1 0.0 0.0 U €2 11 1.0 I 1.0 

bend, 11 0.0 I 0.0 
taper ,  11 0.0 I 0.0 

Table 1: Recovered Superquad Parameters for Mallet 

if the ratio of the biggest to the smallest is within 
4: 1 (width:height:length ratios for the two parts are 
1:1:1.53for the head and 1:1:5.18for the handle), then 
the mallet head is classified as a blob, while the mallet 
handle is classified as a stick. 

Since our search procedure is looking for the mallet 
head (end-effector), it chooses the blob, and proceeds 
to search for the handle in the vicinity of the recovered 
blob. Due to region undersegmentation, the regions 
corresponding to the body surfaces of the head and 
handle of the mallet were joined. However, those con- 
tours not used to recover the head but still belonging 
to the large region are free to be part of other recov- 
ered volumes. Since we have already recovered a stick 
and its defining contours were not used to infer the 
blob, we can instantiate the handle in the image. The 
last step in recognizing the object is to satisfy the func- 
tional relation between the two parts which is mapped 
into a spatial constraint on the part junction. Since 
the computed relative orientation of the two parts is 
such that their z axes are orthogonal (> 60deg in 
our qualitative partitioning of angle), and since the 
junction occurs at the end of the handle and at the 
middle of the head, the algorithm successfully verifies 
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Figure 3: Hammer Recovery: original image, segmented region image, recovered head, and recovered handle. 

Dimension 

length 

Part 
Block I Cylinder 

Table 2: Recovered Dimensions for Mallet 

the hammer in the image. 
In the second example, we apply our function-based 

unexpected object recognition approach to a scene 
containing a short cylinder attached to  the side of a 
block; the image is shown in Figure 4(a), while the 
segmented region image is shown in Figure 4(b). Fig- 
ures 4(c) and (d), show the recovered superquadrics 
for the block and cylinder, respectively 

From the recovered superquad parameters, we can 
proceed to classify each part as either a stick, a strip, 
a plate, or a blob according to Equations 8, 9, and 
10 in Section 2.1.1; the results are shown in Table 3. 
Using Equations 1, 1, 1, and 1, and again defining two 
dimensions as similar if the ratio of the biggest to the 
smallest is within 4:l (width:height:length ratios for 
the two parts are 1:1:2.51for the block and 1:1:0.89for 
the cylinder), then both the block and the cylinder are 
classified as blobs. Although their connection position 
and orientation is consistent with the hammer model, 
the hammer model requires that its handle be a stick. 
The unknown object cannot, therefore, be classified as 
a hammer. 

6 Limitations 

The domain of hand tools defines a simple, one-to- 
one mapping between an object’s functional primitives 

width 11 20.08 I 16.74 
height 11 20.08 I 16.74 - I, 

length 11 50.58 1 14.88 

Table 3: Recovered Dimensions for Unknown Object 

and relations and their corresponding shape primitives 
and relations. In the more general case, the map- 
ping from shape primitives to functional primitives is 
many-to-one, and a much more elaborate reasoning 
strategy is required to support the inference of a func- 
tional primitive from a collection of interacting shape 
primitives. Nevertheless, we strongly believe that such 
a reasoning mechanism must operate a t  the level of an 
object’s coarse volumetric parts. 

The object representation described in this paper is 
appropriate for objects composed of simple volumet- 
ric parts. Furthermore, we support only functionality 
that is defined in terms of an object’s shape. Func- 
tions that  are based on color, texture, or more impor- 
tantly, motion, are not currently supported, although 
in current work we are enhancing our representation 
to  include motions of an object’s parts. 

7 Conclusions 

We have presented an approach to function-based 
object recognition that reasons about the functional- 
ity of an object’s parts. Previous approaches have 
relied on more global object features, often ignor- 
ing the problem of object segmentation and thereby 
restricting themselves to  range maps of unoccluded 
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Figure 4: Object Recovery: original image, segmented region image, recovered block, and recovered cylinder. 

scenes. We extend the popular “recognition by parts” 
shape recognition framework to support “recognition 
by functional parts”, by combining a set of functional 
primitives and their relations with a set of abstract 
volumetric shape primitives and their relations. We 
show how these shape primitives and relations can eas- 
ily be recovered from superquadric ellipsoids which, 
in turn, can be recovered from either range or inten- 
sity images of occluded scenes. Furthermore, the pro- 
posed framework supports both unexpected (bottom- 
up) and expected (top-down) object recognition. 
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